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Abstract
The direct simulation Monte Carlo method in the consistent Boltzmann
algorithm model has been developed and expanded for non-ideal gas
predictions. The enhanced collision rate factor is determined by considering
the excluded molecular volume and shadowing/screening effects based on
the Enskog theory. The parameter for the attraction strength is also
determined by comparison with the classical thermodynamics theory.
Different pressure-driven gas Poiseuille flows in micro- and nanoscale
channels are investigated. The van der Waals effect leads to a higher mass
flow rate and different friction and heat transfer characteristics on the wall
surface, compared to the results in the perfect gas model. The results also
show that the van der Waals effect is dependent not only on the pressure but
also on the channel size. A higher driving pressure or a smaller channel size
will result in a larger van der Waals gas effect.

1. Introduction

For high-Knudsen-number fluid, the continuum-based
equations fail to give qualitatively correct predictions on flow
behavior and heat transfer characteristics [1, 2]. The fluid
must be described from a molecular point of view and the
Boltzmann equation is the governing equation [3]. However,
unfortunately, the Boltzmann equation can hardly be solved
analytically or numerically due to its complicated nonlinear
collision integral term, except in some special cases [4]. The
direct simulation Monte Carlo method (DSMC) according
to Bird [5] is one successful method based on statistics-
mechanics to simulate rarefied gases [6], and it has been
rigorously proved equivalent to a numerical solution of the
Boltzmann equation for rarefied gas flows [7]. For the gas
flows in micro or nano systems, the Knudsen number can also
be quite high due to a small characteristic length though the gas
may indeed be dense. Several researchers have applied DSMC
for simulations of gas flows in micro and nano channels [8–12].

In most of the previous simulations, the variable hard
sphere (VHS) model was used. In this model, the attractive
potential was ignored and the gas was treated as a perfect gas so
that a high-density-small-scale flow can be treated to be similar

to a low-density-large-scale flow as long as the Knudsen and
Mach numbers and the boundary conditions are the same
[2, 13]. Hassan and Hash [14] developed a generalized hard
sphere (GHS) model and Fan [15] developed a generalized soft
sphere (GSS) model, by considering the attractive potential of
molecular interactions. However, the attractive potential only
depended on temperature in the two models. It is known
that when the gas is quite dense, the van der Waals force will
become important, and the van der Waals equation will replace
the Clapeyron equation to be the equation of state (EOS). It is
then noted that both DSMC and the Boltzmann equation are
inconsistent since the collision rate and transport properties
are functions of the particles’ cross-section while the EOS is
not. This may be the reason why the DSMC cannot simulate
the dense effect of gas flow, where the van der Waals force is
important [16].

Several researchers have done foundational work for
dense gas simulations [16–19]. A consistent Boltzmann
algorithm (CBA) proposed by Alexander et al [16] modified
the DSMC method according to the van der Waals equation
and expanded DSMC to dense gas even liquid. The nuclear
flow [20] and the surface properties of a van der Waals fluid
[21] have been simulated using DSMC in the CBA model. In
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the present paper, the CBA model is developed for the nitrogen
gas. The enhanced collision rate is determined by considering
the excluded molecular volume and shadowing/screening
effects based on the Enskog theory. The parameter for the
attraction strength is also determined by a comparison with the
classical thermodynamics theory. The pressure-driven plane
Poiseuille flows are then simulated for different domain sizes
and different pressure boundaries using the CBA model. The
results are compared with those from the perfect gas model.
Finally, the van der Waals effect dependences on the gas
density and on the flow characteristic length are discussed.

2. Numerical method

2.1. DSMC method

DSMC is a molecular-based statistical simulation method
for rarefied gas flow introduced by Bird [5]. The method
numerically solves the dynamic equations for gas flow using
thousands of simulated molecules. Each simulated molecule
represents a large number of real molecules. With the
assumption of molecular chaos and a rarefied gas, only the
binary collisions are considered, so the molecular motion and
their collisions are uncoupled if the computational time step
is smaller than the physical collision time. The interactions
with boundaries and with other molecules conserve both
momentum and energy. The macroscopic flow characteristics
are obtained statistically by sampling the molecular properties
in each cell. At the beginning of the calculation, the simulated
particles are uniformly distributed statistically in the cells. At
each time step, all particles move according to their individual
velocities, interact with the boundaries and are then indexed.
In each cell, a certain number of collision pairs are selected
using the no-time-counter (NTC) method and collisions are
calculated. These steps are repeated until the statistical errors
are small enough.

2.2. CBA model

The CBA model was first introduced in 1995 [16]. It extends
the DSMC method to a van der Waals fluid. In the CBA
model, a weak and constant potential to the hard core is
considered according to the van der Waals EOS. The method
for the CBA modification in the advection process to obtain the
van der Waals EOS is described below.

