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A mesoscopic numerical tool has been developed in this study for predictions of the effective thermal
conductivities for microscale random porous media. To solve the energy transport equation with complex
multiphase porous geometries, a lattice Boltzmann algorithm has been introduced to tackle the conjugate heat
transfer among different phases. With boundary conditions correctly chosen, the algorithm has been initially
validated by comparison with theoretical solutions for simpler cases and with the existing experimental data.
Furthermore, to reflect the stochastic phase distribution characteristics of most porous media, a random internal
morphology and structure generation-growth method, termed the quartet structure generation set �QSGS�, has
been proposed based on the stochastic cluster growth theory for generating more realistic microstructures of
porous media. Thus by using the present lattice Boltzmann algorithm along with the structure generating tool
QSGS, we can predict the effective thermal conductivities of porous media with multiphase structure and
stochastic complex geometries, without resorting to any empirical parameters determined case by case. The
methodology has been applied in this contribution to several two- and three-phase systems, and the results
agree well with published experimental data, thus demonstrating that the present method is rigorous, general,
and robust. Besides conventional porous media, the present approach is applicable in dealing with other
multiphase mixtures, alloys, and multicomponent composites as well.
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I. INTRODUCTION

Transport phenomena in porous media have been investi-
gated for over 100 years for applications in materials, agri-
cultural, civil, and petroleum engineering �1,2�. Recently,
more interests have been focused on heat and mass transfer
processes in microporous media due mainly to their increas-
ing importance in functional material design, fuel cell opti-
mization, and even human biomedical engineering �3–6�.

The effective thermal conductivity is one of the most im-
portant parameters characterizing the energy transport prop-
erties of porous media and has been studied extensively by
using both theoretical and experimental approaches. As is
well-known, the effective thermal conductivities of porous
media depend not only on the thermal property and the vol-
ume fraction of each constitute component, but on the mi-
crostructures �i.e., the spatial distribution of all the compo-
nents� of the media as well. The theoretical analyses of
effective thermal conductivity found in the literature are gen-
erally based on the network combinations of the series and
parallel models �7–11�. Carson et al. �12� and Wang et al.
�13� have recently reviewed five fundamental models on ef-
fective thermal conductivity, including three dispersed-phase
models developed according to the electric-magnetic theories
�14,15�. Wang et al. �13� also presented some simple combi-
natory rules of these models in dealing with more complex
materials. Almost all these theoretical models, however, ig-
nore the often critical structural characteristics by assuming
the multiphase materials as homogeneously dispersed sys-
tems. Also, the interactions among different components and

phases are ignored in most cases. Therefore their predictions
usually do not agree well with the experimental data.

Owing to the rapid developments of computers and com-
putational techniques in the past few decades, numerical
methods have been increasingly used to tackle the previously
intractable mathematical equations so as to predict the effec-
tive thermal conductivities of real porous media �16–25�. For
instance, Thovert et al. �16� calculated thermal conductivities
of random media and regular fractals by solving the Laplace
equation using the finite-difference method. Bakker �17� de-
termined effective thermal properties of porous media
through the finite element method. However, such numerical
solvers for partial difference equations �PDE� encounter two
challenges when the porous structures in question become
complex �18,19�. The first is the constraint on the interphase
conjugate heat transfer: for steady heat conduction through
multiple phases, temperature and heat flux continuities have
to be ensured at the interfaces. An extremely high computa-
tional resource is required in tackling this issue. Qian et al.
�25� presented a two-dimensional five-speed �D2Q5� lattice
Boltzmann model to calculate the effective thermal conduc-
tivity of porous media, while neglecting the solid-fluid con-
jugate heat transfer, which turned out to be a critical factor in
such cases. The second challenge is the need of grid refine-
ment for complex structures: the accuracy of a conventional
numerical method is strongly dependent on the grid size and
an extra fine grid is desired whenever the transport process is
complex in physics and/or in geometry, and finer grid further
drives the computational cost up often to an unrealistic level.

