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Abstract

Electroosmosis in homogeneously charged micro- and nanoscale random porous media has been numerically investigated using mesoscopic
simulation methods which involve a random generation-growth method for reproducing three-dimensional random microstructures of porous
media and a high-efficiency lattice Poisson–Boltzmann algorithm for solving the strongly nonlinear governing equations of electroosmosis in
three-dimensional porous media. The numerical modeling and predictions of EOF in micro- and nanoscale random porous media indicate that
the electroosmotic permeability increases monotonically with the porosity of porous media and the increasing rate rises with the porosity as well;
the electroosmotic permeability increases with the average solid particle size for a given porosity and with the bulk ionic concentration also;
the proportionally linear relationship between the electroosmotic permeability and the zeta potential on solid surfaces breaks down for high zeta
potentials. The present predictions agree well with the available experimental data while some results deviate from the predictions based on the
macroscopic theories.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Electroosmotic flows (EOFs) in porous media have been
studied for nearly 200 years due to their important applications
in soil, petroleum, and chemical engineering [1–6] since the
electrokinetic effects were first observed by Reuss in 1809 in
an experimental investigation on porous clay [7]. In the past
few decades, there is considerable and reawakening interest in
the EOF in porous media because of the conspicuous applica-
tions in biological–chemical–medical analysis [8–11] and new
techniques in energy and geophysical engineering [12–15], es-
pecially in micro- and nanoscales [16–18]. Recently, charged
porous structures have been employed in some devices to con-
trol and improve the fluid behavior as expected. For example,
microparticles which are packed in microchannels have been
used to improve the performances of electroosmotic microp-
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umps with a lower flow rate and a higher pumping pressure
[19–24].

Although EOFs in porous media have been studied much
theoretically, it is still a big challenge to predict the multiphys-
ical transport behaviors in porous media accurately and effi-
ciently due to its complicacies [25–35]. Levine and Neale [25]
developed a “cell model” to predict the electroosmosis in mul-
tiparticle systems where the porous medium was considered
as a random assemblage consisting of identical unit “cells,”
each of which contained a particle surrounded by a fluid en-
velope [26]. Although good results were obtained for disperse
systems [27,28], the cell model did not deal well with dense
porous media cases (i.e., at low porosities) because the model
ignored the contacts and connections between particles [29].
By improving the “capillary tube model” [30], Mehta and
Morse [31] schematized a microporous membrane by an ar-
ray of charged uniform spheres. Jin and Sharma [32] extended
the capillary model to a two-dimensional square lattice net-
work model, which was more appropriate in simulating inho-
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mogeneous porous media. Grimes et al. [33] developed the
cubic lattice network of interconnected cylindrical pores model
and simulated the intraparticle electroosmotic volumetric flow
rate in the three-dimensional pore network of interconnected
cylindrical pores. All these theoretical models are creative and
contributive; however, there are still two defects so far when
they are used for predictions of EOFs in micro- and nanoscale
porous media. First, most of the models are based on vanish-
ingly thin electric double layers (EDL) [19–22,25–35] so that
they are not suitable for dense micro- and nanoscale porous
media where the small pore space may be in a same order of
the EDL thickness. Second, the theoretical models can hardly
provide flow structure details, which are necessary for a deep
understanding of the transport mechanism of electroosmosis in
micro- and nanoscale porous media.

Owing to the rapid development of computer and compu-
tational techniques various numerical methods have been de-
veloped in the past decade for modeling and predicting mul-
tiphysical transport in porous media. A full numerical tool set
for analyzing EOF in porous media needs two steps: a digital
description of porous microstructure details and a set of par-
tial differential equation (PDE) solvers for solving governing
equations of the multiphysical transport phenomena. For EOF
in microscale charged random porous media, both presented big
challenges until now.

