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a b s t r a c t

The thermal lattice Boltzmann method (LBM) is used to simulate the conjugate heat transfer of high-fre-
quency oscillating flows between two flat plates with different outer surface temperatures. The thermal
boundary condition at the fluid–solid interface assumes that the unknown energy distribution functions
of the fluid and the solid are in equilibrium with the counter-slip internal energy. The counter-slip inter-
nal energy was determined by constraints in the continuities of temperature and heat flux at the solid–
fluid interface. Velocity, temperature and heat flux distributions are presented for various Stokes num-
bers, pressure oscillation amplitudes and plate to fluid thermal conductivity ratios. For relatively low-fre-
quency oscillations (30 kHz) and small pressure amplitudes, the periodically averaged heat fluxes of the
oscillating flow are almost equal to those of pure heat conduction. The averaged heat flux of the oscillat-
ing flow decreases with increasing pressure amplitudes and are less than those of pure heat conduction
for relatively low frequencies (30 kHz) and large pressure amplitude oscillations. For high-frequency
oscillations, the heat transfer is enhanced markedly by nonlinear acoustic streaming, where the average
velocity rapidly increases with frequency.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Conjugate heat transfer occurs when a fluid flows along a con-
ducting solid wall with finite thickness. The behavior of the conju-
gate interface temperature or heat flux along the flow path cannot
be prescribed as it depends on the flow properties, the flow
dynamics and the wall properties. The simplest boundary condi-
tions, such as constant wall temperature or constant heat flux,
are not suitable because heat conduction in the solids also plays
an important role in the overall heat transfer. Conjugate heat trans-
fer is involved in many practical applications, such as thermoacou-
stic engines (Swift, 1988; Backhaus and Swift, 1999; Nika et al.,
2005), MEMS (Fedorov and Viskanta, 2000; Li et al., 2004), the
cooling of turbine blades (Mazur et al., 2006) and in the cooling
of electronics (Horvat and Catton, 2003). Thermoacoustic engines
utilize the interaction between an oscillating gas and a porous solid
possessing a temperature gradient to convert heat to useful acous-
tic power, or to pump heat from low to high temperature regions
while consuming acoustic power (Swift, 1988). Thermoacoustic
engines have many advantages, such as no moving parts for the
thermodynamic cycle, reliability and long life span with environ-
mentally friendly inert gases used as the working medium. Ther-
ll rights reserved.
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moacoustic engines have been rapidly developed in recent years.
The conjugate heat transfer of an oscillating flow is a typical phe-
nomenon in thermoacoustic engines (Nika et al., 2005). To under-
stand the thermoacoustic effect and to improve the performance of
thermoacoustic engines, the characteristics of the conjugate heat
transfer of oscillating flows should be clearly understood. High-fre-
quency oscillating flows frequencies of up to thousands of Hertz
may be used for microscale thermoacoustic engines (Chen et al.,
2002; Symko et al., 2004) which differ much from the conventional
thermoacoustic engines. The flow and heat transfer mechanisms of
high-frequency oscillating flows is still not completely understood
despite many analyses.

Numerous studies of fluid–solid conjugate heat transfer in oscil-
lating flows have been reported. An analytical solution for small
Reynolds number oscillating flow was presented by Liao et al.
(1994) for fully-developed oscillating flow with heat transfer in a
2D parallel-plate channel. Bauwens (1996) proposed a closed-form
approximate solution for two-dimensional oscillating flow and
heat transfer in a cylindrical tube. The transverse fluid–wall conju-
gate heat transfer was assumed to be very effective so that the
temperature and heat flux distribution were assumed to be uni-
form. Lu and Cheng (2000) obtained analytical solutions for the
frictional factor and Nusselt number of a viscous compressible flow
oscillating at high frequencies in a tube subjected to a steady cyclic
axial temperature variation. They analyzed the local heat transfer
rate of a compressible oscillating flow in a tube with an isothermal
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Nomenclature

c lattice streaming speed (m s�1)
ci lattice velocity vector
cs sound speed (m s�1)
cv,f fluid specific heat capacity (J kg�1 K�1)
cv,s solid specific heat capacity (J kg�1 K�1)
D number of dimensions
fi density distribution function
�f i transformation of fi

