
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 2, No. 6, pp. 1055-1070

Commun. Comput. Phys.
December 2007

Lattice Poisson-Boltzmann Simulations of Electroosmotic

Flows in Charged Anisotropic Porous Media

Moran Wang1,2,∗, Ning Pan1, Jinku Wang3 and Shiyi Chen2,4

1 Department of Biological & Agricultural Engineering, University of California, Davis,
CA 95616, USA.
2 Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD
21218, USA.
3 School of Aerospace, Tsinghua University, Beijing, China.
4 College of Engineering, Peking University, Beijing, China.

Received 7 November 2006; Accepted (in revised version) 7 March 2007

Available online 15 June 2007

Abstract. This paper presents numerical analysis of electroosmotic flows (EOF) in
charged anisotropic porous media using the lattice Poisson-Boltzmann method (LPBM),
which combines two sets of lattice evolution methods solving the nonlinear Poisson
equation for electric potential distribution and the Navier-Stokes equations for fluid
flow respectively. Consistent boundary condition implementations are proposed for
solving both the electrodynamics and the hydrodynamics on a same grid set. The
anisotropic structure effects on EOF characteristics are therefore studied by modeling
the electrically driven flows through ellipse arrays packed in a microchannel whose
shape and orientation angle are used to control the anisotropy of porous media. The
results show that flow rates increase with the axis length along the external electric
field direction for a certain porosity and decrease with the angle between the semima-
jor axis and the bulk flow direction when the orientation angle is smaller than π/2.
After introducing random factors into the microstructures of porous media, the sta-
tistical results of flow rate show that the anisotropy of microstructure decreases the
permeability of EOFs in porous media.

PACS (2006): 47.56.+r; 47.57.jd
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1 Introduction

Electroosmotic flows (EOF) in porous media have been studied for nearly two hundred
years due to their important applications in soil, petroleum and chemical engineering
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since the electrokinetic effects were first observed by Reuss in 1809 in an experimental
investigation on porous clay [1-3]. In the past few decades, there are considerable and
reawakening interests in the EOF in porous media because of the conspicuous appli-
cations in biological-chemical-medical analysis [4-6] and new techniques in energy and
geophysical engineering [7,8], especially in micro- and nanoscales. Recently, charged
porous structures have been employed in some devices to control and improve the fluid
behavior as expected. Microparticles which are packed in microchannels have been used
to improve the performances of electroosmotic micropumps with a lower flow rate and
a higher pumping pressure [9-11]. Owing to the polarization effect of porous electrodes,
the structured electrode arrays have been designed as a concentration demixer of elec-
trolytes [12].

The EOF dynamics in porous media has been studied much both theoretically [13-
20] and numerically [20-29]. By improving the simple capillary tube model [13], Mehta
and Morse [14] schematized a micro porous membrane by an array of charged uniform
spheres. Jin and Sharma [16] extended the capillary model to two-dimensional square
lattice network model, which is more appropriate in simulating inhomogeneous porous
media. Grimes et al. [18] developed the cubic lattice network of interconnected cylindri-
cal pores model and simulated the intraparticle electroosmotic volumetric flow rate and
velocity in the three-dimensional pore network of interconnected cylindrical pores. Gen-
erally, the theoretical models can give an overall prediction of the EOF characteristics,
but few can present flow structure details. Besides the various theoretical models, pure
numerical methods have been developed in the past decade for predicting details of EOF
in porous media owing to the rapid developments of computer and computational tech-
niques [20-28]. The premier efforts of the numerical predictions for the EOF in porous
media focused on the linearized model of nonlinear governing equation for electric po-
tential distribution due to the numerical instability and time-consuming characteristic
of solving the original nonlinear Poisson-Boltzmann equation [20-25]. However, both
experimental data and the first principle analysis have indicated that when the zeta po-
tential is greater than 30 mV the linear assumption of the Poisson-Boltzmann equation
will break down [29,30].