First, the microstructures of porous media are very compli-
cated. The shapes and positions of pores/particles are random
so that there could never be two natural porous media that are
exactly the same. People can only reproduce microstructures
of porous media based on the known macroscopic statistical
information. Tacher et al. [36] and Pilotti [37] developed meth-
ods to generate granular porous media using spheres or ellipses
with random sizes and locations; however, they could hardly
deal with the intergrain connections. To make the reproduced
structure more natural, the reconstruction process [38–42] has
been widely used in generations of multiphase porous structures
based on the digital microtomographic information and sta-
tistical correlation functions [41,42]. Similar algorithms have
been found in soil research, named Markov chain Monte Carlo
methods, which also created two-dimensional structures with
satisfactory agreement with various scanned real soil structure
images [43,44]. Borrowing the spirit of cluster growing the-
ory [45,46], Wang et al. have recently developed a random
generation-growth method to generate random microstructures
of various multiphase microporous media including granular
porous media [47,48] and fibrous porous media [49]. The gen-
erated structures have been used to predict effective thermal
properties of porous materials and good agreements have been
obtained with the existing experimental data [47,48].

Second, numerically solving the governing equations of
EOF in porous structures is still quite challenging for the
present computational methods [50–66]. The coupled electro-
static, hydrodynamic, and mass transport problems subjected to
complex geometrical boundary conditions represented by the
solid–liquid interface in random porous media require huge
or even unacceptable computational resources. The difficulties
come mainly from two aspects: the strong nonlinearity of gov-

erning equations and the irregularity of random porous struc-
tures. Coelho et al. [29] developed a direct numerical solution
for the EOF in porous media in the linear limit when the EDL
thickness was much larger than the elementary grid size, and the
method was applied to analyze the electroosmotic phenomena
in fractures [50], porous media [51], and compact clays [52,53].
As well known the linear approximation is strictly valid for low
zeta potentials, ζ , whose absolute value is smaller than 25 mV
[54,55]. Gupta et al. [56] recently extended their linear model
to the nonlinear region for high zeta potentials. Since the accu-
racy of their models depends strongly on the discretization step,
their applications are limited by the computational costs [57].
Only a few results with relatively coarse spatial discretization
steps have been found to reach reasonable computation times
[29,50–54,56]. Kang et al. [58] introduced the interval func-
tions approximation [59] into the Poisson–Boltzmann equation
to simplify the solution process and to improve the efficiency.
Their method showed good performance in analyzing EOFs in
packing microspheres [60,61]. Hlushkou et al. [57] proposed
a numerical scheme for modeling the EOF in porous media,
involving a traditional finite-difference method (FDM) for solv-
ing the Poisson–Nernst–Planck equations for electrodynamics
and a lattice Boltzmann method (LBM) for solving the Navier–
Stokes equations for hydrodynamics, and investigated the EOFs
in spatially regular and random sphere arrays. Recently, Wang
et al. [62,63] presented a lattice Poisson–Boltzmann method
(LPBM), which combines a lattice Poisson method (LPM) for
solving the nonlinear Poisson equation for electric potential
distribution [64] with a lattice Boltzmann method for solv-
ing the Boltzmann–BGK equations for fluid flow. The LPBM
has been employed to analyze the performance improvements
by changed porous media additives in micropumps [65] and
the morphology effects on EOF in anisotropic porous me-
dia [66]. To our knowledge, few contributions have reported a
full numerical analysis of EOF in micro- and nanoscale random
porous media.

The purpose of this contribution is to present a numerical set
and modeling results of three-dimensional EOFs in homoge-
neously charged micro- and nanoscale random porous media.
We extend the random generation-growth method for repro-
ducing microstructures of random porous media, for granular
porous media as examples [47,48], and the lattice Poisson–
Boltzmann algorithm [62,63,65] into three-dimensional cases.
The present numerical set is then employed to analyze the in-
fluences of statistical characteristics of solid-media morphol-
ogy, fluid phase property, and surface potential on the EOF
behavior in random porous media. The paper is organized as
follows. In Section 2, we present the governing equations along
with corresponding boundary conditions. In Section 3, we in-
troduce briefly the employed numerical methods, in particular,
the random generation-growth method for generating 3D mi-
crostructures of random porous media, and the efficient lattice
Poisson–Boltzmann algorithm for solving the governing equa-
tions of EOF in porous media. Numerical results are gathered
in Section 4, which include a series of simulations addressing
the influences of solid, liquid, and interface characteristics on
the EOF permeability. Qualitative and quantitative comparisons
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with existing experimental data are presented in Section 4 and
the fluid mechanism is discussed.