f eq
i equilibrium distribution function of fi

gi fluid energy distribution function
�gi transformation of gi

geq
i equilibrium distribution function of gi

gsi transformation of solid energy distribution function
gseq

i equilibrium distribution function of gi

Gf sum of the known distribution functions �gi

Gs sum of all known distribution functions gsi

h flow channel width (m)
h1 bottom plate thickness (m)
h2 upper plate thickness (m)
H total height (m)
kf fluid thermal conductivity (W m�1 K�1)
ks1 bottom plate thermal conductivity (W m�1 K�1)
ks2 upper plate thermal conductivity (W m�1 K�1)
L channel length (m)
pm average pressure (Pa)
p1 pressure oscillation amplitude (Pa)
q heat flux (W m�2)
qy vertical heat flux (W m�2)
qy,ave periodic and space averaged vertical heat flux on upper

plate surface (W m�2)
qy,cond vertical heat flux for pure heat conduction (W m�2)
R gas constant (J kg K�1)
T temperature (K)
Tm average temperature (K)

Tw1 bottom plate outer surface temperature (K)
Tw2 upper plate outer surface temperature (K)
u velocity vector (m s�1)
uwx wall velocity in x-direction (m s�1)
uwy wall velocity in y-direction (m s�1)
ux fluid velocity in x-direction (m s�1)
uy fluid velocity in y-direction (m s�1)
Zi viscous dissipation term

Greek symbols
dt time step (s)
dx lattice step (m)
dl viscous penetration depth (m)
e internal energy (J)
e0 fluid counter-slip internal energy (J)
e0s solid counter-slip internal energy (J)
B fluid thermal diffusivity (m2 s�1)
K Stokes number
lf dynamic viscosity (kg m�1 s�1)
m kinematic viscosity (m2 s�1)
s oscillation period (s)
sg relaxation time for �gi

sgs relaxation time for gsi

sv relaxation time for �f i

q fluid density (kg m�3)
qm average fluid density (kg m�3)
qs solid density (kg m�3)
x angular frequency (rad s�1)

Subscripts
amp oscillating amplitude
s1 bottom plate
s2 upper plate
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outer wall to explain the refrigeration mechanism based on
thermoacoustic theory, without considering the conjugate heat
transfer effect (Lu and Cheng, 2002). Nika et al. (2005) applied clas-
sical linear thermoacoustic theory to compact micro-heat exchang-
ers to deduce complex formulations for the first-order friction and
heat transfer coefficients of oscillating flows.

Some studies have reported heat transfer enhancement by
oscillating flows. Vainshtein et al. (1995) analyzed a sonic wave
propagating longitudinally in a fluid between two parallel plates
to show that the wave enhanced the heat transfer from the plates
to the fluid at different acoustic Peclet numbers. The results dem-
onstrated that acoustic streaming resulted in a marked enhance-
ment of the heat transfer between the plates. Aktas et al. (2005)
numerically investigated oscillating flow and heat transfer in an
enclosure to show that the heat transfer could be enhanced with
steady second-order acoustic streaming in the main oscillating
flow. Cooper et al. (1993) gave a general review on the early use
of oscillating flows to enhance heat transfer. Heat transfer
enhancements with oscillating flows were also presented by Walsh
et al. (1993), Qiu and Simon (1994), Liao et al. (1994, 1995), Zhao
and Cheng (1995, 1996), Li and Yang (2000), Herman and Kang
(2001), Yang (2003), Iwai et al. (2004) and Bouvier et al. (2005).
Sert and Beskok (2003) presented numerical simulations for lami-
nar oscillating flow and heat transfer in a two-dimensional channel
based on a spectral element formulation. The results show that the
convection heat transfer in a steady flow with the same volumetric
flow rate is higher than the heat transfer in an oscillating flow.
Most studies have shown that oscillating flows can enhance the
heat transfer but the heat transfer enhancement mechanism differs
in different situations. Also, some studies have reported that the
heat transfer in oscillating flows is not more effective than that
of the corresponding unidirectional flow. The study analyses
whether high-frequency oscillating flows enhance heat transfer
relative to pure heat conduction.