For a hard-sphere gas, the CBA introduces a correlation
by displacing the particles in the advection step of dHS = σ d̂ ,
where σ is the particle diameter and the unit vector d̂ is

d̂ = (v′
i − v′

j ) − (vi − vj )

|(v′
i − v′

j ) − (vi − vj )| = v′
r − vr

|v′
r − vr| , (1)

where vr is the relative velocity of the colliding particles. The
primed and unprimed velocities indicate post- and precollision
values, respectively. After the collision, the particles are
advected as

ri (t + �t) = ri (t) + v′
i (t)�t + dHS, (2)

rj (t + �t) = rj (t) + v′
j (t)�t − dHS. (3)

Equation (1) leads to an average virial � = σ
√

πkT/m,
where m is the molecular mass. By using the Boltzmann

collision rate for dilute gas, �B = 2σ 2n2√πkT/m, the
consistent pressure is now P = nkT (1 + b2n), where
b2 = 2

3πσ 3 is the second virial coefficient and n is the
molecular number density. By introducing the Enskog Y
factor into the CBA, which corrects the low-density collision
rate to the correct hard-sphere collision rate at any density
[�HS = Y (n)�B], the correct EOS at all densities and transport
coefficients at high-densities are obtained corresponding to an
uncorrelated collision (Markov) approximation.

By changing the advection displacement to account for
the attractive force, the CBA is generalized to yield the van
der Waals EOS, which is

PvdW

nkT
= 1 + b2nY − an

kT
, (4)

where a represents the attraction strength and the magnitude
of the displacement is [23]

dvdW = σ − aσ

b2YkT
= dHS − da. (5)

The gas transport properties were changed by introducing
the displacement dvdw, and a random displacement was tried
to adjust the transport properties independent of the EOS
[22–24]. However, in the cases studied in the present paper,
the gas transport coefficients remain close to the actual values
for hard spheres.

2.3. Parameter determination

The CBA model expands the DSMC method to van der Waals
fluids in theory, and has been used for analyzing dense fluid
behaviors, such as nuclear flows [20] and gas–liquid surface
properties [21]. However, the previous investigations were
limited to qualitative analysis due to undetermined attraction
strength. The Y factors of the enhanced collision rate were
quite different for different researchers [17–24]. Here the Y
factor is determined strictly on the basis of the Enskog theory
for dense gases, and the attraction strength is obtained by
comparing with the classical thermodynamics theory.

Based on the Enskog equation for dense gas [25] when
a gas is so dense that the covolume of the molecules is
comparable with the total volume of the system, the molecules
can no longer be treated as point particles. Therefore,
the common position of two colliding molecules in the
Boltzmann equation should be replaced by the actual positions
of the centers of two tangent spheres, and the collision
frequency is influenced by correlational effects that depend
on the density at the point of contact. Due to the reduced
volume occupied by molecules, a modified higher scattering
probability is

�′ = V

V ′ �B, (6)

where V ′ = (
1−n 4

3πσ 3
)
. However, the scattering probability

is lowered again by another effect, namely that the particles
are screening each other. A particle might not be available for
scattering with another particle because there might be a third
particle in between. This effect leads to a reduction of the
scattering probability by a factor of

(
1 − n 11

12πσ 3
)
. Including

this factor, the modified scattering probability is

�HS = Y (n)�B, (7)

where Y (n) = 1−11nb2/8
1−2nb2

.
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Figure 1. Schematic of the physical problem.

This result can, however, be trusted only to the early
orders in n, since four particle configurations have not been
considered [25]. In the current study, the expression up to
third order is used

Y (n) = 1 + 0.625nb2 + 0.2869(nb2)
2 + 0.1103(nb2)

3. (8)

The attractive strength is difficult to determine based on the
molecular theory. Here, we compared equation (4) with the
van der Waals equation from the classical thermodynamics
[26], and obtained,

a = 27

64

R2T 2
c

Pc
m2, (9)

where R denotes the gas constant, Tc is the critical temperature
and Pc is the critical pressure.

2.4. Results and discussion

The standard DSMC code of Bird [5] was developed on the
basis of the CBA and the Enskog theory for dense gases.
Bird’s standard NTC was enhanced by a Y factor to embody
the finite density effects. An additional displacement was
introduced for the intermolecular attraction. The two-
dimensional plane Poiseuille flows were then simulated. The
basic channel configuration is shown in figure 1. The channel
is L in length and h in height. The inlet pressure Pin, the inlet
temperature Tin and the outlet pressure Pout are given.

Table 1. Conditions and parameters of studied cases.