2. Governing equations

Although our focus is down to the nanoscale, it is still be-
yond atomistic effects. Macroscopic continuum assumptions
work in their way. Consider an N -component Newtonian elec-
trolyte flowing with velocity u(r, t) in interstices of a porous
material with no polarization and chemical reactions. Let
ψ(r, t) be the electric potential prevailing within the solution;
the flux ji of each ith ion species, composing the solute, is given
by the following constitutive equation [67]

(1)ji = −Di∇ni − ezibini∇ψ + niu,

where ni is the number density of the ith ion species, zi the
ith ion algebraic valence, and e the absolute charge of electron.
Di and bi are the ion’s diffusivity and electric mobility, related
by the Stokes–Einstein equation

(2)Di = bikT ,

where k is the Boltzmann constant and T the absolute tem-
perature. The ionic flux ji and the concentration ni obey the
continuity equation

(3)
∂ni

∂t
+ ∇ · ji = 0.

For an incompressible laminar electroosmotic flow, the
movement of electrolyte is governed by the continuity and mo-
mentum equations

(4)∇ · u = 0,

(5)ρ
∂u
∂t

+ ρu · ∇u = μ∇2u + FE,

where ρ is the solution density, μ the dynamic fluid viscosity,
and FE the electric force density vector. In general, the electri-
cal force in electrokinetic fluids can be expressed as

(6)FE = Fext + ρe(Eint + ξ × Bint) + FV ,

where Fext represents the external field body forces, including
the Lorentz force associated with any externally applied elec-
tric and magnetic field. For only an electrical field, Fext = ρeE,
where ρe is the net charge density and E is the electrical field
strength. Eint and Bint are internally smoothed electrical and
magnetic fields due to the motion of the charged particles in-
side the fluid. FV is a single equivalent force density due to
the intermolecular attraction [68]. In the present contribution,
we are concerned with the steady state of electroosmosis in mi-
croporous media so that the electromagnetic susceptibility is
negligible. The net charge density ρe can be expressed as

(7)ρe =
∑

i

ezini .

The local electrical potential is governed by the Poisson
equation

(8)∇2ψ = − ρe

εrε0
= − 1

εrε0

N∑
i=1

enizi,

where εr is the dimensionless fluid dielectric constant and ε0
the permittivity of a vacuum.

Equations (3)–(8) are the governing equations for electroos-
mosis in porous media and can be solved subject to the follow-
ing boundary conditions on the liquid–solid interface Ω

(9)(v · ji )Ω = 0,

(10)uΩ = 0,

(11)ψΩ = ζ,

where v is the outer normal to Ω , and ζ the zeta potential.
For the electroosmotic flow of dilute electrolyte in microp-

orous media, the macroscopic velocity is low so that equilib-
rium satisfies everywhere in the flow field base on which one
can obtain the Boltzmann distribution for ni

(12)ni = ni,∞ exp

(
−ezi

kT
ψ

)
,

where ni,∞ is the bulk ionic number density. Substituting
Eq. (12) into Eq. (8) yields the famous nonlinear Poisson–
Boltzmann equation for electrokinetic flows [69]:

(13)∇2ψ = − 1

εrε0

∑
i

ezini,∞ exp

(
−ezi

kT
ψ

)
.

So far as it is concerned, the present contribution actually
solves the governing equations ((4)–(7), (12), and (13)) sub-
ject to the boundary conditions Eqs. (9)–(11) by the numerical
methods as described in the next section.

3. Numerical methods

This section describes the numerical methods used to sim-
ulate EOF in random porous media, including a generation al-
gorithm for three-dimensional random porous microstructures
and a mesoscopic PDE solver for the multiphysical transports
equations, the lattice Poisson–Boltzmann method.

3.1. Generation of random porous structures

As noted before, the phase distributions are random in a
natural porous medium. Although the shapes, positions, and
connections of elements are different for different medium sam-
ples, one still can measure and summarize essential statistical
information of morphology and then reproduce a digital ran-
dom structure in computers. The generated microstructures may
be different from a real one in detail, but they have the same
structure characteristics in statistics. Several methods have been
proposed to generate random porous structures in the past few
years [36–49]. Here we follow the random generation-growth
model for reproducing multiphase granular porous microstruc-
tures [47,48] and develop the algorithm into three-dimensional
cases.