Hlushkou et al. [26] proposed a numerical scheme for modeling the EOF in porous
media, which involves a traditional finite-difference method (FDM) for solving the non-
linear Poisson-Nernst-Planck equations for electrodynamics and a lattice Boltzmann
method (LBM) for Navier-Stokes equations for hydrodynamics. The coupled methods
have been used to investigate the flow fields between random arrays of spheres [27]
and in colloids systems [28]. Almost at the same time, Wang et al. [31,32] presented
a lattice Poisson-Boltzmann method (LPBM) for predicting the EOF in microchannels,
which combines a lattice Poisson method (LPM) for solving the nonlinear Poisson equa-
tion for electric potential distribution with a lattice Boltzmann method (LBM) for solving
the Boltzmann-BGK equations for fluid flow. The LPBM has been employed to analyze
the mixing enhancement by EOF in microchannels [33] and the improved pumping per-
formances by the changed isotropic porous media additives in micropumps [34]. To our
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knowledge, no contributions have reported for full numerical analysis of the anisotropic
porous media effects on the EOF.

Another interest is now focusing on the boundary condition treatment employed in
the lattice Boltzmann method. We have noticed that the conventional bounce-back model
was used in both Hlushkou’s coupling method [26-28] and the early research of Wang’s
LPBM [31]. The bounce-back model succeeds in dealing with complicated boundary ge-
ometries with easy implementations [35,36], however suffers from its non-physical sig-
nificance at the same time [37-39]. For a boundary, flat or curve, implemented by the
bounce-back rule, the physical non-slip fluid boundary is not located on the boundary
nodes, but on somewhere between the boundary nodes and the nodes next to them [40].
That is to say the LBM with a bounce-back rule for boundary conditions may be incon-
sistent with other partial differential equations (PDE) solvers on the same grid set.

The objective of the present contribution is to present numerical modeling results of
the EOF through charged anisotropic porous media using the lattice Poisson-Boltzmann
method. The boundary condition implementations are studied and treated correctly to
insure consistent for the different PDE solvers on one grid set. The anisotropic porous
media are represented by a series of ellipses arrays, of which the axis lengths and the
orientation angle can be used to control the media anisotropy. The directional character-
istics of the EOF in anisotropic porous media arrays are mainly concerned. The ellipse
arrays with random axis lengths and random angles are also studied.

2 Numerical method

2.1 Governing equations

When the polarization and chemical absorption effects are negligible, the velocity filed of
an incompressible Newtonian fluid is governed by the Navier-Stokes equation [3,27,41].
The flow velocity u of the electrolyte solution representing a divergence-free velocity filed
(∇·u=0) is given by

ρ
∂u

∂t
+ρu·∇u=−∇P+µ∇2u+ρeE, (2.1)

where P is the hydrostatic pressure, ρ and µ are the mass density and the dynamic vis-
cosity of fluid, respectively, ρe the net charge density, and E the external electric field
strength. The Navier-Stokes equation could be simplified as Stokes equation for very
low-Reynolds flows.

Electric double layer (EDL) theory [42] relates the electrostatic potential and the dis-
tribution of counter-ions and co-ions in the bulk solution by the Poisson equation

∇2ψ=− ρe

εε0
, (2.2)

where ψ is the electrical potential, ε the dimensionless dielectric constant of the solution,
and ε0 the permittivity of a vacuum. The ionic migration is governed by the Nernst-
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Plank equation in general; however this process can be simplified due to very low flow
speed in microfluidics [3]. According to classical EDL theory, the equilibrium Boltzmann
distribution equation can be used to describe the ionic number concentration. Therefore,
the net charge density distribution can be expressed as the sum of all the ions in the
solution

ρe =∑
i

zieni,∞exp

(

− zie

kbT
ψ

)

, (2.3)

where the subscript i represents the ith species, n∞ is the bulk ionic number concentra-
tion, z the valence of the ions (including the sign), e the absolute value of one proton
charge, kb the Boltzmann constant, and T the absolute temperature. In the present work,
we considered only binary electrolyte, but our method can deal more than binary elec-
trolyte solutions.

