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Electric potential distribution in nanoscale electroosmosis:
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Electric potential distribution in nanoscale electroosmosis has been investigated using the nonequilibrium molecular
dynamics (NEMD), whose results are compared with the continuum based Poisson–Boltzmann (PB) theory. If the bin size of
the MD simulation is no smaller than a molecular diameter and the focusing region is limited to the diffusion layer, the ionic
density profiles on the bins of the MD results agree well with the predictions based on the PB theory for low and moderate
bulk ionic concentrations. The PB equation breaks down at high bulk ionic concentrations, which is also consistent with the
macroscopic description.
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1. Introduction

Electroosmotic transport (EOT) plays a fundamental role

in many biochemical and biophysical processes [1,2], such

as transports in ion channels in cells [3–5]. Similar

applications can also be found in NEMS/MEMS devices

[6,7]. A complete understanding of these physical and

chemical processes need correct mathematical descrip-

tions and accurate solutions of the electrostatic potential

distributions. One of the most widespread models for the

electrostatic interactions is the Poisson–Boltzmann

equation (PBE) [2]. The linearized PBE (LPBE) and

non-linearized PBE (NLPBE) have been used successfully

in predictions and modeling of the EOT at microscales

[8–10]. However, there are three main defects in the pure

continuum approach [11]: (i) the finite sizes of the ions are

neglected; (ii) the non-Coulombic interaction between

counter- and co-ions and surface is disregarded; (iii) the

image forces between ions and the surface are neglected.

Although the image charges have been introduced in

extensions of Poisson–Boltzmann (PB) theory and more

sophistical statistical mechanical treatments of the double

layer [12–14], it was generally thought that the PBE broke

down in nanoscale EOT.

Much work has been done using the molecular-based

simulations with comparisons with the continuum-based

PB theory in the last decade [15–23]. Especially, most of

the recent papers based on the first principle have reported

the PB theory deviates from the MD results in nanoscale

electroosmosis [18–23]. Much higher ionic concentration

distributions near wall surfaces predicted by MD were

reported than those predicted by the PB theory [18,19].

Qiao and Aluru [19] modified the PBE by introducing an

electrochemical potential correction extracted from the ion

distribution in a smaller channel using MD simulations. The

modified PBE predicted the ion distribution in larger

channel widths with good accuracies [20,21]. Cui and

Cochran [22] found that the PBE agreed quantitatively well

with the MD results at moderate ionic concentrations

around 20 mM and failed at low ionic concentration and

higher zeta potential over 50 mV. Dufreche et al. [23]

simulated the electroosmosis in clays, which was simplified

as Naþ ions in water and declared that the PB theory and

MD simulation only agreed only when the interlayer

spacing was large enough, and that a slipping modification

must be considered for the hydrodynamics. Such

phenomena can not be explained by the classical
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electrokinetic transport theories and were ascribed to the

water transport properties change near the charged surfaces.

In this paper, we simulate the electroosmosis in

nanochannels using the nonequilibrium molecular

dynamics (NEMD). The atomic-based results are compared

with the continuum based PBE so that the applicability of

the continuum assumption is therefore discussed.

2. Numerical details

2.1 Continuum models

Consider an electroosmosis process in a straight channel, as

shown in figure 1. The walls are fixed and homogeneously

charged. If the z-directional flow is negligible and the

transports are periodic in y direction, the steady electro-

static interaction can therefore be described by a 1D

Poisson equation [24,25],

d½1rðzÞdcðzÞ�

dz2
¼ 2

re

10

; ð1Þ

where c is the electrical potential, 1r the relative dielectric

constant of the solution, 10 the permittivity of a vacuum,

and re the net charge density. According to classical EDL

theory, the equilibrium Boltzmann distribution function

can be used to describe the distributions of small ions in the

dilute solution. Therefore, the net charge density

distribution can be expressed as the sum of all the ions in

the solution

re ¼
X
i

zieni;1 exp 2
zie

kbT
c

� �
; ð2Þ

where the subscript i represents the ith species, n1 is the

bulk ionic number concentration, z the valence of the ions

(including the sign), e the absolute value of one proton

charge, kb the Boltzmann constant and T the absolute

temperature. For 1:1 electrolyte solutions, such NaF or

NaCl solution in the present work, equations (1) and (2) can

be simplified as

d½1rðzÞdcðzÞ�

dz2
¼ 2

2zen1

10

sinh
zec

kbT

� �
ð3Þ

There are two ways to present the boundary conditions

for the Poisson equation (1), Dirichlet and Neumann

boundaries. In some atomistic methods for electroosmosis

[18,19], the Neumann boundary condition is mostly used

because the electric potential gradient is relative to the wall

surface charge density. Electric charge conversation can be

considered as an additional restrict for certain solution

under the Neumann boundary condition, which brings a

big additional computational cost as well. Recent

investigations show a lattice evolution method can deal

with this problem easily [26]. In this contribution we still

use the Dirichlet boundary condition to solve the Poisson

equation. To compare with the MD simulation results, we

obtain the zeta potentials z from MD and then use the

values as the Dirichlet boundaries to solve the equation (3).