Another equally if not more difficult issue is to account
for the influence of the usually complex structural geometry
in a porous material system. Some stochastic-statistic meth-
ods representing the structural variations in porous media
have gained attention recently �20,21�. For instance, Shos-*Email address: mmwang@ucdavis.edu
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hany et al. �22� and Barta and Dieska �23� modeled the ther-
mal conductivity of porous materials using the Monte Carlo
method to reflect the structural fluctuations. Zhang et al. �24�
in predicting the effective thermal conductivity of moist po-
rous media developed a randomly mixed material model
�RMM� to represent the structural influence, yielding results
that agreed well with experimental data for porosity below
0.6.

The objective of this work is to develop a comprehensive
approach for the more accurate prediction of the effective
thermal conductivities of heterogeneous microporous media.
To achieve this, we will first adopt a lattice Boltzmann
method for multiphase conjugate heat transfer simulation in
complex microstructures based on our previous work �26� by
means of a spatially varying relaxation time. Next, we will
devise a multiparameter tool based on the stochastic cluster
growth theory to generate and control the random structures
of complex porous media. After validation by some bench-
marks, the present method will be applied to predict the ef-
fective thermal conductivities of various real microrandom
porous media by comparing the modeling results with exist-
ing experimental data.

II. NUMERICAL METHODS

To determine the effective thermal conductivities of po-
rous media, consider a two-dimensional pure conductive heat
transfer problem in a system with both conducting phase and
isolating phase, shown in Fig. 1, with negligible heat transfer
caused by convection, radiation, and phase change. The con-
tact thermal resistance between conducting phase is also
small enough to neglect. The upper and lower boundaries are
isothermal at T1 and T2, respectively. The left and right
boundaries are insulated.

A. Governing equations

Therefore the energy equations for heat transfer in such a
multiphase system, e.g., fluid and solid, without heat sources
are

��cp� f� �T

�t
� = kf�

2T , �1�

��cp�s� �T

�t
� = ks�

2T , �2�

where subscript f represents the fluid, and s the solid; T is the
temperature, � the density, k the thermal conductivity, and cp
the specific heat capacity.

At the interfaces between the two phases once in equilib-
rium, the temperature and heat flux continuities have to be
satisfied with no contact thermal resistance at the interfaces,

Tf ,int = Ts,int, �3�

kf� �T

�n̂
�

f ,int

= ks� �T

�n̂
�

s,int

, �4�

where the subscript “int” corresponds to the interfaces and n̂
represents the unit normal vector to the interfaces. Equations
�1�–�4� describe a classical case of the multiphase conjugate
heat transfer problem �24,27�. As stated above, this con-
straint of continuity at an interface increases the computa-
tional costs tremendously when using the conventional nu-
merical methods. Moreover, since there are huge numbers of
such interfaces in porous media, this further pushes the com-
putational expense into prohibition. We thus have to adopt
another route as introduced in the next section.

Once the temperature field is derived, the effective ther-
mal conductivity, keff, can be determined as

keff = qL/�T , �5�

where q is the steady heat flux through the media between
the temperature difference �T over a thickness L.

B. Lattice Boltzmann algorithm

The lattice Boltzmann method �LBM� is intrinsically a
mesoscopic approach based on the evolution of statistical
distribution of lattices, and has achieved considerable suc-
cess in simulating fluid flows and associated transport phe-
nomena �28–30�. The most important advantages of LBM
are the easy implementation of multiple interparticle interac-
tions and complex geometry boundary conditions �31,32�.
Conservations can generally hold automatically without ad-
ditional computational efforts �33,34�. Models specifically on
thermal behaviors based on the LBM have been developed
recently �35�. Here we further develop our previous work on
the lattice Boltzmann algorithm for the fluid-solid conjugate
heat transfer problem �26�.

For pure thermal conduction in porous media governed by
Eqs. �1� and �2�, the evolution equation for a two-
dimensional nine-speed �D2Q9� LBM in both liquid and
solid phases can be generally given as �26,35�

g��r + e��t,t + �t� − g��r,t� = −
1

�
�g��r,t� − g�

eq�r,t�� , �6�

where r is the location vector, t the real time, �t the time
step, geq the equilibrium distribution of the evolution variable
g�

FIG. 1. Schematic diagram of domain and boundaries of heat
transfer in porous media.
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g�
eq =�

0, � = 0

1

6
T , � = 1 – 4

1

12
T , � = 5 – 8,	 �7�

e� is the discrete velocity

e� = ��0,0� , � = 0

�cos ��,sin ���c,�� = �� − 1�	/2, � = 1 – 4


2�cos ��,sin ���c,�� = �� − 5�	/2 + 	/4, � = 5 – 8
	

�8�

and � the dimensionless relaxation time for each phase which
is determined by the corresponding thermal conductivity,

�s =
3

2

ks

��cp�s c2�t
+ 0.5, �9�

and

� f =
3

2

kf

��cp� f c2�t
+ 0.5. �10�

c is a pseudo sound speed, defined as �x /�t, where �x is the
lattice constant �i.e., the grid size�, whose value in theory can
take any positive number just to insure � to be within �0.5, 2�
�26,30�. A larger c may result in a more accurate temperature
prediction near the boundaries, yet with higher computa-
tional costs �26�. Not to violate the requirement of tempera-
ture and heat flux continuities at phase interfaces, we have to
assume identical volume thermal capacities ��cp� for differ-
ent phases; the conjugate heat problem between different
phases is thus solved and these assumptions will not affect
the effective thermal conductivity calculated �36�. The tem-
perature and the heat flux can then be calculated as �37�

T = �
�

g�, �11�

q = ��
�

c�g��� − 0.5

�
. �12�

C. Boundary conditions

For the isothermal boundary treatment, we follow the
bounce-back rule of the nonequilibrium distribution pro-
posed by Zou and He �38�

g� − g�
eq = − �g
 − g


eq� , �13�

where the subscripts � and 
 represent the opposite direc-
tions, and the equilibrium distribution can be calculated us-
ing the local boundary temperatures.

For the insulated boundary, we use the Neumann bound-
ary treatment �26,37� and let the boundary temperature gra-
dient equal to zero. However, heat flux leak will result along
the insulated surfaces. Therefore a special reflection bound-
ary condition is implemented here,

g� = g
. �14�

These boundary treatments have approximately a second
order accuracy �38�.

III. BENCHMARKS

To validate the present method, we first compare the pre-
dicted results with existing simpler theoretical solutions and
also some experimental data of real material structures.

A. Existing theoretical solutions

First we calculate the effective thermal conductivities for
two basic structures of dual-component materials: the paral-
lel mode and the series mode �see Fig. 2�. Assuming the
thermal conductivity of each component is k1 and k2, respec-
tively, the simple theoretical solutions offer the effective
thermal conductivities as �k1+k2� /2 for the parallel mode
and 1/ �1/2k1+1/2k2� for the series mode.

Table I lists the calculated effective thermal conductivities
compared with theoretical solutions for different values of
k1 :k2. We keep k1 as 1.0 W/m K while changing k2 from
2.0 to 10 000 W/m K. Such a large contrast between k1 and
k2 leads to a long computational time for our algorithms to
converge to a steady result, and yet provides a good test of
our model. The deviations between the predictions are no
greater than 0.006% for the parallel mode and 0.765% for
the series mode even for very large conductivity contrasts,
showing good accuracy of our approach.

B. Experimental data

Figure 3 shows the two-dimensional �2D� pore structure
profiles truncated at two perpendicular cross directions of a
three-dimensional heterogeneous polyurethane foam �39�. In
each figure, the white part is the solid polyurethane and the
dark part is the air. Measured data for the material are made
available from Ref. �39�. These structures were scanned and
transferred to 200�200 data matrices and then used for
simulations in �40�. We calculate the effective thermal con-
ductivities for the two given structures using our present
method and compare them with the measured data from Ref.
�39�. The results listed in Table II show that the deviations of

FIG. 2. Two basic structures for validation. �a� Parallel mode
and �b� series mode.
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the predicted effective thermal conductivities are no greater
than 15.0%. It is expected that more finely scanned structure
profiles and improved experimental measurements would
lead to closer agreements.