Substituting Eq. (2.3) into Eq. (2.2) yields the nonlinear Poisson-Boltzmann equation
for the electrical potential in the dilute electrolyte solution

∇2ψ=− 1

εε0
∑

i

zieni,∞exp

(

− zie

kbT
ψ

)

. (2.4)

Associated with the governing equations, the Dirichlet type of boundary condition
is used to describe the solid-fluid interface for either the electrodynamics or the hydro-
dynamics. Both a non-slip boundary condition with zero normal flux and the surface
zeta potential are specified on the solid surface, which have been proved for most cases
by atomistic simulations as long as the channel size is much larger than 10 molecular
diameters, especially for dilute solutions [43-45].

2.2 Lattice Poisson-Boltzmann method

The electric potential and velocity fields of the EOF can be solved using the lattice
Poisson-Boltzmann method (LPBM) proposed by our previous work [31,32], which com-
bines a evolution method for electric potential on discrete lattices to solve the nonlinear
Poisson equation (Lattice Poisson method) with a evolution method for density on dis-
crete lattices to solve the Boltzmann-BGK equation (Lattice Boltzmann method).

For a two-dimensional case, the discrete nine-speed lattice evolution equation to solve
the hydrodynamic equations can be written as [46-48]

fα(r+eαδt,t+δt)− fα(r,t)=− 1

τν

[

fα(r,t)− f
eq
α (r,t)

]

+δtFα, (2.5)

where r is the position vector, δ the time step, eα the discrete velocity

eα =







(0,0), α=0,
(cosθα,sinθα)c, θα =(α−1)π/2, α=1,2,3,4,√

2(cosθα,sinθα)c, θα =(α−5)π/2+π/4, α=5,6,7,8,

(2.6)
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where c is the sound speed, τν the dimensionless relaxation time which is a function of
the fluid viscosity

τν =3ν
δt

δ2
x

+0.5, (2.7)

where ν is the kinetic viscosity and δx the lattice constant. The density equilibrium dis-
tribution is then

f
eq
α =ωαρ0

[

1+3
eα ·u

c2
+9

(eα ·u)2

c4
− 3u2

2c2

]

, (2.8)

with

ωα =







4/9, α=0,
1/9, α=1,2,3,4,
1/36, α=5,6,7,8.

(2.9)

The external force term Fα in Eq. (2.5) should include both the pressure and the electric
force effects [31,32]

Fα =
(−∇P+ρeE−ρe∇Φ)·(eα−u)

ρRT
f

eq
α , (2.10)

where Φ is the stream electrical potential caused by the ion movements in the solution
based on the Nernst-Planck theory.

The macroscopic density and velocity can be calculated using

ρ=∑
α

fα, (2.11)

ρu=∑
α

eα fα. (2.12)

Borrowing the spirit from the Lattice Boltzmann method, Eq. (2.4) is re-written by ex-
panding a time-dependent term

∂ψ

∂t
=∇2ψ+grhs(r,ψ,t), (2.13)

where

grhs =
1

εε0
∑

i

zieni,∞ exp

(

− zie

kbT
ψ

)

(2.14)

represents the negative right hand side (RHS) term of the original Poisson-Boltzmann
equation. The solution of Eq. (2.4) is the steady solution of Eq. (2.13). The evolution
equation for the electrical potential on the two-dimensional discrete lattices can then be
written as [31,49]

gα(r+∆r,t+δt,g)−gα(r,t)=− 1

τg

[

gα(r,t)−g
eq
α (r,t)

]

+

(

1− 0.5

τg

)

δt,gωαgrhs, (2.15)
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where

g
eq
α =̟αψ, with ̟α =







0, α=0,
1/6, α=1,2,3,4,
1/12, α=5,6,7,8,

(2.16)

and the time step is

δt,g =
δx

c′
, (2.17)

where c′ is a pseudo sound speed in the potential field. The dimensionless relaxation
time is

τg =
3δt,g

2δ2
x

+0.5. (2.18)

After evolving on the discrete lattices, the macroscopic electrical potential can be calcu-
lated using

ψ=∑
α

(gα+0.5δt,ggrhsωα). (2.19)