In most cases, the microstructure for EOF flowing through
has two phases: solid structure and fluid solution. The process
of the multiparameter generation-growth model for such two-
phase structures is described below:
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Fig. 1. Twenty-six growth directions of each cell in three-dimensional cubic
grid systems.

(i) Randomly locate the cores of solid particles in a grid sys-
tem based on a core distribution probability, cd , whose value
is no greater than the volume fraction of solid. Each cell in the
grid will be assigned a random number by a uniform distribu-
tion function within (0, 1). Each cell whose random number is
no greater than cd will be chosen as a core.

(ii) Enlarge every element of the solid particles to its neigh-
boring cells in all directions based on each given directional
growth probability, Di , where i represents the direction. Again
for each solid particle, new random numbers will be assigned
to its neighboring cells. The neighboring cell in direction i will
become part of solid particle if its random number is no greater
than Di .

(iii) Repeat the growing process of (ii) until the volume frac-
tion of the solid particles reaches its given value Ps whose value
is usually equal to (1 − ε) with ε representing the porosity.

Thus the generated microstructure is controlled by the three
statistical parameters, cd , Di , and Ps (or ε).

The core distribution probability cd is defined as the proba-
bility of a cell to become a core of solid particles. Its value is
strongly relative to the number density of solid particles. For
a given porosity, the average volume of each solid particle Vp

could be related to cd as Vp = (1 − ε)V/(N · cd), where V

represents the total volume of the system, and N the total grid
number. The value of cd also controls the degree of structure
details for a certain grid system. A smaller cd leads to a finer
description of the microstructures, including particle shapes and
interparticle connections. However, a small value of cd will
also decrease the statistical particle number under a certain grid
number and thus increase the computation fluctuation.

The directional growth probability Di is defined as the prob-
ability of a cell neighboring in the ith direction to become a
part of the solid phase. The directional growth probabilities
are classed into three levels based on the directions or on the

contact level with the focused cell: main direction (surface con-
tact), side direction (line contact), and diagonal direction (point
contact). An appreciable arrangement of the directional growth
probabilities may lead to an isotropic structure of porous me-
dia. In other words, the growth probabilities can be adjusted to
control the degree of anisotropy. For three-dimensional cubic
grid systems, each cell has 26 growing directions to its neigh-
bors (see Fig. 1). There are six main directions (1–6), 12 side
directions (7–18), and 8 diagonal directions (19–26). To obtain
an isotropic structure in such systems, we have to set uniform
values within each class of direction, D1–6,D7–18, and D19–27,
and the probability ratio is set as D1–6:D7–18:D19–27 = 8:4:1
by assuming the directional growth probability to be consis-
tent with the equilibrium distribution function of density in an
isotropic material [70–72].

Fig. 2 shows four schematic illustrations of the generated
three-dimensional porous structures using the present random
generation-growth method. The stochastic characteristics of
phase distribution and connections are depicted quite realisti-
cally in the figures. The white parts represent the solid particles
and the dark the fluid. The parameters for Fig. 2a are the solid
volume fraction Ps = 0.3, the solid particle core distribution
probability cd = 0.01Ps , and the growth probabilities in six
main directions are equal. Fig. 2b shows the structure when the
solid volume fraction geminates, where both the volume and
the interparticle connections of the solid phase increase. Com-
parison between Fig. 2a and Fig. 2c shows that a larger value of
cd leads a solid phase that is more dispersive with a smaller av-
eraged particle size. We can also change the media isotropy by
varying values of directional growth probabilities in given di-
rections. Fig. 2d shows a generated anisotropic structure where
the growth probabilities of the main directions 1 and 3 enlarge
to 10 times. Directional characteristics appear in the structure
of Fig. 2d when compared with that in Fig. 2a.

3.2. Lattice Poisson–Boltzmann method

After porous structures are generated, the set of coupled hy-
drodynamic and electrodynamic governing equations for the
EOF subjected to the appropriate boundary conditions will be
solved by the lattice Poisson–Boltzmann method which com-
bines an electrical potential evolution on discrete lattices to
solve the nonlinear Poisson equation (lattice Poisson method)
with a density evolution method on the same set of discrete
lattices to solve the Boltzmann–BGK equation (lattice Boltz-
mann method). Details of two-dimensional LPBM can be found
in our previous publications [62,65]. In this work, we develop
the LPBM into its three-dimensional form. The equations are
only solved in the liquid phase and the solid phase is silent and
charged homogeneously on the surfaces.