IV. RANDOM POROUS MEDIA GENERATION: THE QSGS
TOOL

Generally, it is extremely difficult if not impossible to
completely describe the microstructure of a porous medium
due to its complex and stochastic nature. One can only ac-
quire some statistic-based average information such as the
mean porosity or better, the pore size distribution. This prob-
lem has to be solved if the full details of a porous structure
need to be brought into formulation for more rigorous treat-
ment. In fact, more accurate predictions of transport charac-
teristics of porous media require more detailed descriptions
of the entire porous media morphology, including both the
geometric properties such as grain or pore shape, and the
volumetric and topological properties such as pore tortuosity
and interconnectivity. Several such attempts have been re-
ported. The reconstruction process is a popular method to
reproduce porous structures �41�; however, determinations of
the correlation functions are very complicated. The random
location of obstacles is the simplest one to construct an arti-
ficial porous medium when other microstructure details are
negligible �22–24�. To adjust the pores size and connectivity,
Coveney et al. �42� proposed a pore growth-with-time
model. By developing this idea from �42� further in connec-
tion with the cluster growth theories in �43�, we propose in

this paper a more comprehensive approach in which four
parameters are identified for controlling the internal porous
structure of granular media, thus forming a set termed the
quartet structure generation set �QSGS�. This set enables us
to generate porous morphological features closely resem-
bling the forming progress of many real porous media.

A. Algorithm description

The flowchart of the QSGS process is shown in Fig. 4 and
the algorithm is described as follows. Before initiation, one
has to determine among the different phases in a system a
nongrowing phase and the rest are growing ones. For gener-
ality, we call the growing phase the nth phase, where n=2 to
N, the total number of phases in the system. Customarily
without losing generality, the discrete phases are normally
taken as the growing phases. For example, rocks and mois-
ture are the growing phases in unsaturated sands, whereas
gas is the growing phase in polyurethane foams. Then the
growing process follows the steps below.

�i� Randomly locate the cores of the first growing phase in
a grid system based on a core distribution probability, cd,
whose value is no greater than the volume fraction of the
phase. Each cell in the grid will be assigned a random num-
ber by a uniform distribution function within �0, 1�. Each cell
whose random number is no greater than cd will be chosen as
a core.

�ii� Enlarge every element of the growing phase to its
neighboring cells in all directions based on each given direc-
tional growth probability, Di, where i represents the direc-
tion. Again for each growing element, new random numbers

TABLE I. Comparisons between predicted results and theoretical solutions, where k1=1.0 �W/m K�.

k1 :k2

Results

Parallel mode Series mode

Theoretical
value

�W/m K�

Present
predictions
�W/m K�

Relative
deviations

�%�

Theoretical
value

�W/m K�

Present
predictions
�W/m K�

Relative
deviations

�%�

1:2 1.500 1.500 0.000 1.333 1.332 0.075

1:10 5.500 5.500 0.000 1.818 1.815 0.165

1:100 50.50 50.50 0.000 1.980 1.976 0.202

1:500 250.5 250.5 0.000 1.996 1.991 0.250

1:1000 500.5 500.5 0.000 1.998 1.993 0.250

1:10000 5000.5 5000.2 0.006 1.9998 2.0151 0.765

TABLE II. Comparisons between present predictions and experimental data for given structures, where
ks=0.58 �W/m K�, kg=0.0083 �W/m K�, and the subscripts s and g as in the original paper represent solid and
gas, respectively.

Along the foam growing direction Across the foam growing direction

Prediction
�W/m K�

Experiment
�W/m K�

Deviation
�%�

Prediction
�W/m K�

Experiment
�W/m K�

Deviation
�%�

0.0253 0.0220 15.0 0.0265 0.0245 8.16
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will be assigned to its neighboring cells. The neighboring
cell in direction i will become part of the growing phase if its
random number is no greater than Di.

�iii� Repeat the growing process of �ii� until the volume
fraction of the first growing phase reaches its given value P2

�if the growing phase is gas, P2 is more often expressed as
the porosity ��.

�iv� As to the next growing phase, there are two cases to
consider depending on its interaction with the existing
phase�s�. If this phase is an equivalent discrete phase as the
existing growing phase, such as multicomponent mixture, it
grows from separate seeds, which is very similar as the first
growing phase described in �i�–�iii�. Otherwise, we have to
consider the constraint by and interaction with the existing
phase�s�. For such cases, the nth phase �n
2� will grow
based on a phase interaction growth probability, Ii

n,m, which
represents the growth probability of the nth phase on the mth
phase along the ith direction.

�v�Stop the nth phase growth once its volume fraction
reaches the given value Pn.