Over the last decade, the lattice Boltzmann method (LBM) with
its inherent parallelism and straight forward implementation has
enjoyed rapid development as an alternative, promising numerical
method for computational fluid dynamics (Chen and Doolen,
1998). The LBM has been used in many problems for single phase
and multiphase flow, heat transfer and diffusion. He et al. (1998)
proposed a double-specified thermal model for studying thermo-
hydrodynamics. Shi et al. (2004) proposed a new LBM thermal
model for simulating heat transfer in the incompressible limit; an-
other thermal model for simulating heat transfer in low Mach
number flows was presented by Guo et al. (2007). Artoli et al.
(2002) used the lattice Boltzmann BGK method to simulate
three-dimensional pulsating flows, with a detailed analysis of the
accuracy of the lattice Boltzmann BGK method. Cosgrove et al.
(2003) applied the LBM to study transition in an oscillating channel
flow and got good agreement between numerical results and ana-
lytical solutions in the laminar flow case. Recently, Artoli et al.
(2006) presented a detailed analysis of the lattice Boltzmann ap-
proach to model time-dependent Newtonian flows with the aim
to find optimized simulation parameters for a desired accuracy
with minimal computational time. Meng et al. (2006) applied the
thermal LBM to simulate laminar oscillating flow and heat transfer
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between two parallel plates with a linearized assumption. They
found good agreement between the analytical and numerical solu-
tions for both the velocities and temperatures. Thus, the LBM can
effectively simulate oscillating flows and heat transfer.

Most studies have treated the thermal boundary condition as
simple constant temperature or constant heat flux (D’Orazio and
Succi, 2003). Few studies have used a conjugate interface thermal
boundary condition. Mishra et al. (2005) used the LBM to solve the
energy equation for a 2D transient conduction–radiation problem.
Wang et al. (2007) simulated steady conjugate heat transfer using
the LBM with a ‘‘half lattice division” treatment for the fluid–solid
interaction and the energy transport, which insures temperature
and heat flux continuity at the interface. This method is more
appropriate for steady flow and heat transfer problems. Both Mish-
ra et al. (2005) and Wang et al. (2007) pointed out that the LBM
simulations of conjugate heat transfer converge to steady state fas-
ter than the FVM does.

This paper describes the use of the thermal LBM to simulate the
conjugate heat transfer for an oscillating flow between two parallel
plates. A new method is presented for treating the thermal bound-
ary condition at the fluid–solid interface. The characteristics of the
oscillating flow and heat transfer will be discussed.
Fig. 1. Schematic of fluid–solid conjugate interface and the D2Q9 lattice.
2. Thermal lattice Boltzmann model

2.1. Double-species thermal lattice Boltzmann model

The lattice Boltzmann model implemented in the current inves-
tigation is the double-species lattice Boltzmann model developed
by He et al. (1998). The macroscopic density and velocity evolu-
tions are simulated by the density distribution function with the
temperature evolution simulated using the internal energy distri-
bution function.

The evolution equation for the density distribution function, �f i,
is

�f iðrþ ci dt; t þ dtÞ � �f iðr; tÞ ¼ �
dt

sv þ 0:5dt
½�f iðr; tÞ � f eq

i ðr; tÞ�; ð1Þ

where

�f i ¼ fi þ
dt

2sv
ðfi � f eq

i Þ ð2Þ

and sv is the momentum relaxation time:

sm ¼ m=RTm: ð3Þ

Eq. (2) gives the transformation from fi to �f i. The transformation
is introduced to avoid implicitness in the scheme and to evolve fi

directly.
The evolution equation for the internal energy distribution

function, �gi, is

�giðrþ ci dt; t þ dtÞ � �giðr; tÞ ¼ �
dt

sg þ 0:5dt
½�giðr; tÞ � geq

i ðr; tÞ�

� sgfiðr; tÞZi dt
sg þ 0:5dt

; ð4Þ

where

�gi ¼ gi þ
dt

2sg
ðgi � geq

i Þ þ 0:5f iZi dt; ð5Þ

Zi represents the effect of viscous dissipation heating:

Zi ¼ ðci � uÞ � ou
ot
þ ðci � rÞu

� �
ð6Þ

and sg is the internal energy relaxation time:

sg ¼ 0:51=RTm; ð7Þ
where B represents the thermal diffusivity.
The density q, velocity u, internal energy e and heat flux q are

calculated as

q ¼
X

i

�f i; ð8Þ

qu ¼
X

i

ci
�f i; ð9Þ

qe ¼ q
DRT

2
¼
X

i

�gi �
dt
2

X
i

fiZi; ð10Þ

q ¼
X

i

ci�gi � qeu� dt
2

X
i

cifiZi

 !
sg

sg þ 0:5dt
: ð11Þ

For the two-dimensional, nine-speed (D2Q9) lattice with a lat-
tice streaming speed c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3RTm
p

, as shown in Fig. 1, where Tm is
the average temperature, the lattice velocities in the nine direc-
tions are

ci ¼

0; i ¼ 0;

c cos ði�1Þp
2 ; sin ði�1Þp

2

� �
; i ¼ 1;2;3;4;ffiffiffi

2
p

c cos ði�5Þp
2 þ p

4

h i
; sin ði�5Þp

2 þ p
4

h i� �
; i ¼ 5;6;7;8:

8>>><
>>>:

ð12Þ

The density equilibrium distribution, f eq
i , is expressed as

f eq
i ¼ wi 1þ 3ci � u

c2 þ 9ðci � uÞ2

2c4 � 3u � u
2c2

" #
; ð13Þ

where w0 = 4/9 and wi = 1/9 for i = 1,2,3,4 and wi = 1/36 for
i = 5,6,7,8.

The energy equilibrium distribution, geq
i , is

geq
i ¼

� 2qe
3

u�u
c2 ; i ¼ 0;

qe
9 ½1:5þ 1:5 ci �u

c2 þ 4:5 ðci �uÞ2
c4 � 1:5 u�u

c2 �; i ¼ 1;2;3;4;
qe
36 ½3þ 6 ci �u

c2 þ 4:5 ðci �uÞ2
c4 � 1:5 u�u

c2 �; i ¼ 5;6;7;8:

8>><
>>: ð14Þ

He et al. (1998) recovered the correct continuity, momentum and
energy equations from the Boltzmann–BGK equation by using the
Chapman–Enskog expansion.

2.2. Boundary conditions

Both the pressure boundary condition implemented at the inlet
and the non-slip velocity boundary conditions at the fluid–solid
interfaces are treated by the method presented by Zou and He
(1997). This method is based on the idea of bounce-back of the
non-equilibrium density distribution function and is approxi-
mately second-order accurate.

To treat isothermal and constant heat flux boundary conditions,
D’Orazio and Succi (2003) assumed a counter-slip internal energy
for each unknown internal energy distribution function which is
determined consistently with Dirichlet or Neumann boundary con-
strains. This model has the highest accuracy because it guarantees
the given temperature or heat flux at the wall (Tang et al., 2005).
For an isothermal wall, such as the interface shown in Fig. 1, the
unknown internal energy distribution functions for the fluid are
�g2, �g5 and �g6 which are assumed to be



Fig. 2. Schematic of the geometry.
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�gi ¼ qðeþ e0Þ ½corresponding form for equilibrium�;
i ¼ 2;5;6: ð15Þ

The corresponding equilibrium was given in Eq. (14). The constraint
in Eq. (10) yields

qe0 ¼ 2qeþ 1:5dt
X

i

fiZi � 3Gk; ð16Þ

where Gk is the sum of the known internal distribution functions for
the fluid at the interface

Gk ¼ �g0 þ �g1 þ �g3 þ �g4 þ �g7 þ �g8: ð17Þ

Once the counter-slip internal energy qe0 is determined from Eq.
(16), all the unknown distribution functions can be calculated from
Eq. (15). In the case of a wall with a prescribed heat flux, the un-
known internal distribution functions can be determined by the
similar procedure as with the isothermal boundary.