The continuity and momentum equations can be solved by
tracking the movements of molecule ensembles through the
evolution of the distribution function using the popular lattice
Boltzmann method [73]. The lattice Boltzmann equation can be
derived from the Boltzmann equation [74]. For the flows with
external forces, the continuous Boltzmann–BGK equation with
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(a)

(b)

(c)

(d)

Fig. 2. Schematics of the generated porous structures using the present
growth-generation method on 60 × 60 × 60 grid systems. The white is solid
particles and the dark is fluid. (a) Ps = 0.3, cd = 0.01Ps ; (b) Ps = 0.6,
cd = 0.01Ps ; (c) Ps = 0.3, cd = 0.1Ps ; (d) Ps = 0.3, cd = 0.01Ps ,
D1,3 = 10D2,4–6 (anisotropic).

Fig. 3. The lattice direction system (α) for the D3Q15 model.

an external force term, F , is

(14)
Df

Dt
≡ ∂tf + (ξ · ∇)f = −f − f eq

τν

+ F,

where f ≡ f (x, ξ , t) is the single particle distribution func-
tion in the phase space (x, ξ), ξ the microscopic velocity, τν the
relaxation time, f eq the Maxwell–Boltzmann equilibrium dis-
tribution, and F the external force term

(15)F = G · (ξ − u)

RT
f eq,

with G being the external force per unit mass [75]. The
Chapman–Enskog expansion can be used to transform the
Boltzmann–BGK equation, Eq. (7), into the correct continuum
Navier–Stokes equations [76].

Thus the three-dimensional 15-speed (D3Q15) discrete den-
sity evolution equation is

fα(r + eαδt , t + δt ) − fα(r, t)

(16)= − 1

τν

[
fα(r, t) − f

eq
α (r, t)

] + δtFα,

where r is the position vector, δt the time step, eα the discrete
velocities with the direction system shown in Fig. 3,

(17)eα =
{

(0,0,0), α = 0,

(±1,0,0)c, (0,±1,0)c, (0,0,±1)c, α = 1–6,

(±1,±1,±1)c, α = 7–14,

where c represents the sound speed, τν the dimensionless relax-
ation time which is a function of the fluid viscosity,

(18)τν = 3ν
δt

δ2
x

+ 0.5,

where ν is the kinetic viscosity and δx the lattice constant (or
grid size), and f

eq
α the density equilibrium distribution

(19)f
eq
α = ωαρ

[
1 + 3

eα · u
c2

+ 9
(eα · u)2

c4
− 3u2

2c2

]
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with

(20)ωα =
{2/9, α = 0,

1/9, α = 1–6,

1/72, α = 7–14.

For EOFs of dilute electrolyte solutions, the external electri-
cal force in Eq. (2) can be simplified to

(21)FE = ρeE − ρe∇Φ,

where Φ is the stream electrical potential caused by the ion
movements in the solution based on the Nernst–Planck theory.
Generally, the stream potential dominates the electro-viscosity
effect in pressure driven flows, but its value is much less than
the external potential and can be ignored in electrically driven
flows. Therefore, the external force in the discrete lattice Boltz-
mann equation is

(22)Fα = ρeE · (eα − u)

ρRT
f

eq
α .

The macroscopic density and velocity can be calculated us-
ing

(23)ρ =
∑
α

fα,

(24)ρu =
∑
α

eαfα.

To solve the Poisson equation with strong nonlinearity,
Eq. (13), we employ here another evolution method on the same
grid system, lattice Poisson method [64], by tracking the elec-
trical potential distribution transporting on the discrete lattices.
By expanding Eq. (13) into the time-dependent form

(25)
∂ψ

∂t
= ∇2ψ + grhs(r,ψ, t),

with grhs = 1
εε0

∑
i zieni,∞ exp(− zie

kbT
ψ) representing the neg-

ative right-hand side (RHS) term of the original Eq. (13), we
get the discrete evolution equation for the electrical potential
distribution

gα(r + �r, t + δt,g) − gα(r, t)

(26)= − 1

τg

[
gα(r, t) − g

eq
α (r, t)

] +
(

1 − 0.5

τg

)
δt,gωαgrhs,

where the equilibrium distribution of the electric potential evo-
lution variable g is

(27)g
eq
α = �αψ with �α =

{0, α = 0,

1/9, α = 1–6,

1/72, α = 7–14.