2.3 Boundary conditions

The boundary condition implementations play a very critical role to the accuracy of the
numerical simulations. The hydrodynamic boundary conditions for the lattice Boltz-
mann method have been studied extensively [37-40, 50-53]. The conventional bounce-
back rule is the most commonly used method to treat the velocity boundary condition
at the solid-fluid interface due to its easy implementation, where momentum from an
incoming fluid particle is bounced back in the opposite direction as it hits the wall [46].
However the conventional bounce-back rule has two main disadvantages. First, it re-
quires the dimensionless relaxation time strictly within the range of (0.5, 2), otherwise
the prediction will deviate from the correct result definitely [37,38]. Second, the non-
slip boundary implemented by the conventional bounce-back rule is not located on the
boundary nodes exactly, as mentioned before, which will lead to inconsistence when cou-
pling with other PDE solvers on a same grid set [40].

To overcome the inconsistence between the LBM and other PDE solvers on a same
grid set, one can replace the bounce-back rule with another ”non-slip” boundary treat-
ment proposed by Inamuro et al. [50], of course with the cost of loss of easy implemen-
tation for complicated geometries. An alternative solution is to modify the boundary
condition treatments of the PDE solver for the electric potential distribution to be consis-
tent with the LBM bounded by the bounce-back rule. In this contribution, the half-way
bounce-back rule [51,40] for nonequilibrium distribution proposed by Zou and He [39]
is introduced and extended to both hydrodynamic and electrodynamic boundary imple-
mentations to deal with the complex geometries in porous media.

At the boundary the following hydrodynamic boundary condition holds:

f
neq
α = f

neq
β , (2.20)
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where α and β represent two opposite directions. Analogously, the nonequilibrium
”bounce-back” rule for the electric potential distribution function at wall surfaces is sug-
gested as:

g
neq
α =−g

neq
β . (2.21)

The “half-way” bounce-back scheme with interpolation is used here to deal with the
curved surfaces in porous media [52,53]. This boundary treatment has a super-linear
accuracy when the wall surface varies between two nodes and an approximately second-
order accuracy if the wall surface locates at the middle [39,40]. This method is easy
for complicated boundary condition implementations without any additional considera-
tions. Periodic conditions were implemented at the inlet and the outlet.

3 Results and discussion

Before the LPBM is applied to simulate the EOF in anisotropic porous media, the bound-
ary treatment effects on the velocity field results are examined. The failure reasons of the
previous works will be analyzed based on the results. The present numerical method as-
sociated with the consistent boundary treatment methods is then employed to simulate
and analyze the anisotropy influences of the microstructure of charged ellipse arrays on
the transport characteristics of the EOF. Finally, the random factors are introduced into
the porous structure and the effects on the EOF are therefore analyzed.

3.1 Boundary treatment effects

As stated before, the solid-fluid interface boundary implemented by the conventional
bounce-back rule of LBM is not really located at the boundary nodes but at somewhere
between the boundary nodes and the nodes next to them. For a flat plate channel flow, the
calculated non-slip boundaries are actually located at the middle between the boundary
nodes and the inner nodes next to them. Fig. 1 shows the velocity profiles for a simple
two-dimensional Poisseuille flow in a flat plate channel calculated by the LBM with the
conventional bounce-back boundary treatment. The circle-line is the result plotted on the
original grid which deviates the parabolic rule remarkably near the boundaries. When
both the boundaries are moved into the fluid for a half lattice distance, the numerical
results agree almost exactly with the theoretical solutions for the Poisseuille flow. The
two vertical dashed lines are the actual boundary locations for the conventional bounce-
back treatment for LBM. That is also to say if the lattice number in width is N, the real
channel width is not (N−1)·δx but (N−2)·δx with δx representing the lattice constant.

