王沫然,博士,清华大学教授,博士生导师。1995年考入清华大学工程力学系,1999年和2004年分别获得清华大学工程力学系学士和博士学位。2004~2008年先后在美国约翰霍普金斯大学(Johns Hopkins University)和美国加州大学(University of California)作博士后,2008年获得美国能源部的J. Robert Oppenheimer Fellowship,并进入Los
Alamos国家实验室(Earth and Environmental Sciences Division
and Center for Non-Linear Studies)工作,任奥本海默学者(Oppenheimer Fellow)。2011年进入清华航天航空学院工作,任教授,同年入选首批国家 “海外高层次人才引进计划--青年人才”,2013年获得“吴仲华优秀青年学者奖”,2019年入选“国家特殊人才支持计划—领军人才”。
王沫然课题组正招收流体力学与传热传质方向的博士和硕士研究生,以及交叉学科(力学、热学、物理、化工、环境、地质、石油、材料等)背景的博士后研究人员,有热爱科学、愿意投身科研的同学请联系:010-62787498,mrwang/at/tsinghua.edu.cn
教育背景
1999.7 清华大学工程力学系 学士学位
2004.7 清华大学工程力学系
博士学位
工作履历
2004-2006 美国约翰霍普金斯大学机械工程系,博士后 (Postdoctoral Fellow)
2006-2008 美国加州大学戴维斯分校生物与农工系,博士后 (Research Associate)
2008-2011 美国Los Alamos国家实验室,奥本海默学者 (Oppenheimer Fellow)
2007-2012
美国约翰霍普金斯大学,访问科学家 (Visiting Scientist)
2018-2019 美国普林斯顿大学,访问教授 (Visiting Professor)
2011-至今
清华大学航天航空学院工程力学系,教授
学术兼职
学会会员:ASME(2003至今), APS(2005至今), AGU(2009至今),Interpore( lifetime member ),中国工程热物理学会,中国力学学会
学术服务:2006年至今担任10个国际SCI期刊的编委,多次作为会议的组织者或学术委员会成员组织国际会议或论坛,受邀作为美国NSF评审人、NASA外审专家委员会以及国资委评审委员会成员。担任编委的期刊包括:
· Energy期刊编委(Associate Editor)Elsevier出版社,SCI
· Energy Science and Engineering期刊编委(Editorial Board Member)Wiley出版社,SCI
· Energies 期刊编委,SCI
· Journal of Fluid Engineering-ASME 期刊编委(Associate Editor)ASME出版,SCI
· Journal of Geophysical
Research-Solid Earth 期刊编委(Associate Editor)AGU出版,SCI
· Journal of Colloid and Interface
Science期刊编委,Elsevier出版,SCI
· Colloids and Interface Science期刊编委,SCI
· Journal of Porous Media期刊编委(Associate Editor)Belgellhouse出版社,SCI
· Transport in Porous Media期刊编委(Editorial Board Member)Springer出版社,SCI
· Special Topics & Reviews in
Porous Media期刊编委(Associate Editor)Belgellhouse出版社,SCI
研究领域
研究兴趣及计划:
1.
微纳尺度流动及传热传质机理分析(流动、扩散及能量传递)
2.
复杂流体与界面输运
3.
多尺度渗流机理与应用(非常规油气、碳储存及水净化)
4.
多尺度模拟及应用(LBM, MC, MD, BD, PIC等)
5.
能效管理(能量传递、转化及存储机理及热力学优化、热管理)
以往工作及贡献:
1.微纳电动流体输运机理及应用
2.多相多孔材料构效关系的定量分析
3.高努森数非理想气体流动及换热模拟
4.微系统(传感器、微泵、微喷等)与微材料的性能分析
5.微纳热量输运机理及非Fourier效应分析
6.输运网络结构的热力学优化
研究概况
一直从事微纳尺度流动与传热传质、多孔介质/材料构效关系、节能储能以及强化换热的理论及应用研究,在介观输运及多尺度模拟方面成果得到国内外同行关注;已在学术期刊及国际会议上发表论文百余篇,多次受邀撰写英文著作/章节,担任客座编辑出版英文专刊10本,多次受邀在高影响国际期刊(IF>10)撰写专题综述/评述论文,在10个国际学术期刊(SCI)担任副主编或编委。主持国家自然科学基金项目8项、国家重大专项课题1项,负责2项国家人才支持项目、1项教育部基金项目,获得过多项国家实验室开放基金项目资助,作为主要骨干参与1项973节能项目;在美国工作期间,作为负责人主持美国能源部国家实验室研究发展(DOE-LDRD)项目1项,作为第二责任人负责美国国家纺织中心(NTC)项目1项,作为主要骨干参与美国自然科学基金(NSF)项目1项;参加其他美国国家级的科研项目3项;博士期间参与中国国家自然科学基金重点项目1项和国家重点基础研究发展项目1项。
奖励与荣誉
2019 国际多孔介质协会“P&G Award for Porous Media Research”
2019 国家特殊人才支持计划——科技创新领军计划
2018 科技部中青年科技创新推进计划
2013 “吴仲华优秀青年学者奖”
2011 国家海外高层次人次引进计划
2008 美国能源部“J. Robert Oppenheimer Fellowship Award”
2006 教育部全国优秀博士论文提名奖
2004 清华大学优秀博士论文及优秀博士毕业生
2004 清华大学航天海鹰杯学术新秀奖
学术成果
发表学术期刊论文百余篇,其中SCI收录论文 200 余篇,论文SCI引用超过 10000 次,H因子55(数据来自Web
of Science核心版,
截至到2025年3月);多次在高影响因子
(IF>10)的期刊(包括Materials
Science and Engineering R: Reports、Physics Reports、Surface Science Reports、Nano Today和Progress
in Materials Science等)发表专题综述。应主编邀请撰写英文书章节7章,合编英文专刊9本,中文教材及工具书5本。
代表性论文
综述文章
(selected 5)
• M. Wang, N. Pan. Predictions of Effective Physical
Properties of Complex Multiphase Materials. Material Science and Engineering-R: Reports. 63(1): 1-30, 2008 [约稿当年IF=17.731]
• M. Wang. The Physical
Chemistry of Materials: Energy and Environmental Applications. Materials Today. 13(3): 67, 2010 [约稿当年IF=12.929]
• X. Wang, B.