As shown in Fig. 1, the thermal boundary condition on the
fluid–solid interface is neither a Dirichlet nor a Neumann boundary
condition. In the numerical simulations, neither the temperature
nor the heat flux can be prescribed on the interface. The continu-
ities of the temperature and the y-direction heat flux in the fluid
and in the solid should be guaranteed at the conjugate interface.
This model uses different internal energy distribution functions
for the fluid and the solid, with the fluid internal distribution func-
tions being �gi and the solid distribution functions being gsi. The
evolution equation for the solid internal energy distribution func-
tion, gsi, is

gsiðrþ ci dt; t þ dtÞ � gsiðr; tÞ ¼ �
dt

sgs þ 0:5dt
½gsiðr; tÞ

� gseq
i ðr; tÞ�; ð18Þ

where sgs is the solid internal energy relaxation time. The energy
equilibrium distribution, geq

i , is

gseq
i ¼

0; i ¼ 0;
qe
6 ; i ¼ 1;2;3;4;
qe
12 ; i ¼ 5;6;7;8:

8><
>: ð19Þ

As shown in Fig. 1, the fluid distribution functions, �g2, �g5 and �g6, on
the conjugate interface are unknown fluxes from the solid. The solid
distribution functions, gs4, gs7 and gs8, on the interface are unknown
fluxes from the fluid. The treatment for the thermal boundary con-
ditions on the conjugate interface seeks to determine these un-
known internal distribution functions. The temperature and the y-
direction heat flux in the fluid and in the solid are continuous at
the conjugate interface:X

i

�gi � 0:5dt
X

i

fiZi ¼ Cfs

X
i

gsi; ð20Þ
X

i

ciy�gi � 0:5dt
X

i

ciyfiZi ¼ Ksf

X
i

ciygsi; ð21Þ

where

Cfs ¼
qcv;f

qscv;s
; ð22Þ

Ksf ¼
sgs

sgs þ 0:5dt
sg þ 0:5dt

sg
: ð23Þ

qs is the solid density, cv,f is the fluid specific heat and cv,s is the solid
specific heat.

Because of the zero velocity on the conjugate interface, �g2, �g5

and �g6 can be assumed to be

�gi ¼
1
6 qðeþ e0Þ; i ¼ 2;
1

12 qðeþ e0Þ; i ¼ 5;6

(
ð24Þ

and gs4, gs7 and gs8 for the solid are
gsi ¼
1
6 qsðes þ e0sÞ; i ¼ 4;
1

12 qsðes þ e0sÞ; i ¼ 7;8:

(
ð25Þ

Eqs. (20)–(25) form a close system with the solid counter-slip inter-
nal energy parameter qsðes þ e0sÞ determined explicitly as

qsðes þ e0sÞ ¼
3

Ksf þ Cfs

"
Ksf ðgs2 þ gs5 þ gs6Þ þ �g4 þ �g7 þ �g8

þ 0:5dt
X

i

ciy

c
fiZi � CfsGs þ Gf � 0:5dt

X
i

fiZi

#
; ð26Þ

where Gf and Gs are the sum of the known internal energy distribu-
tion functions for the fluid and the solid on the conjugate interface:

Gf ¼ �g0 þ �g1 þ �g3 þ �g4 þ �g7 þ �g8; ð27Þ
Gs ¼ gs0 þ gs1 þ gs2 þ gs3 þ gs5 þ gs6: ð28Þ

After qsðes þ e0sÞ is determined, the fluid counter-slip internal energy
parameter q(e + e0) can be expressed as

qðeþ e0Þ ¼ Cfsqsðes þ e0sÞ þ 3 CfsGs � Gf þ 0:5dt
X

i

fiZi

 !
: ð29Þ

Substituting Eq. (26) into Eq. (25) and Eq. (29) into Eq. (24), respec-
tively gives all the unknown internal energy distribution functions
for the fluid and the solid on the conjugate interface.

Finally, the corners of fluid–solid conjugate interface can be
treated in a similar way with the counter-slip procedure imposed
on each of the five unknown distribution functions for the fluid
and the solid. For example, at corner A shown in Fig. 1, �g1, �g2, �g5,
�g6 and �g8 for the fluid are unknown and gs1, gs4, gs5, gs7 and gs8

for the solid are unknown. The unknown distribution functions
can be determined by the constraints of the continuities of the
temperature and heat flux on the fluid–solid interface.