2.2 NEMD method

NEMD method [27] was used to simulate the electro-

osmosis in a small channel directly. The accuracy of this

type of model is limited only by the force fields used to

describe interactions between solvent molecules, ions, and

the channel walls, and the simulation size and duration,

which are determined by computer resources and the

computational efficiency of the simulation code. In order to

provide a clear picture of how the various conditions affect

the applicability of continuum theory, a simplified model

was used to capture the essential physics [17,21]. Both

solvent and ions are simplified as spherical, nonpolar

particles interacting with a shifted Lennard-Jones potential,

V LJðrijÞ ¼ 41ij
sij

rij

� �12

2
sij

rij

� �6

2
sij

rc

� �12

þ
sij

rc

� �6
" #

;

ð4Þ

where rij, 1ij and sij are the separation, Lennard-Jones well

depth and Lennard-Jones diameter, respectively, for the

pair of atoms i and j. With this simplification, the

simulations become more tractable while still retaining a

model with discrete solvent particles. In deed, replacing

such a model for solvent with a more realistic model, such

as SPC/E [19,20] will improve the accuracy of the

simulations; however the simplified model can still provide

qualitative conclusions applicable to real systems, which

has been proved in many previous researches for various

areas [21]. The L-J interaction is set to zero when molecules

are separated by farther than the cut-off length rc ¼ 2.5s.

The molecular parameters are chosen to match those in a

NaF electrolyte solution in a silicon channel which are

listed in table 1 (http://www.gromacs.org, [28]). The

Lorentz–Berthelot combination rules were used for the

interaction parameters that are not specified explicitly [28].

Each ion was assigned a charge of^e (e is the electronic

charge, 1.6 £ 10219 C), while the solvent particles were

Figure 1. A schematic of the electroosmotic flow in nanochannel. The
two channel walls are symmetrical with respect to the channel center line.
Each wall is made up of five layers of still solid atoms. The channel width
W is defined as the distance between centers in the two innermost wall
layers.

M. Wang et al.1274
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neutral. The ion–ion electrostatic interactions were

calculated using a screened Coulomb interaction,

V CðrijÞ ¼
qiqj

4p101rrij
ð5Þ

where the relative dielectric constant of fluid is approxi-

mately set to 78 in our simulations. The electro-static

interactions were computed using the direct summation

over the whole domain with no truncation for the Coulomb

interactions [29,30].

The equations of motion are integrated using the Verlet

scheme [31] with time step Dt ¼ 0.005t, where

t ; (ms 2/1)1/2 is the characteristic time of the Lennard-

Jones potential. A Langevin thermostat [32] with damping

rate t 21 is used to maintain a constant temperature of

1.11/kb. The thermostat is only applied in the y-direction,

since it is periodic and normal to the main flow direction.

NEMD simulations were performed for systems

consisting of a slab of electrolyte solution sandwiched

by two plane walls as shown in figure 1. The two walls are

symmetrical with respect to the channel center line. Each

wall is made up of five layers of atoms oriented in the

,111 . direction. The channel is L in length and W in

width. The wall atoms are fixed to their original positions,

all of which have van der Waals interactions with the fluid

molecules. Only the outermost wall layers are charged,

uniformly among the wall atoms. In cases of this

contribution, we use a channel with L ¼ 3.3 nm,

W ¼ 4.98 nm and 1500 molecules flowing in it.

At the beginning of the simulation, the molecules were

randomly positioned and assigned Maxwellian distributed

velocities at the temperature of 1.11/kb. Periodic boundary

was performed in the x and y directions. Before the

macroscopic characteristics were sampled, the NEMD

simulations were run for 5 £ 105 time steps to reach

steady state flow. After that, the densities and velocities

were computed time-averaged, over 3 £ 106 times, by

using the binning method [31]. The various simulated

cases performed in this work are summarized in table 2.

3. Results and discussion

3.1 Bin size effect

The electric potential or ion distributions in electroosmosis

have been modeled much using atomistic simulations

[17–23]. A peak-like and fluctuating ion distribution

profile is usually obtained near wall surfaces. The peak

values may be two or more times than that predicted by the

continuum theory. This was always treated as a proof for

breakdown of the PB theory in nanofluidics [18–21]. It

was noticed that such a profile always came with a smaller

bin size than the fluid molecular diameter. We also got a

similar ion distribution profile in a NaF solution by our

NEMD when we set the bin size as half of the water

molecular diameter, shown as the dotted line in figure 2.

However, when we re-calculated the same results into

bigger bin-size systems, the fluctuation became smaller.

Once the bin size is no smaller than the fluid molecular

diameter, a smooth decaying ion density profile is

obtained. Such a profile appears a comparable shape

with the PB predictions. It indicates that the base of view

must be same when the atomistic simulations are

compared with the continuum theory, i.e. the bin size of

the MD results of electric distribution should not be

smaller than the solvent molecular diameter in comparison

with the PB predictions.