�vi� Repeat the next phase growth as described in �iv� and
�v� until n=N.

�vii� The spaces not occupied at the end represent the
nongrowing phase.

B. More on the growth parameters

Since the four parameters �cd, Di,P
n, and Ii

n,m� essentially
control the microstructure characteristics of the generated
porous media based on our QSGS process, we discuss here
in detail the effects of their values on the morphology fea-
tures.

The core distribution probability cd is defined as the prob-
ability of a cell to become a core of the first growing phase
on which growth or expansion of the first phase originates.
The value of cd indicates the number density of growing
cores for the first growing phase, to reflect the statistical
distribution of the first growing phase throughout the system.
For example, if we know from experimental data that there
are 40 particles of a solid phase in statistics in a focused
system and we want to reproduce such a structure on a 200
�200 grid, the value of cd for this phase �if chosen as the
first growing phase� 40/40 000=0.001, meaning every cell

in the grid has a probability of 0.001 to be a core of that solid
phase. The value of cd thus also controls the degree of struc-
ture details of a system; a smaller cd leads to a finer descrip-
tion of the microstructures including particle-pore shapes and
interparticle-pore connections. However, a small value of cd
will decrease the statistical particle numbers under a given
grid number and thus increase the computation fluctuation.

The directional growth probability Di is defined as the
probability for an unoccupied cell to expand into a neighbor-
ing cell in the ith direction so as to become part of the first
growing phase. An appropriate arrangement of the direc-
tional growth probabilities may lead to an isotropic structure
of porous media. In other words, the growth probabilities can

FIG. 3. Given structures of the polyurethane foam �39�. �a�
Along the foam growing direction and �b� Across the foam growing
direction.

FIG. 4. Flowchart of the QSGS process.

FIG. 5. Eight growth directions of each point in 2D systems.
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be adjusted to control the degree of anisotropy. For two-
dimensional cases, each square elemental cell has eight
growing directions to its neighbors, see Fig. 5. There are four
main directions �1,2,3,4� and four diagonal directions
�5,6,7,8�. For simplicity, we abbreviate the four directional
growth probabilities D1, D2, D3, and D4, for example, into
D1,2,3,4 or even D1–4 when appropriate. To obtain an isotropic
structure in such systems, we have to set uniform main di-
rectional growth probabilities D1–4 and uniform diagonal di-
rectional growth probabilities D5–8, respectively. By setting
the probabilities ratio, D1–4 :D5–8=4, we make the directional
growth probability consistent with the equilibrium density
distribution function for isotropic materials �44�. This as-
sumption needs more rigorous validation in the future; yet it
works well in our simulations. It is the relative value not the
absolute value of Di that controls the anisotropy of the struc-
ture. Since the growing process is a repeating loop, a smaller
value of Di will lead to a more accurate reaching of the

desired volume fraction of the growing phase with higher
computational costs. In most of our practices, we use 0.0001
for the diagonal directional growth probabilities.

For multiphase porous media systems �N�3� if there are
phase interactions between different discrete phases, we have
to consider the effects of phase interactions on the phase
distributions during the successive phase growth. Such ef-
fects are important especially, for instance, in unsaturated
porous media soaked by a liquid that wets other phases in the
system differently. In such systems, the growth order of the
growing phases is important. Generally the solid phase is
selected as the first growing phase and the liquid phase
grows under the effects of phase interactions. The phase in-
teraction growth probability, Ii

n,m, i.e., the growth probability
of the nth phase on the surface of the mth phase along the ith
direction, is hence introduced to account for this influence by
assigning different values to Ii

n,m for different materials. For
example, in a sands-liquid-air system, the sands and liquid

FIG. 6. Schematics of the gen-
erated porous media using the
present method �200�200�.
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are the first and the second growing phase, respectively. The
bonding of liquid onto the sands surfaces depends on the
wetting property of the sands. If the wetting property of the
sands is hydrophilic, the liquid will be readily covering the
sands surfaces. That means the liquid-solid affinity is greater
than that of liquid-liquid and the liquid phase should com-
bine more easily to the solid phase than to the liquid phase so
that Ii

3,3� Ii
3,2 or the ratio Ii

3,3 : Ii
3,2 should be no greater than 1,

where the superscript 3 represents the liquid and 2 the solid.
The value of the phase interaction growth probability Ii

n,m

could be determined by analyzing the scanned pictures of the
phase distributions or by calculating from the wetting prop-
erties directly.