No literature has reported that the finite deference method (FDM) has the same char-
acteristics at the boundary as the conventional bounce-back treatment for LBM. Therefore
there is a half lattice difference even though the FDM and the LBM are solved on the same
grid set. A system error is thus introduced into the calculation of the electrical driven
force on each node. The interpolations can reduce but can not totally remove the system
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Figure 1: Velocity profiles by the LBM with the conventional bounce-back boundary treatment for a Poiseuille
flow in a flat plate channel. The circle-line represents the results plotted on the original grid; the star-line
represents the results plotted on the modified gird where the boundary locates at the half lattice position. The
modified results agree exactly with the corresponding theoretical solutions.

Figure 2: Velocity profiles of two-dimensional EOF in flat plate channels for different channel widths calculated
using different methods and grids. The solid lines (—) represent the results using the present LPBM with
consistent half-way boundary treatments and each lattice represents 0.01 micron; the dash-lines (- -) represent
the results using the coupling FDM-LBM scheme [26-28] where the conventional bounce-back model is used
for LBM and the grid is the same as the former one; the dotted lines (. . .) represent the results using the LPBM
scheme with a conventional bounce-back model for LBM and the grid number keeps constant (40 in width) for
each case [31].
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error due to the strong boundary-layer-like distribution of the electric potential near the
solid surface. The dash-lines in Fig. 2 are the velocity profiles of EOF in plate channels
for different channel widths using the coupling FDM-LBM scheme [27]. Comparing with
the results using the present LPBM with consistent boundary treatments (solid lines), the
velocities results from the coupling FDM-LBM method are lower. For current coupling
FDM-LBM simulations, the grid number are same as that in LPBM for each channel width
and the lattice constant δx holds on a fine constant value, 0.01 µm. Therefore, the current
FDM-LBM simulations give a similar qualitative result as the present LPBM simulations
do. Because of the half lattice distance difference between the two methods in the cou-
pling scheme, the calculated velocities of EOF are very sensitive to the lattice constant
(grid size) for each simulation.

The dotted lines in Fig. 2 show the velocity profiles for different channel widths,
where the grid number in width keeps constant at 40 for each case and the lattice con-
stant therefore varies. The results indicate the calculated velocity of EOF by the coupling
method with inconsistent boundary treatments decreases with the lattice constant. A
similar result can be found in our previous work [31], which was also caused by the in-
consistent boundary treatments for electrodynamics and for hydrodynamics. The correct
results in Fig. 2 with modified boundary implementations also indicate that the flow rate
increases monotonically with the flux area (channel width).

3.2 Anisotropic structure effects

Since the EOF though isotropic porous media has been investigated using the spheres
arrays [27,34], the anisotropic structure effects on the EOF will be studied in this work
by using the ellipses array where the axis lengths and the angle are used to control the
anisotropy of the media.

Consider a two-dimensional steady-state isothermal EOF in a microchannel packed
with an array of ellipses, as shown in Fig. 3(a). The channel walls are charged with zeta
potential ζwall . The charged ellipses are nondeformable, impermeable, nonconducting
and uniformly distributed in the microchannel with equal intervals between in both left-
right and up-down directions. Every ellipse is assumed homogeneously charged at a
same zeta potential ζellipse with no polarization. The shape of each ellipse is determined
by three parameters, a, b and θ, as shown in Fig. 3(b), where a and b are the length of
the semimajor and the semiminor axes, respectively and θ is the orientation angle. The
electrolyte solution can be driven by the external electric field, E, flowing through the
anisotropic porous media structured by the ellipse array.

In the following simulations, we change the values of a, b and θ with remaining the
porosity ε = 0.33. The other parameters are: the channel width H = 1 µm and 240×120
grid is used in our simulations; the surface charge zeta potential of both the channel walls
and the ellipses ζwall = ζellipse =−50 mV; the relative dielectric constant of the electrolyte

solution ε = 81, the density ρ = 1000 kg/m3 and the dynamic viscosity µ = 0.889 mPa·s;
the bulk ionic concentration of the solution c∞ = 10−4 M and the external electric field
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Figure 3: Schematic illustrations of the ellipse array packed in a microchannel and the microstructure of each
ellipse.

(a) a=38.5 nm, b=64.9 nm, θ =0.

(b) a=69.2 nm, b=36.1 nm, θ =0.