3. Physical model

The two-dimensional geometry is shown in Fig. 2. A viscous,
compressible fluid with density, q, specific heat, cv,f, dynamic vis-
cosity, lf, and thermal conductivity, kf, oscillates between two flat
plates. The outer surface, C3, of upper plate which has a thickness,
h2, is maintained at a constant temperature, Tw2. The outer surface,
C7, of the bottom plate which has a thickness, h1, is maintained at a
constant temperature, Tw1. The channel width is h and the length is
L. The total height is H. The upper plate has density qs2, specific
heat cv,s2 and thermal conductivity ks2. The properties of the bot-
tom plate are: density qs1, specific heat ratio cv,s1 and thermal con-
ductivity ks1. The periodic oscillating pressure condition at
boundary C1 is implemented as

p ¼ pm þ p1 sin xt ¼ pm þ p1 sin
2pt
s
; ð30Þ

where x is the oscillation angular frequency and s is the oscillation
period. p1 is the oscillation pressure amplitude, which is assumed to
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be small compared with the average pressure pm in the current sim-
ulations. Non-slip velocity boundary conditions are imposed on
boundaries C5, C9 and C10. Boundaries C1, C2, C4, C5, C6 and C8

are adiabatic. The thermal boundary conditions on C9 and C10, the
fluid–solid conjugate interfaces, are treated by the model described
in Section 2.

4. Results and discussion

The simulation parameters were Tw1 = 388 K, Tw2 = 288 K,
Tm = 313 K, average fluid density qm = 1 kg/m3, qmcv,f = qs1cv,s1 =
qs2cv,s2, gas constant R = 286.69 J/kg K, fluid dynamic viscosity
lf = 19.1 � 10�5 kg/(m s), average pressure pm = 89734 Pa. p1, kf,
ks1, ks2, h and x were varied chosen to study the flow and heat
transfer characteristics in the oscillating flow.

4.1. Velocity distribution

For oscillating flows, the viscous penetration depth is defined as

dl ¼
ffiffiffiffiffiffiffiffiffiffiffi
2m=x

p
: ð31Þ

The Stokes number, K, which is used to characterize the dominant
features of the oscillating flow, is the ratio of the channel half-width
to the viscous penetration depth:

K ¼ h=2dl: ð32Þ

Fig. 3 shows the velocity distribution at cross section x = 0.9 L at dif-
ferent times in one period for K = 8.317. In the simulation, x/
2p = 30 kHz. The ratio of the pressure oscillation amplitude to the
average pressure, p1/pm, is 0.01. As shown in Fig. 3b, the y-direction
velocity, uy, also oscillates. uy is far less than ux. As shown in Fig. 3a,
the maximum ux across the channel at various times occurs not at
the channel center, but near the walls, which is usually called the
velocity ‘‘annular effect”. A similar y-direction velocity ‘‘annular
effect” also exists in the large K case, as shown in Fig. 3b. The ‘‘annu-
lar effect” results from the viscous stresses near the walls and the
periodic flow oscillations. The flow near the center of the channel
Fig. 3. x-direction (a) and y-direction (b) velocity distributions across a cross sec-
tion x = 0.9 L at various times during one period (p1/pm = 0.01, K = 8.317).
is slug-like for large K. When K is less than 1, the ux profile is almost
parabolic and the ‘‘annular effect” is not obvious. There is a standing
wave node locating at the channel centerline for uy, where the veloc-
ity does not vary, as shown in Fig. 3b. The profiles of uy in some cross
sections are anti-symmetric around the standing wave node. uy at
the two zygomorphic points around the standing wave node always
have the same magnitude and opposite directions.

4.2. Temperature distribution

Fig. 4 shows the temperature distributions across the cross sec-
tion x = 0.6 L at various times during one period. The simulation
parameters are: p1/pm = 0.05, K = 3.326, x/2p = 30 kHz, ks1/kf = 0.2
and ks2/kf = 1.6. Both the plate and the fluid temperatures oscillate
with the same period as that of the velocity. The temperature con-
tinuity of the fluid and the plates can be seen to be continuous at
the fluid–solid interfaces, which validates the treatment of the con-
jugate interface condition. As shown in Fig. 7, the temperature
oscillations in the two plates and the fluid are very large with obvi-
ous temperature oscillations in the plates and the fluid. The tem-
perature oscillations in the two plates are always less than that
in the fluid regardless of whether the two plates thermal conduc-
tivities are larger than that of the fluid, as shown in Fig. 4. The tem-
perature oscillations in the two plates are a function of the plates’
thermal conductivities. As shown in Fig. 4, the temperature oscilla-
tions in the upper plate with ks2/kf = 1.6 are larger than those in the
bottom plate with ks1/kf = 0.2. Obvious temperature oscillations
can be observed in the upper plate but not in the lower one. The
results show that the large plate thermal conductivity improves
the thermal diffusion.