The time step for the electrical potential evolution is

(28)δt,g = δx

c′ ,

where c′ is a pseudo sound speed in the potential field [62]. The
dimensionless relaxation time is

(29)τg = 3χδt,g

2δ2
x

+ 0.5,

where χ is defined as the potential diffusivity which equals to
unity in these simulations.

After evolving on the discrete lattices, the macroscopic elec-
trical potential can be calculated using

(30)ψ =
∑
α

(gα + 0.5δt,ggrhsωα).

Though the electrical potential evolution equations are in an
unsteady form, only the steady-state result is realistic, because
the electromagnetic susceptibility has not been considered. Al-
though the lattice evolution method for the nonlinear Poisson
equation is not as efficient as the multigrid solutions due to its
long wavelength limit, it has the advantages of suitability for
geometrical complexity and parallel computing [64].

The boundary condition implements play a very critical
role in the accuracy of the numerical simulations. The hy-
drodynamic boundary conditions for the lattice Boltzmann
method have been studied extensively [77–84]. The conven-
tional bounce-back rule is the most commonly used method to
treat the velocity boundary condition at the solid–fluid interface
due to its easy implementation, where momentum from an in-
coming fluid particle is bounced back in the opposite direction
as it hits the wall [76]. However the conventional bounce-back
rule has two main disadvantages. First, it requires the dimen-
sionless relaxation time strictly within the range of (0.5, 2),
otherwise the prediction will deviate from the correct result def-
initely [77,78]. Second, the nonslip boundary implemented by
the conventional bounce-back rule is not located on the bound-
ary nodes exactly, which will lead to inconsistencies when cou-
pling with other PDE solvers on a same grid set [79].

To overcome the inconsistency between the LBM and the
other PDE solvers on a same grid set, one can replace the
bounce-back rule with another “nonslip” boundary treatment
proposed by Inamuro et al. [80], with the cost of loss of easy
implementation for complicated geometries. An alternative so-
lution is to modify the boundary condition treatments of the
PDE solver for the electric potential distribution to be consis-
tent with the LBM bounded by the bounce-back rule. In this
contribution, the bounce-back rule [79,81] for nonequilibrium
distribution proposed by Zou and He [82] is introduced and
extended to both hydrodynamic and electrodynamic boundary
implementations to deal with the complex geometries in porous
media.

At the boundary the following hydrodynamic boundary con-
dition holds,

(31)f
neq
α = f

neq
β ,

where the subscripts α and β represent opposite directions.
Analogously, the nonequilibrium “bounce-back” rule for the

electric potential distribution at the wall surfaces is suggested
as

(32)g
neq
α = −g

neq
β .

These boundary treatments are easy to implement for com-
plicated geometries and have approximately second-order ac-
curacy [79,82].
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Fig. 4. Schematic illustration of EOF in charged random porous media.

4. Results and discussion

Fig. 4 shows a schematic illustration of three-dimensional
EOF in charged random porous media. The solid microstruc-
ture has random shapes, positions, and connections, generated
by the algorithm described in Section 3.1. The cubic domain is
periodic in all three directions. The solid surfaces are homoge-
neously charged with a zeta potential, ζ , so that the electrolyte
solution can be driven flowing though the porous structure by
an external electrical field, E. In this section, we simulate and
analyze EOFs in charged microporous media using the lattice
Poisson–Boltzmann method, with geometry, solution, and sur-
face charge effects considered. The simulated results are com-
pared with existing theories and experimental data.