3.2 Stern layer effect

A second gap which departs the MD results from the PB

predictions is the effect of the Stern layer. As well known,

the PB equation describes only the ion distribution in

diffusion (outer) layer of the electric double layer (EDL)

[1,2,24]. In the continuum theory, the compact (inner)

Table 1. Parameters for Lennard-Jones interactions between same
species particles.

Species m (g/mol) s (Å) 1 (kJ/mol)

O (water) 18.00 3.165 0.6503
Si 28.08 3.386 2.4470
Naþ 22.99 2.350 0.0618
F2 19.00 3.121 0.6080

Table 2. Summary of the simulated cases.

Case # ss (C/m
2) Counter-ion # (Naþ) Co-ion # (F2)

1 0.191 30 0
2 0.191 35 5
3 0.191 40 10
4 0.191 45 15
5 0.191 55 25
6 0.191 80 50
7 0.191 100 70
8 0.191 200 170
9 0.064 10 0
10 0.032 5 0
11 0.019 3 0

Figure 2. Ion density profiles for different bin sizes(case 1 in table 2).
The ion density is normalized by jej=s 3, i.e. r*

e ¼ re=ðjej=s
3Þ, and the

z-position is normalized by the channel width, e.g. z* ¼ z=W .

Nanoscale electroosmosis 1275
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layer of EDL is too thin (molecular scale) to be considered

and therefore the PB equation almost governs the ion

distribution in the whole domain. However, in nanofluidics

the inner layer which is also termed as Stern layer is

comparable to the channel in size. The PB equation is not

able to govern the ion behavior in the Stern layer in theory.

Therefore if one compares the MD results with the PB

predictions, the Stern layer need to be cut off.

Though the Stern layer is not well defined in theory

[33], here we determine its thickness by comparing the co-

and counter-ions distribution profiles. The Stern layer

is commonly described as the absorbed counter-ions

layer close to the charged surface without any co-ions

[34,35]. Figure 3 shows the counter-ion and co-ion

distribution profiles in the same figure for the NaF solution

(case 2 in table 2). The Stern layer is then determined from

the starting point of the counter-ions to that of the co-ions

which is almost the first counter-ion layer next to the wall

surface. Thus, we compared the MD results (dbin ¼ s)

with the PB predictions in the whole channel or in the

diffusion layers only. Figure 4 shows that the MD results

deviates far from the PB prediction in the whole channel,

however agree pretty well with those in the diffusion

layers only for this case. This indicates that when the Stern

layer is not negligible compared with the channel width,

the PB theory can not predict the ion distribution correctly

across the whole channel but it is still available to describe

the electric potential distribution in the diffusion layers.

Once the channel is so narrow that the Stern layers near

both wall surfaces have interactions with each other, such

as W , 5s, the PB theory will totally break down across

the channel. Such a deduction is consistent with the

previous MD simulations [19].

3.3 Concentration effect

In theory, the PBE is based on the Boltzmann distribution

of ions for dilute solutions. The assumption of dilute

solution is almost satisfied in most macroscopic cases;

however it becomes somewhat critical for nanoscale

electroosmosis. In this contribution, we change the

numbers of ions in the solution so as to see how far the

PBE holds on by comparing the MD results with the PB

predictions. The bulk ionic concentration is determined by

the averaged ion concentration in equilibrium far from the

wall surfaces (i.e. near the middle across the channel) of

the MD results. Thus, the cases listed in table 2 have a

wide bulk ionic concentration range from 0.1 to 5.25 M.

Figure 5 shows the PBE holds on for low and moderate

ionic concentrations. When the bulk ionic concentration is

lower than 0.88 M (case 5), the PB predictions agree well

with the MD results, see figure 5(a). As the ionic

concentration increasing, the deviations become larger

and larger, which indicates the Boltzmann distribution

breaks down and the PB theory can not describe such

electrokinetic transport behavior any more.

4. Conclusions

Electric potential distribution in nanoscale electroosmosis

have been numerically investigated using both the

atomistic method NEMD and the continuum theory

PBE. The applicability of the continuum-based PB theory

in nanoscale is therefore discussed by comparing the

results from the two different methods. The results show

that: if the bin size of the MD simulation is no smaller than

a molecular diameter of solvent and the focusing region is

limited to the diffusion layer, the ion distribution profiles

calculated by MD simulations agree well with PB

predictions at low and moderate bulk ionic concentrations.

The PB theory totally breaks down for high bulk ionic

concentrations, which is also consistent with the

macroscopic description.

Figure 4. Comparisons between MD and Poisson–Boltzmann theory:
the dotted line is the MD results in finest bin size, the circles and triangles
are sampled in one molecular diameter bin size. The triangles are
sampled in the whole channel width W, and the circles are sampled only
in the diffusion layer. The dot-dash lines are the interfaces between stern
layer and diffusion layer. The dashed line and solid line are calculated
based on PB equation for different channel widths and different zeta
potentials. (case 2 in table 2).

Figure 3. Stern layer determination from MD results (case 2 in table 2).

M. Wang et al.1276
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