Figure 6 shows six schematic illustrations of the gener-
ated porous structures using the present QSGS method. The
stochastic characteristics are depicted rather realistically in
the figures. The first four figures are two-phase cases, where
the white area represents the growing phase �solid� and the
black the nongrowing phase �gas�. The parameters for Fig.
6�a� are cd=0.01, Ps=0.3, and D1,3=D2,4=4D5–8. Figure 6�b�
shows the case where the solid volume fraction Ps geminates
where both the volume and the interparticle connections of
the solid phase increase. Comparison between Figs. 6�b� and
6�c� shows the effect of the core distribution probability cd
on the generated microstructure. A higher value of cd leads to
a more uniform phase distribution of medium. When the di-
rectional growth probability is changed in some direction,
the isotropy will be destroyed. Figure 6�d� shows the gener-
ated anisotropic structure where the horizontal growth prob-
ability is ten times the vertical one, D1,3=10D2,4 and D2,4
=4D5–8. Figures 6�e� and 6�f� show phase distributions of
three-phase porous media by different phase interaction
probabilities. The black is the nongrowing phase �gas�, the
gray is the first growing phase �solid�, and the white is the
second growing phase �liquid�. The phase interaction prob-
ability changes the distribution status of the second growing
phase. A high value of liquid-solid interaction means a strong
wetting property of the liquid on the solid surface. The liquid
will distribute like a film on the solid surface as shown in
Fig. 6�e�. On the contrary, a strong liquid-liquid interaction
probability leads to a high degree of liquid conglomeration.
The liquid exists as droplets or liquid-bridges on the solid
particles �see Fig. 6�f��. The effects of phase distribution on
the effective properties of porous media will be investigated
in detail in our future work.

C. Uncertainty analysis

Since the random fluctuations have been introduced dur-
ing the generation of porous structures, the calculated effec-
tive thermal conductivity for a given porous medium with
statistical characteristics in its structure will not be identical
in every trial, but fluctuates around an average value. The
scope of the fluctuations mainly depends on the grid size
�cell numbers� and the particle numbers �sample size�. A
larger grid size and/or greater particle number will improve
the simulation accuracy, yet will increase the computational
costs as well. Our tests have demonstrated that the variations
caused by such systematic fluctuation are no greater than 3%

for two-dimensional two-phase cases with a 200�200 grid
and cd=0.01 �45�.

V. RESULTS AND DISCUSSION

Next the effective thermal conductivities for different
types of porous materials are predicted using the present me-
soscopic numerical method, consisting of the lattice Boltz-
mann solver in combination with the QSGS tool. Both two-
phase and three-phase cases are considered and the
numerical predictions are then compared with the existing
experimental data from the literature for the same cases.
Since in the literature no structure details have been reported
together with the measured effective thermal conductivities,
we can only use estimated values for the QSGS parameters
in the following simulations. Unless specified otherwise, we
set the parameters in the QSGS tool as follows: cd=0.01 and
D1–4=4D5–8 for two-phase materials and Ii

3,2= Ii
3,3 for three-

phase porous media. Thus the only required input variables
are the thermal conductivity and the relative volume fraction
for each component or phase.

A. Two-phase cases

First we consider a two-solid phase composite, Cu/solder
where the Cu particles are dispersed inside the solder mass
�46�. The component thermal conductivities are kCu
=398.0 W/m K and ksolder=78.1 W/m K, respectively. Fig-
ure 7 shows the predicted effective thermal conductivities as
a function of the volume fraction of Cu, compared with the
experimental data from �46�. Good agreement is shown.