An interesting phenomena observed in Fig. 4 is that the lowest
temperature in the bottom plate takes place not at the fluid–solid
interface but in the plate interior, such as at t = 1.375s. This phe-
nomenon is caused by the large fluid temperature oscillations
and the small bottom plate thermal conductivity. In this case, the
fluid temperature oscillations are so large that the fluid tempera-
ture can be higher than the bottom plate temperature near the bot-
tom conjugate interface. The small bottom plate thermal
conductivity reduces the thermal diffusion in the plate, so the low-
est temperature may occur inside the plate. With these phenom-
ena, heat will be transferred from the fluid to the bottom plate
even though it has a higher outer surface temperature. This phe-
nomena does not occur with small p1/pm oscillations where the
fluid temperature oscillates within a narrow range and is never
higher than that of the bottom plate.

4.3. Heat flux distribution

Fig. 5 shows the y-direction heat flux, qy, distribution across the
cross section x = 0.6 L at various times during one period. The con-
Fig. 4. Temperature distributions across a cross section x = 0.6 L at various times
during one period (p1/pm = 0.05, K = 3.326).



Fig. 5. y-direction heat flux distributions across a cross section x = 0.6 L at various
times during one period (p1/pm = 0.05, K = 3.326).
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dition in Fig. 5 corresponds to that in Fig. 4. qy oscillates with the
same period as the temperature. The distribution of qy of in the
fluid and the plates is continuous at the fluid–solid conjugate inter-
faces, which validates the method used for the fluid–solid inter-
face. The oscillations of qy vary across the cross section.
Regardless of whether the plate thermal conductivity is larger than
that of the fluid, the oscillations of qy at the conjugate interface are
higher than those in the plate and in the fluid near the conjugate
interface, as shown in Fig. 5. The qy oscillation in the fluid is very
small and nearly constant near the channel centerline. When p1/
pm is large, as shown in Fig. 5 (p1/pm = 0.05), qy is negative at times
so heat flows from the fluid to the bottom plate at times as men-
tioned in the previous section. When p1/pm is small, such as p1/
pm = 0.01, qy is always positive and the heat always flows from
the high temperature bottom plate to the upper plate. The average
qy over one period is always positive for both values of p1/pm.

4.4. Heat transfer enhancement discussion

The time and space averaged y-direction heat flux, qy,ave, on the
outer surface of the upper plate is defined as

qy;ave ¼
1
sL

Z t0þs

t0

Z L

0
qyðx;H; tÞdxdt: ð33Þ

When the fluid is not moving and both the left and right sides are
adiabatic, the y-direction heat flux, qy,cond, is the same as for pure
heat conduction. The ratio of qy,ave to the corresponding qy,cond rep-
resents the average heat transfer enhancement due to the oscillat-
ing flow relative to pure heat conduction. Fig. 6 shows how qy,ave

and qy,ave/qy,cond vary with p1/pm for p1/pm from 0.005 to 0.07 and
an oscillation frequency of 30 kHz. Both qy,ave and qy,ave/qy,cond de-
Fig. 6. qy,ave and qy,ave/qy,cond for various p1/pm (K = 3.326, ks1/kf = 0.2, ks2/kf = 1.6).
crease as p1/pm increases. When p1/pm is small, such as for p1/
pm = 0.005 in Fig. 6, qy,ave/qy,cond is about 1, which means that the
average heat transfer is about the same as that of pure heat conduc-
tion. For large p1/pm, qy,ave/qy,cond is less than 1, which means that
the oscillating flow does not enhance the heat transfer. The fluid
compressibility reduces the heat transfer when the temperature
are linear so the average heat transfer resistance increases with
increasing p1/pm.