Cases L (µm) h (µm) Pin (×105 Pa) Knin Knout Ly,sub/λin,ideal

1 5 1 1.5 0.0357 0.0536 0.10
2 5 1 3.0 0.0179 0.0536 0.20
3 5 1 15 0.00357 0.0536 1.02
4 5 1 30 0.00179 0.0536 2.05
5 5 1 45 0.00119 0.0536 3.07
6 0.5 0.1 5 0.107 0.536 0.03
7 0.5 0.1 15 0.0357 0.536 0.10
8 0.5 0.1 25 0.0214 0.536 0.17
9 0.5 0.1 35 0.0153 0.536 0.24

10 0.5 0.1 45 0.0119 0.536 0.31
11 0.05 0.01 5 1.07 5.361 0.003
12 0.05 0.01 15 0.357 5.361 0.010
13 0.05 0.01 25 0.214 5.361 0.017
14 0.05 0.01 35 0.153 5.361 0.024
15 0.05 0.01 45 0.119 5.361 0.031

L is the channel length; h is the channel height; Pin is the inlet pressure; Knin is the
Knudsen number at inlet; Knout is the Knudsen number at outlet; Ly,subcell is the
subcell width and λin,ideal is the mean free path at the inlet calculated on the basis
of ideal equation of state.

Fifteen cases for nitrogen gas flows were considered in
this paper, which were listed in table 1. The outlet pressure
Pout was fixed at unity standard atmosphere pressure. The
inlet pressure Pin ranged from 1.5 to 45 ×105 Pa. Both the
wall temperature and the entering gas temperature were 300 K.
The aspect ratio L/H was set at 5 for all simulated cases, and
the channel length ranged from 0.05 to 5 µm. The Knudsen
numbers are calculated on the basis of the ideal gas assumption.
The 100 × 60 uniform rectangular cells with 4 × 4 subcells
were used. According to Alexander et al [27] and Bird [5], it
is required that the subcell size must be smaller than the local
gas mean free path, otherwise, the gas transport coefficients
will depart from the real values with changing cell size.
Table 1 lists the subcell width to mean free path ratio at the
inlet, where the mean free path is calculated on the basis of
the ideal gas model. For cases 4 and 5, the requirement is
not fulfilled near the inlet; however, the effects are limited
due to the quick pressure drop along the channel. The time
step for each case was half of the mean collision time at the
inlet [28].

The properties of the nitrogen gas are listed in table 2,
see Bird [5] and Aston and Fritz [25]. For this diatomic gas,
the Larsen–Borgnakke model with discrete rotational energy
is used to model the energy exchange between the translational
and internal modes. The vibrational energy is assumed to be
negligible. On the wall surface, the diffuse reflection model
is applied, which is commonly used in micro gas simulations
at present. Liou’s implicit pressure boundary conditions are
used [29]. For each case, the final total number of molecules
is around 105, and the sample size is larger than 5 × 105.
Convergence was also verified by monitoring mass balance;
maximum errors were approximately 1%.

Based on the statistical and dynamical theories, the
macroscopic physical quantities are obtained as follows:

uj = 1

Nj

∑
u, (10)

where u is the velocity component of each molecule, Nj

is the molecule number in the cell j and uj is the averaged
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Table 2. Properties of nitrogen gas.

m (kg) ζ dref (m) Tref (K) ω γ Tc (K) Pc (Pa)

4.65 × 10−26 2 4.17 × 10−10 273 0.74 1.4 126.2 3.39 × 106

m is the gas molecular mass, ζ is the internal energy degrees of freedom, dref is the
reference molecular diameter, Tref is the reference temperature, ω is the
viscosity-temperature index and γ is the specific heat ratio.
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Figure 2. Mass flow rate versus pressure drop for a 5 µm × 1 µm
channel.

x-directional velocity component for the cell j.

ρj = njm, (11)

where nj is the number density for cell j.
The mass flow rate is

Q =
∫

A

ρu dA, (12)

where A is a cross section area of the channel. For a 2D
x-directional channel flow, equation (12) is simplified as

Q =
∑

ρjuj�y
j
. (13)

The mass flow rates versus driven pressure drops at
different channel scales are shown in figures 2–4, compared
with the perfect gas results under the same boundaries.
Figure 2 shows the results for a channel having a size of
5 µm × 1 µm under different pressure boundary conditions,
including cases 1–5 listed in table 1. It is shown from the
comparison between perfect gas and non-ideal gas that the van
der Waals effect is very small for such a micro channel even
under a high driving pressure. The flow rate for non-ideal
gas separates clearly from that for perfect gas at over 30 ×
105 Pa driving pressure, and the maximum departure between
both is less than 1.51%. The results for a 0.5 µm × 0.1 µm
channel (cases 6–10) are shown in figure 3. In these cases,
the channel size is smaller, however, the results show that
the van der Waals effect becomes more significant. The non-
ideal gas flow rate separates from the perfect gas at about 25 ×
105 Pa pressure. The mass flow rate in the non-ideal gas model

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Pressure drop   (×105 Pa)

F
lo

w
 r

at
e 

 (
×1

0-3
 kg

/s
 m

)

Perfect gas
Non-ideal gas

Figure 3. Mass flow rate versus pressure drop for a 0.5 µm ×
0.1 µm channel.
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Figure 4. Mass flow rate versus pressure drop for a 0.05 µm ×
0.01 µm channel.

is 12.09% higher than that in the perfect gas model for the
44 × 105 Pa driving pressure drop. Figure 4 shows the
results for a channel having a size of 0.05 µm × 0.01 µm
(cases 10–15). The van der Waals effect appears at about
25 × 105 Pa driving pressure. The maximum departure
reaches 28.63% for the 44 × 105 Pa driving pressure
drop.