The present method can also be used to predict the effec-
tive thermal conductivity of two-phase suspension. Here we
consider a graphite/water suspension where the volume frac-
tion of graphite is PGraphite, dispersed into water to form an
aqueous solution. The thermal conductivities of graphite and
water are kGraphite=160.5 W/m K and kwater=0.666 W/m K,
respectively. The predicted effective thermal conductivities

FIG. 7. Comparisons between predictions and experimental data
for Cu/solder material. The experimental data is from Ref. �46�. The
parameters are kCu=398.0 W/m K and ksolder=78.1 W/m K.
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are compared in Table III with both the experimental data
and the predicted values using Jagjiwanram’s resistor model
�47�. All results are in relatively good agreement. Note that
our predictions are always lower than the measured data;
likely because the present model does not consider the move-
ment of the suspended phase which could be an important
factor in enhancing the heat transfer in suspensions �48�.

B. Three-phase cases

Unsaturated porous media are studied in this section as
well where there are three phases in the system. Customarily,
the porosity, �, is defined as the total volume fraction of the
fluids. The degree of saturation, S, is defined as the liquid
volume fraction within the fluids. Therefore the solid phase,
the liquid phase, and the gas phase have the volume fractions
of �1−��, �S, and ��1−S�, respectively. In the present work,
we assume the liquid phase is uniformly attached onto the
solid surfaces, which means Ii

3,2= Ii
3,3 in each direction i.

Figure 8 shows the predicted effective thermal conductivi-
ties versus the degree of saturation S for moist porous brick
sands under both frozen and unfrozen states. The numerical
results are compared again with the experimental data from
�49,50�. The simulation parameters include �=0.52, ks

=2.85 W/m K, kw=0.5924 W/m K, kg=0.0249 W/m K,
and kice=2.38 W/m K �50,51�. A 200�200 grid is used in
the simulations, yielding the random fluctuation within 3%.
Once again, good agreements are obtained for both frozen
and unfrozen cases �52�.

The predictions for another three-phase case, wetting
glass particle assemblies, are also compared with the recent
experimental data by Kohout et al. �53�. The simulation pa-
rameters are �=0.39, ks=0.8 W/m K, kw=0.61 W/m K, and
kg=0.025 W/m K. Figure 9 illustrates the predicted results
along with the experimental data, as well as with other the-
oretical modeling results from Ref. �53�. A better consistence
between the present predictions with the experiments is
again exhibited.

VI. CONCLUSIONS

A mesoscopic numerical model for predicting the effec-
tive thermal conductivity of multiphase microporous media
has been established in this paper. The model is a combina-
tion of two parts. A random generation-growth method,
named quartet structure generation set �QSGS�, was first pro-
posed based on the stochastic cluster growth theory for gen-

TABLE III. Effective thermal conductivities of graphite/water suspension.

PGraphite

keff �expt.�
�W/m K�

Jagjiwanram’s
predictions Present predictions

keff

�W/m K�
Deviation

�%�
keff

�W/m K�
Deviation

�%�

0.05 0.832 0.862 3.61 0.800 −3.85

0.11 1.132 1.004 −11.31 1.004 −11.31

0.17 1.439 1.145 −20.43 1.286 −10.63

FIG. 8. Comparisons between predicted and experimental effec-
tive thermal conductivities of unsaturated porous sands in frozen
and unfrozen states. The experimental data is from Refs. �49,50�.
The parameters are �=0.52, ks=2.85 W/m K, kw=0.5924 W/m K,
kg=0.0249 W/m K, and kice=2.38 W/m K.

FIG. 9. The effective thermal conductivity vs degree of satura-
tion of wetting glass assemblies. The experimental data and the
theoretical solutions are from Ref. �53�. The simulation parameters
are �=0.39, ks=0.8 W/m K, kw=0.61 W/m K, and kg

=0.025 W/m K.
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erating various microstructures of multiphase porous media.
A lattice Boltzmann algorithm considering multiphase con-
jugate heat transfer was then developed to tackle the thermal
conduction phenomena in the multiphase porous media with
second-order accurate boundary treatments. After benchmark
validations, the present model has then been applied to pre-
dict the effective thermal conductivity for both two-phase
and three-phase porous materials successively, and the nu-
merical predictions agreed well with the published experi-
mental data in each case. The present method is not limited
to the conventional porous media, but is also suitable for
most if not any multiphase mixtures or multicomponent
composites. With no empirical parameters to be determined

case by case, this method is highly promising as a realistic,
reliable, and robust tool dealing with various complex ther-
mal transport problems in porous media and mixed multi-
phase systems.
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