Figure 4: The x-velocity color contours for different axes lengths with zero orientation angle.

strength E=5 kV/m. a and b are independent for a certain porosity. To avoid blocking
the flow, a changes from 34.6 to 79.2 nm. We set the relative error tolerance at 10−5 per
100 steps. Each calculation took a few hours on 2.0 G CPU depending on the simulation
parameters.

Firstly, we change the value of the axis length in x direction, a, while keep the ori-
entation angle θ at zero. With the value of a increasing, the anisotropy changes from
y-dominating to x-dominating. As a result, the flow rate will increase with a because the
external electric field is parallel to x-direction. Fig. 4 shows the contours of x-directional
velocity for a = 38.5 nm and a = 69.2 nm respectively. The velocity and flux area for a
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Figure 5: The flow rate versus the length of a when θ =0. The flow rates are normalized by the case when the
ellipse is a circle a= b.

Figure 6: The flow rate versus the orientation angle θ when a = 61.5 nm and b = 40.6 nm. The flow rates are
normalized by the case when θ =0.

greater a are much larger than those for a lower a. However the flow rate is not depen-
dent on the value of a at a rigorous proportional relationship, as shown in Fig. 5. The
results show that when the axis length a is very small (<40 nm) or very large (>65 nm),
the increasing speed of flow rate becomes much lower. The mechanism needs more in-
vestigations.

Secondly, we keep the axes lengths, a and b, invariable, but change the orientation
angle θ. In the present work, we choose a = 61.5 nm and b = 40.6 nm. The orientation
angle varies from 0 to π/2. Fig. 6 shows the calculated flow rate versus the orientation
angle θ. The flow rate decreases with the orientation angle when the angle varies within
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(a) random axes length at θ =0

(b) random orientation angles at a=61.5 nm, b=40.6 nm

(c) random axes length and random orientation angles

Figure 7: Anisotropic porous media morphologies with random factors.

(0,π/2). Considering the symmetry of the microstructure, the flow rate depends on the
orientation angle with a near-cosine rule.

3.3 Random anisotropic media

Besides the structured anisotropic porous media above, the random factors have been in-
troduced into the morphologies. In this contribution, we have focused on three aspects: i)
randomly generated axes length at a fixed orientation angle; ii) randomly orientation an-
gles with chosen axes length; iii) randomly generated axes length and orientation angles.
Fig. 7 demonstrates the generated microstructure for each aspect respectively.

Since the random factors have been introduced during the generation of porous struc-
tures, the calculated effective thermal conductivity for the porous media with the statis-
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tical characteristics will not be identical in every trial, but fluctuate around an average
value. We performed 20 times of generations and calculations for each aspect in this
work. The averaged flow rate for each case is Qi = 0.3235 µl/min, Qii = 0.3118 µl/min,
Qiii = 0.3061 µl/min. The flow rate of the EOF in the isotropic porous media structured
by sphere arrays is 0.4088 µl/min with same parameters and under same boundary con-
ditions. These results show that the anisotropy of microstructure decreases the perme-
ability of the EOF in porous media. The reason may be that the anisotropy decreases the
average flux area.

4 Conclusions

Electroosmotic flow in charged anisotropic porous media has been numerically studied
using the lattice Poisson-Boltzmann method. Consistent boundary condition implemen-
tations have been presented in this paper for solving both the electrodynamics and the
hydrodynamics on a same grid set. The present method revises the half-grid differ-
ence between other different PDE solvers and the LBM associated with the conventional
bounce-back rule near the boundary in previous works, and is suitable for modeling EOF
in porous media with complicated morphologies.

Employing ellipse arrays packed in a microchannel whose shape and angle are used
to control the anisotropy of porous media, the anisotropic structure effects on the EOF
characteristics have been numerically studied. The results show that flow rates increase
with the axis length along the external electric field direction for a certain porosity and
decrease with the angle between the semimajor axis and the bulk flow direction when
the angle is smaller than π/2. After introducing the random factors into the genera-
tions of microstructure of porous media, the statistical results of flow rate show that the
anisotropy of microstructure decreases the permeability of the EOF in porous media.
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