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Abstract

This paper presents an internal energy exchange scheme for the relaxation time simulation method (RTSM) which
solves the BGK equation for the perfect gas flow at near-continuum region discrete rotational energies are introduced
to model the relaxation of internal energy modes. This development improved the agreements between RTSM and DSMC
with little additional computational cost. The result shows a possibility of an improved hybrid RTSM/DSMC code for the
continuum/rarefied gas flow.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Rarefied gas flow is an important problem in aeronautics and astronautics. In resent years, the rapid devel-
opment of MEMS technique has brought us an exigent requirement for the investigation of gas flow in micro-
systems [1,2]. In such flows, the Knudsen-number is so high that the continuum assumption breaks down, and
molecular based methods should be used. Bird’s direct simulation Monte Carlo (DSMC) method [3] is the
standard computational method for the high-Knudsen-number flows, where the governing equation is the
Boltzmann equation. In DSMC the flow is represented by a large number of simulated particles, and the flow
evolution is tracked by calculating the motion of these particles and their collisions amongst themselves and
with any boundaries [4].
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The DSMC method is suitable for gas flows with a high-Knudsen-number. However, in microflows the gas
can be dense despite a high-Knudsen-number due to the small characteristic length [5]. The frequent collisions
between gas molecules bring a high cost at the computation of DSMC. Pullin [6] proposed the equilibrium
particle simulation method (EPSM) as the infinite collision rate of DSMC for a given cell network and number
of simulator particles. In EPSM, as in DSMC, the flow is simulated by tracking the motion and interactions of
the representative particles. However, no collisions between particles are calculated and the effect of collisions
is simulated by redistributing the total momentum and energy of all the particles in each cell at each time step
amongst all the particles in the cell. Macrossan [7] and Chen et al. [8] used EPSM in combination with DSMC
to handle flows in the transition regime between rarefied gas flow and fully continuum flows. Macrossan [9–11]
developed this method based on the BGK equation and proposed a new method called the relaxation time
simulation method (RTSM). In RTSM, not all the particles in each cell are redistributed. The particle number
for velocity distribution determined from the local relaxation time can be derived from the cell density and
temperature and any desired viscosity law.

The present paper develops RTSM by introducing a model with discrete rotational energies to model the
energy exchange between the translational and internal modes. A microchannel flow simulation, comparing
with the DSMC method, verifies the new model. The computational efficiencies of both the new method
and the DSMC method are compared, especially in the near-continuum flow region.

2. Numerical method

2.1. Relaxation time simulation method

The greatest mathematical difficulties for any solution of the Boltzmann equation lie in the collision term
on the right hand side. One approach is to simplify the problem by modeling the collision term. The best
known model equation is the Bhatnager, Gross and Krook [12,13] (or BGK) equation. It may be written
o

ot
ðnf Þ þ c � o

or
ðnf Þ þ F � o

oc
ðnf Þ ¼ ns�1ðf0 � f Þ; ð1Þ
where the s is the local relaxation time, n is the number density of molecules, f0 is the local Maxwellian dis-
tribution, which would be established in the collision rate were sufficiently large. In other words the collision
term bas been approximated as
onf
ot

� �
coll

¼ n
s
ðf0 � f Þ; ð2Þ
and this provides an approximation of the change in f brought about in any DSMC cell during the collision
stage of the calculation. The exact solution of Eq. (2) is
f ðtÞ ¼ ðf ð0Þ � f0Þ expð�t=sÞ � f0; ð3Þ

where f(0) = f(t = 0) is the particle velocity distribution established by the convection phase of the simulation
before the effect of collision is simulated. That is to say, the distribution function relaxes towards equilibrium
with a time constant of s for all velocities. After a time interval t = Dt, the distribution function can be ex-
pressed as
f ðDtÞ ¼ expð�Dt=sÞf ð0Þ þ ð1� expð�Dt=sÞÞf0. ð4Þ

Eq. (4) indicates that after collisions of a time interval Dt, the final distribution of molecular velocities is mod-
eled as a mixture of the initial distribution in the cell and the final equilibrium distribution.

The Chapman–Enskog viscosity for the relaxation time approximation is l = qRTs [14]. Therefore, in
RTSM, the relaxation time in each cell is determined by
s ¼ l
nkT

; ð5Þ
where k is the Boltzmann constant, m is the molecular mass, and n is the number density, and T is the kinetic
temperature in the cell.
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2.2. Discrete internal energy model

The discrete internal energy model deals with internal and translational energies exchange for inelastic
inter-particles collisions. In this model, the equilibrium distribution function for the internal energy of a mol-
ecule maybe written as
fei
/ ef=2�1

i expð�ei=ðktÞÞ; ð6Þ
where ei is the internal energy of a molecule, and f is the internal degrees of freedom. In fact, not all collisions
are regarded as inelastic. Therefore, when the model is introduced into the RTSM method, the crucial part is
the determination of the probability of the inelastic parts. We have tried two methods to determine the rota-
tion relaxation fraction. Scheme A is to select a certain part from the molecules with translational energy redis-
tribution. The fraction of molecules for the rotational energy relaxation PR is then
P R ¼ P V �
1

ZR

¼ 1� exp � nkT Dt
lðT Þ

� �� �
� 1

ZRðT Þ
; ð7Þ
where PV is the probability for the translational energy relaxation, ZR is the rotational relaxation number
which is a function of local temperature. This scheme is consistent with the standard DSMC of Bird [3].