In the following simulations, we focus on a cubic system
each side of which is 1 µm long. A 60 × 60 × 60 uniform
grid is used. We change microstructure geometries of porous
media by varying the porosity ε from 0.1 to 0.9. The aver-
age characteristic length of particles varies from 20 to 150 nm.
The bulk ionic concentration n∞ varies from 10−6 to 10−3 M
and the surface zeta potential from 0 to −100 mV. The other
properties and parameters used in this work are as follows: the
fluid density ρ = 999.9 kg/m3, the dielectric constant εrε0 =
6.95 × 10−10 C2/J m, the dynamic viscosity μ = 0.889 mPa s,
the temperature T = 273 K, and the external electrical field
strength E = 1 × 104 V/m.

4.1. Geometry effects

First, the geometry effects on the electroosmotic permeabil-
ity in microporous media are investigated by changing the vol-
ume fraction and particle size (or number density) of the solid
phase. We define the electroosmotic permeability, κe , as

(33)κe = u

E
,

where u is the averaged velocity of EOF along the direction of
the driving electrical field E.

The coefficients of electroosmotic permeability (κe) for dif-
ferent porosities (ε) of porous media are shown in Fig. 5. The
other parameters are cd = 0.1 for the microstructure genera-
tion process, the bulk molar concentration c∞ = 10−4 M, and
ζ = −50 mV. The electroosmotic permeability increases with

Fig. 5. Predicted electroosmotic permeabilities for various porosities of porous
media at c∞ = 10−4 M, ζ = −50 mV, E = 1 × 104 V/m.

Fig. 6. The electroosmotic permeability versus average characteristic length
of solid particles for ε = 0.38, c∞ = 10−4 M, ζ = −50 mV, and
E = 1 × 104 V/m.

the porosity monotonically. The increasing rate rises with the
porosity as well which is very low when the porosity is smaller
than 0.5 and becomes sharply high when the porosity is larger
than 0.7. The predicted electroosmotic permeability is in the
order of 10−9 m2/s V, which is consistent with the existing ex-
perimental measurements [83].

Fig. 6 shows the calculated electroosmotic permeability in
homogeneously charged nanoscale porous media versus the av-
erage characteristic length of solid particles which is defined as
the cube root of the average volume of every particle. The aver-
age characteristic length changes from 20 to 150 nm by varying
cd from 0.38 to 0.001 in the present simulations and other
parameters are ε = 0.38, c∞ = 10−4 M, and ζ = −50 mV.
The results show that the electroosmotic permeability κe in-
creases with the average characteristic length of solid particles
monotonically. When the x-axial is in a logarithmic scale, the



Author's personal copy

M. Wang, S. Chen / Journal of Colloid and Interface Science 314 (2007) 264–273 271

Fig. 7. The electroosmotic permeability changing with the bulk ionic concen-
tration for ε = 0.38, ζ = −50 mV, and E = 1 × 104 V/m.

curve appears nearly linear (see the reference line in Fig. 6),
which means that the electroosmotic permeability increases
with the average characteristic length of particles at an ap-
proximately logarithmic rate. Three trials were performed for
each average characteristic length but the calculated electroos-
motic permeabilities did not exactly fall into a same value.
The fluctuations come from the stochastic characteristics of the
random microstructure. For a given porosity and a grid num-
ber, a smaller average characteristic length of particles leads to
a smaller statistical fluctuation around the average result. For
parameters used in the present contribution, the statistical devi-
ation is smaller than 3%.

4.2. Concentration effect

Based on the macroscopic EOF theory, the electrical double
layer can often be treated as a thin layer and a slip velocity
can therefore be introduced by the Helmholtz–Smoluchowski
model,

(34)uslip = −ε0εrζE
μ

,

as a boundary condition subject to the hydrodynamic equations
(Eqs. (4) and (5)). Such models have been employed to ana-
lyze the EOF in microporous media frequently [19–22,25–35].
A further conclusion from Eq. (34) is that the electroosmotic
permeability has no relationship with the ionic concentration of
the electrolyte solution. This may be true if the solid individ-
uals are separated by a wide enough interval space. However,
in most natural microporous media, such a critical condition is
hard to satisfy. The narrow clearances between solid particles
of microporous media often break down the thin double-layer
approximation and the EOF should be governed by the full set
of equations (Eqs. (4)–(13)).

Fig. 7 shows the predicted electroosmotic permeability ver-
sus the bulk ionic concentration of the electrolyte solution.
We used a same porous microstructure with cd = 0.1 and ε =

Fig. 8. The electroosmotic permeability versus the zeta potential for ε = 0.38,
c∞ = 10−4 M, and E = 1 × 104 V/m.