Ding, G. Sun, M. Wang and J.
Yu. Electro-spinning/netting. Progress in Materials Science.58: 1173-1243, 2013 [IF2013=25.87]
• S. Chen, M. Wang, and Z. Xia. Multiscale fluid mechanics and modeling. Procedia IUTAM. 10: 100-114, 2014 [Invited
paper]
• Y. Guo, M. Wang. Phonon hydrodynamics and its applications in
nanoscale heat transport. Physics
Reports. 595: 1-44,
2015 [Impact Factor: 22.91 at the year]
微纳电动流体(selected
5)
• A. Alizadeh, L. Zhang, and M. Wang*. Mixing enhancement of
low Reynolds electro-osmotic flows in microchannels with temperature-patterned
walls. Journal of Colloid and
Interface Science, 431: 50-63, 2014
• J. Liu, M.
Wang, S. Chen and M. Robbins*. Uncovering Molecular Mechanisms of
Electrowetting and Saturation with Simulations. Physical Review Letters. 108: 216101, 2012
• M. Wang*, and A. Revil. Electrochemical
charge of silica surfaces at high ionic strength in narrow channels. J. Colloid Interface Sci 343:
381-386, 2010
• M. Wang*, C. Chang, and R. Yang. Electroviscosity
in nanofluidic channels. Journal of
Chemical Physics 132:
024701, 2010
• M. Wang* and Q. Kang. Electrokinetic
transport in microchannels with random roughness. Analytical Chemistry 81 (8), 2953-2961, 2009
多相材料构效关系 (selected 5)
• M. Wang*, X. Wang, J.K. Wang and N. Pan.
Grain size effects on effective thermal conductivity of porous materials with
internal thermal contact resistance. Journal
Porous Media. 16(11):
1043-1048, 2013
• M.
Wang*, and N. Pan. Elastic property of multiphase
composites with random microstructures. Journal
of Computational Physics 228: 5978-5988, 2009
• M.
Wang*, N. Pan. Modeling and prediction of the
Effective Thermal Conductivity of Random Open-cell Porous Foams. Int. J. Heat Mass Transfer.
51(5-6): 1325-1331, 2008
• M.
Wang*, J. Wang, N. Pan, and S. Chen. Mesoscopic
Predictions of the Effective Thermal Conductivity of Microscale Random Porous
Media. Physical Review E. 75:
036702, 2007
• M.
Wang*, J. Wang, N. Pan, etc. Three
dimensional effect on the effective thermal conductivity of porous
media. J. Phys. D: Appl. Phys.
40: 260-265, 2007
多孔介质多物理化学输运(selected 5)
• S. Chen, X. He, V. Bertola and M. Wang*. Electrokinetic
flow of non-Newtonian fluid in porous media. Journal of Colloid and Interface Science 436: 186-193, 2014
• M. Wang. Structure effects on
electro-osmosis in microporous media. Journal
of Heat Transfer-ASME 134:
051020, 2012
• M. Wang*, Q. Kang, H.
Viswanathan and B. Robinson. Modeling of electro-osmosis of dilute electrolyte
solutions in silica microporous media. J.
Geophysical Research-Solid Earth 115: B10205, 2010
• M. Wang*,
and S. Chen. Electroosmosis in homogeneously charged micro- and nanoscale
random porous media. J. Colloid
Interface Sci. 33(15): 264-273, 2007
• M. Wang*,
J. Wang, S. Chen, and N. Pan. Electrokinetic
Pumping Effects of Charged Porous Media in Microchannels using the Lattice Poisson-Boltzmann
Method. Journal of Colloid and Interface Science 304(1):
246-253, 2006
微纳气体流动与换热(selected
5)
• X. Shan, M. Wang*. Effective resistance of gas flows in
microchannels. Advances of Mechanical Engineering 2013, 950681, 2013
• M. Wang, X. Lan and Z. Li*. Analysis of Gas
flows in Micro- and Nanochannels. Int.