The second scheme B is to use a rotational relaxation probability independent of the translational one:
P R ¼ 1� exp � 4

pZRðT Þ
� nkT Dt

lðT Þ

� �
. ð8Þ
Eq. (8) shows it is not necessary that any particle that undergoes rotational relaxation also undergo transla-
tional relaxation at the same time.

2.3. Redistribution procedures

In each time step of the RTSM simulation, the number density n, temperature T in each cell are sampled.
After the local viscosity l and the rotational relaxation number ZR, which are Junction of local temperature in
cells, are calculated, the probabilities for translational relaxation and rotational relaxation can be obtained
from Eqs. (5)–(8). For the translational energy relaxation, if a random number Rf > PV, the particles will
be selected to undergo translational relaxation. The number of particles given new velocities is Nt = PV Æ Np

where the total number of particles number in one cell is Np. A similar process is performed for the rotational
relaxation, and the number of particles that are given a new rotational energy is Nr � PR Æ Np. Both the trans-
lational energy and rotational energy, which need redistribution, form a thermal energy pool with a total
energy Etot. Thus the characteristic temperature of the redistributed energy can be calculated as
T c ¼
2Etot=k

3N t þ 2N r

. ð9Þ
All the rescaling procedures for either the translational redistribution or the rotational redistribution will be
based on this characteristic temperature. It is clear that this temperature plays the same role as the sampled
temperature in one cell for Pullin’s EPSM [6].
3. Results and discussion

The present algorithm was performed in FORTRAN based on the standard DSMC code [3] in UNIX sys-
tem. To verify the new models, a 2D gas flow in a microchannel is simulated and the results are compared with
the standard DSMC method. The physical model is shown in Fig. 1. The channel is 5 lm long and 1 lm wide.
The incoming gas Knudsen-number is 0.1. The freesteam velocity u1 is 200 m/s and the temperature T1 is
300 K. The channel walls are isothermal and the temperature is 300 K. Fully diffuse reflection is used to cal-
culate the collisions between the molecules and the walls. 50 · 20 cells and 4 · 4 subcells in each cell are used.
The time step is set that a molecule with a characteristic speed

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kT=pm

p
þ u will move a quarter of a cell size



Fig. 1. Channel flow with freesteam coming gas.
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in one step. Over 105 simulated particles are used for each method and the sample size is over 2 · 106. The
results are shown in Fig. 2.

Fig. 2 shows the results of the modified RTSMs and the standard DSMC. Different schemes for RTSM to
determine the rotation relaxation probability are plotted and compared. The results show that the rotational
relaxation in scheme A improves the RTSM results with better agreement with the standard DSMC results,
when comparing with the scheme B and non-rotational relaxation RTSM. The reason may lie in the scheme A
is closer to the method in DSMC than the scheme B.

Fig. 3 compares the temperature contours at same contour-levels between the DSMC and the RTSM in
scheme A. Difference between the contours indicated the thermal conductivity in the RTSM was over-pre-
Fig. 2. Velocity and pressure along the midline of the channel: (a) velocities comparisons; (b) pressure comparisons.



Fig. 3. Temperature contours: (a) the standard DSMC; (b) the RTSM in scheme A.
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dicted, which was ascribed to the fact that the Prandtl number for the BGK equation has the unrealistic value
of unity. Recently, a few new models were reported to modified the BGK equation by changing the equilib-
rium distribution [15,16], which were expected to give a realistic Prandtl number and improve the heat transfer
modeling. These new models will be introduced into our future work.

From Eq. (4), the computational cost of RTSM is mainly relative to the relaxation time s and increases little
with the gas density n, while that of DSMC is basically determined by the gas density. When the gas density is
larger than a certain value, the RTSM method will be more efficient than the DSMC method. For the channel
flow shown in Fig. 1, the efficiencies of both methods are on a same level for a Knudsen-number of 0.05. When
the Knudsen-number is 0.01, the efficiency of DSMC is about 30% of that of RTSM. These comparisons show
that for the near-continuum flow the RTSM method is more efficient than the DSMC method and could
replace DSMC in that region.

4. Conclusions

The relaxation time simulation method (RTSM) was modified and improved by introducing the internal
energy relaxation scheme. Discrete rotational energies were used to model the energy exchange between the
translational and internal modes. Although the Prandtl number in the RTSM is still overestimated, the present
results show a possibility of an improved hybrid RTSM/DSMC code for the continuum/rarefied gas flow.
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