0.38. The electroosmotic permeability κe increase monotoni-
cally with the bulk ionic concentration c∞ as c∞ varies from
10−6 to 10−3 M. This result can be explained by the unde-
veloped electrical potential distributions in narrow channels,
whose similar results can be found in Fig. 2 of Ref. [66] and
Figs. 1 and 2 of Ref. [84]. When c∞ is lower than 10−4 M, the
electroosmotic permeability is nearly proportional to the bulk
ionic concentration. When c∞ is higher, the increasing rate be-
comes a little smaller.

4.3. Zeta potential effects

Zeta potential on solid surfaces of porous media affects EOF
permeability directly. Simple proportional relationships have
been obtained between the electroosmotic permeability and the
zeta potential for electrical transports in soils [83,85] and in
polymer composites recently based on the boundary-layer the-
ory [86]. Here we analyze such effects using our numerical
methods.

Fig. 8 shows the calculated electroosmotic permeability ver-
sus the zeta potential on solid surfaces of porous media. All
surfaces are homogeneously charged with a same value of ζ .
The other parameters used are c∞ = 10−4 M, cd = 0.1, and
ε = 0.38. The zeta potential ζ changes from 0 to 100 mV.
It shows that the proportionally linear relationship between
electroosmotic permeability and zeta potential is accurate only
when ζ is very small (<30 mV). The permeability increases
much sharper when the zeta potential ζ is larger than 40 mV and
then smoother when the zeta potential ζ is larger than 90 mV.

4.4. Comparison with experiments

The predicted electroosmotic permeability is also compared
with experimental data quantitatively for different zeta poten-
tials. Table 1 listed six kinds of soil and the measured data,
including porosities, zeta potentials, and permeabilities [87].
Since there is little information about the soil structure and
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Table 1
Electroosmotic permeability for different soils

Soil ε ζ

(mV)
κe , measured
(10−9 m2/s V)

κe , H-S model
(10−9 m2/s V)

κe , predicted
(10−9 m2/s V)

Gray 0.53 64 0.72 45 0.74a

Brown 0.62 97 2.86 69 2.0b

G–H 0.62 96 2.00 68 2.0b

Phosphatic 0.87 62 0.7 44 1.72c

Wallace burg 0.51 87 1.5 62 1.6a

Orleans 0.70 22 0 16 0.052c

The parameters used for predictions are:
a cd = 0.1Ps and ne = 2 × 10−5 M.
b cd = Ps and ne = 1 × 10−5 M.
c cd = Ps and ne = 1 × 10−4 M.

the properties of electrolyte solutions, we evaluate such val-
ues by referring to some relative references [87–89]. Table 1
also compares the predictions based on the H–S model [83,87]
which are one order of magnitude higher than the experimental
data. It is shown that the predicted electroosmotic permeabili-
ties by the present method agree much better with the measured
data.

5. Conclusions

Electroosmosis in homogeneously charged micro- and nano-
scale random porous media has been numerically investi-
gated using the mesoscopic simulation methods. A random
generation-growth method has been developed for reproducing
three-dimensional random microstructures of natural porous
media and the high-efficiency lattice Poisson–Boltzmann al-
gorithm has been extended into three-dimensional cases for
solving the strongly nonlinear governing equations of elec-
troosmosis in random porous media. Such a full numerical set
is quite suitable for analyses of electroosmosis in micro- and
nanoscale random porous media.

The numerical modeling and predictions of EOF in micro-
porous media indicate that the electroosmotic permeability in-
creases monotonically with the porosity of random porous me-
dia and the increasing rate rises with the porosity as well; the
electroosmotic permeability increases with average solid parti-
cle size for certain porosity; the permeability increases with the
bulk ionic concentration in microporous media which cannot be
predicted based on the macroscopic theory; the proportional re-
lationship between the electroosmotic permeability and the zeta
potential stands only at low zeta potentials. The present pre-
dictions agree with the existing experimental observations and
measurements. The results and methodology in this contribu-
tion may be of great significance for improving our understand-
ings of multiphysical transport mechanisms in electroosmosis
in micro- and nanoscale random porous media.
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