J. Heat Mass Transfer. 51(13-14): 3630-3641, 2008
• M. Wang* Z. Li. An Enskog based Monte
Carlo method for high Knudsen number non-ideal gas flows. Computer & Fluids.
36(8): 1291-1297, 2007
• M. Wang, Z. Li*. Simulations for gas flows in
microgeometries using the direct simulation Monte Carlo method. Int. J. Heat Fluid Flow, 25(6):
975-985, 2004
• M. Wang *, Z. Li. Nonideal gas flow and heat
transfer in micro- and nanochannels using the direct simulation Monte Carlo
method. Physical Review E. 68:
046704, 2003
微系统与微材料的性能分析(selected
5)
• X.
Wang, B. Ding*, J. Yu and M. Wang
Highly Sensitive Humidity Sensors Based on Electro-spinning/netting Polyamide 6
Nano-fiber/net Modified by Polyethyleneimine. Journal of Materials Chemistry. 21(40): 16231-16238, 2011
• M. Wang* and Q.
Kang. Electrochemomechanical energy conversion
efficiency in silica nanochannels. Microfluidics
and Nanofluidics 9(2): 181-190, 2010
• B.
Ding*, M. Wang, J. Yu and G.
Sun. Gas Sensors Based on Electrospun Nanofibers. Sensors, 9(3), 1609-1624, 2009
• M.
Wang, Z. Li*. Numerical Simulations on
Performance of MEMS-Based Nozzles at Moderate or Low Temperatures. Microfluidics and Nanofluidics,
1(1): 62-70, 2004
• M. Wang*,
Z. Li, Z. Chen. The pumping effect of traveling phase transition in microtubes.
International Journal of Nonlinear Sciences
and Numerical Simulation,
3: 565-568, 2002
微纳热量输运机理(selected
5)
• Y. Guo, M. Wang*. Lattice Boltzmann modeling of phonon transport. Journal of Computational Physics, 2016
• X. Shan and M. Wang*. Understanding of thermal conductance of thin gas
layer. Advances of Mechanical Engineering 2013: 692842, 2013
• M.
Wang*, X. Shan, N. Yang. Understanding length dependence of effective
thermal conductivity of nanowire. Physics
Letter A. 376: 3514-3517,
2012
• M. Wang*, N. Yang and Z. Guo. Non-Fourier heat
conductions in nanomaterials. Journal
of Applied Physics, 110: 064310, 2011
• M. Wang*, and Z. Guo. Understanding of size
and temperature dependences of effective thermal conductivity of nanotubes. Physics Letter A 374: 4312-4315
2010
输运网络结构的热力学优化(selected
5)
• X. Shan, M.
Wang* and Z. Guo. Geometry optimization of self-similar transport
network. Mathematical Problems in
Engineering. 2011: 421526,
2011
• X. Liu, M. Wang*, J. Meng, E. Ben-Naim
and Z. Guo. Minimum entransy dissipation principle
for the optimization of transport networks. International
Journal of Non-linear Science and Numerical Simulations 11(2): 113-120,
2010
• X. Liu, Q. Chen*, M. Wang* et
al. Multi-dimensional effects on optimal network
structure for liquid distributors. Chemical
Engineering and Processing 49(10):
1038-1043, 2010
• Q. Chen, M. Wang*, N. Pan, and Z. Guo.
Optimization principles for convective heat transfer enhancement. Energy. 34(9): 1199-1206, 2009
• Q. Chen, M.
Wang*, N. Pan, and Z.
Guo. Optimization Principle for Varying
Viscosity Fluid Flow and Its Application to Heavy Oil Flow Drag Reduction. Energy and Fuels. 23,
4470–4478, 2009
格子Boltzmann算法(selected
5)
• Y.
Chen, Q. Cai, Z. Xia, M. Wang*
and S. Chen. On the momentum exchange method in lattice Boltzmann simulations
of particle-fluid interactions. Physical
Review E. 88: 013303, 2013
• M. Wang*, and Q. Kang. Modeling electrokinetic flows in microchannels using coupled lattice
Boltzmann methods. Journal of
Computational Physics, 229: 728-744, 2010
• J. Wang, M. Wang*, and Z. Li. Lattice Evolution Solution for the
Nonlinear Poisson-Boltzmann Equation in Confined Domains. Communications of Nonlinear Sciences and
Numerical Simulation. 13(3): 575-583,
2008
• J. Wang, M. Wang, and Z. Li*. A Lattice Boltzmann Algorithm for Fluid-Solid
Conjugate Heat Transfer. Inter. J. Thermal Sci. 46(3)
228-234, 2007
• J. Wang, M. Wang*, and Z. Li. Lattice Poisson-Boltzmann Simulations
of Electro-osmotic Flows in Microchannels. Journal of Colloid and
Interface Science. 296(2): 729-736,
2006