It is indicated from figures 2–4 that the effect of van der
Waals force on the mass flow rate of Poiseuille flow enlarges
as the channel size decreases.
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Figure 5. Shear stress and heat flux distributions on the wall surface
for a 0.05 µm × 0.01 µm channel at Pin = 15 × 105 Pa (case 12).
(a) Shear stress distributions; (b) heat flux distributions.

The non-ideal effects on the friction and heat transfer
characteristics on the channel wall surface are also
investigated. Based on the kinetic theory, the shear stress
vector τ is the sum of the tangential momentum fluxes of
both the incident and the reflected molecules at each sample
step,

τ = τ i + τ r =
[ ∑

mui − ∑
mur

]
N0

�t(1 · �x)
, (14)

where the subscripts ‘i’ and ‘r’ are used to denote the incident
and reflected molecular streams, respectively; N0 is the
number of gaseous molecules associated with a computational
molecule and �t is the time period of sampling.

The net heat transfer flux q is the sum of the translational
and rotational energies of both the incident and the reflected
molecules,

q =
[(∑

εtr +
∑

εrot
)

i − (∑
εtr +

∑
εrot

)
r

]
N0

�t(1 · �x)
, (15)

where εtr is the molecular translational energy and εrot is the
rotational energy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.5

3

3.5

4

4.5

5

5.5

6

6.5

x/L

τ 
 (×

10
5 

P
a)

perfect gas
nonideal gas

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

2

3

4

5

6

x/L

H
ea

t f
lu

x 
 (

×1
07 J/

m
 s

)

perfect gas
nonideal gas

(b) 

Figure 6. Shear stress and heat flux distributions on the wall surface
for a 0.05 µm × 0.01 µm channel at Pin = 45 × 105 Pa (case 15).
(a) Shear stress distributions; (b) heat flux distributions.

Figure 5 shows the shear stress and heat flux distributions
for a 0.05 µm × 0.01 µm channel under a 15 × 105 Pa
inlet pressure boundary. The curves have fluctuations due to
low gas mean velocities; however, it is clearly shown that
the difference between perfect gas and non-ideal gas is very
small under such a low driving pressure drop. The shear
stress and heat transfer flux results for a 45 × 105 Pa inlet
pressure case are shown in figure 6. The differences between
perfect gas and non-ideal gas are much larger. This indicates
that the van der Waals force greatly affects the channel wall
surface friction and heat transfer characteristics for a high-
pressure-driven flow case. However, the driving pressure drop
is not the only factor that affects the van der Waals effect.
Figure 7 shows the results for a 5 µm × 1 µm channel under
a 45 × 105 Pa inlet pressure boundary. When the channel size
enlarges, the difference between perfect gas and non-ideal gas
will decrease.

The result indicates the van der Waals effect on the friction
and heat flux of wall surfaces strengthens with the drop in
driving pressure and weakens with the channel size increase,
for Poiseuille flows.
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Figure 7. Shear stress and heat flux distributions on the wall surface
for a 5 µm × 1 µm channel at Pin = 45 × 105 Pa (case 5). (a) Shear
stress distributions; (b) heat flux distributions.

3. Conclusions

Non-ideal gas Poiseuille flows in micro- and nanoscale
channels were investigated using the direct simulation Monte
Carlo method in the consistent Boltzmann algorithm model.
Different flow cases were simulated to find the factors affecting
the van der Waals effect. The driving pressure drops range
from 0.5 to 44 × 105 Pa and the channel size ranges from
microns down to nanometers.

The calculated mass flow rate in a non-ideal gas model is
larger than that in a perfect gas model at high inlet pressures.
The flow rate differences between perfect gas and non-ideal gas
increase with a drop in driving pressure for a given channel.
Results for different channel sizes show that for a smaller
channel the flow rate differences between both models are
bigger. The shear stress and heat flux distributions on the
wall surfaces are also compared between perfect gas flow and
non-ideal gas flow for different driving pressures and different
channel sizes. The results indicate that the van der Waals effect
on the friction and on the heat flux to the walls increases as

the driving pressure difference increases, and decreases as the
channel size increases.
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