The effect of frequency influence on the average heat transfer
was investigated for various frequencies for the oscillating flow be-
tween two one-wavelength long flat plates. Some simulation
parameters were: p1/pm = 0.01, ks1/kf = 1/12, ks2/kf = 1/2 and
h1 = h2 = 0.2 h. The two plates length, L, were adjusted to be equal
to one wavelength for the various oscillation frequencies. qy,ave/qy,-

cond is plotted versus the oscillation frequency in Fig. 7 for frequencies
from 20 to 900 kHz. The result shows that qy,ave/qy,cond increases lin-
early with the frequency. The result agrees well with the analytical
result of Vainshtein et al. (1995). For the relatively low-frequency
cases with frequency less than 100 kHz, qy,ave/qy,cond is 1 approxi-
mately so low-frequency oscillating flows do not enhance the heat
transfer. For the higher frequency cases, qy,ave/qy,cond is larger than
1 and increases rapidly with frequency. The high-frequency oscil-
lating flow markedly enhances the heat transfer. For example, qy,ave

for 900 kHz is about 30% higher than qy,cond.
The heat transfer enhancement is due to nonlinear acoustic

streaming in high-frequency flows which is a non-zero time-aver-
aged velocity. The formation of acoustic streaming structures re-
sults from the interaction between the wave field and the viscous
boundary. In low-frequency flows, the perfectly sinusoidal profile
of flow velocity is weakly distorted due to viscous and nonlinear
effects. The periodically averaged flow velocity is almost zero in
low-frequency flows and acoustic streaming cannot formed. In
the high-frequency flow, the mean flow field during one period
is shown in Fig. 8. The simulation parameters are: x/
2p = 24 kHz, p1/pm = 0.01, ks1/kf = 1/12, ks2/kf = 1/6 and K = 14.67.
Six vortices exist in the flow field. Three acoustic streaming circu-
lations are clockwise and the other three circulations are counter-
clockwise. The similar flow patterns have been reported by
Haydock and Yeomans (2001) and Aktas and Farouk (2004).
Acoustic streaming introduces an additional convective heat
transfer mode into the system, so the heat transfer can be
enhanced.

The enhancement due to acoustic streaming increases with the
acoustic streaming velocity. The periodically averaged acoustic
streaming velocity in the x-direction can be defined as

uave ¼
Ps

t¼0

P
Nh

P
NL
juðx; y; tÞj

sNhNL
; ð34Þ
Fig. 7. qy,ave/qy,cond for various frequencies (p1/pm = 0.01, ks1/kf = 1/12, ks2/kf = 1/2).



Fig. 8. Mean flow field during the 100th period in the channel.
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where NL and Nh are the node numbers in x- and y-directions. The
uave for various oscillation frequencies plotted in Fig. 9 show that
the averaged acoustic streaming velocity increases with frequency.
While the oscillating frequency is relatively low, the average acous-
tic streaming velocity is too small to markedly influence on heat
transfer while higher uave markedly enhance the heat transfer.

qy,ave and qy,ave/qy,cond are listed in Table 1 for different plate and
fluid thermal conductivities. The simulation parameters were: p1/
pm = 0.01, x/2p = 30 kHz and h1 = h2 = 0.375 h. The results show
that qy,ave is mainly determined by the fluid thermal conductivity.
When the fluid thermal conductivity is large, such as in cases 3, 5
and 6, qy,ave is much larger than for the other cases. Case 3 repre-
sents the case when ks1 is large and ks2 is small. Case 6 represents
the reverse case that the ks1 is small and ks2 is large. The fluid ther-
mal conductivity is the same in both cases. qy,ave in the two cases
are nearly the same, which means that exchanging the plate ther-
Fig. 9. uave for various frequencies (p1/pm = 0.01, ks1/kf = 1/12, ks2/kf = 1/2).

Table 1
qy,ave and qy,ave/qy,cond for various ks1/kf and ks2/kf (p1/pm = 0.01)

Case ks1/kf ks2/kf qy,ave (W/m2) qy,ave/qy,cond

1 1 1 2730.4 0.978
2 20 10 2236.9 0.968
3 2 0.1 4930.8 0.998
4 10 20 2230.5 0.966
5 0.05 0.5 5320.1 1.001
6 0.1 2 4934.2 0.998
mal conductivities has no influence on qy,ave. This characteristic can
also be understood by comparing case 2 and case 4. Although qy,ave

varies with ks1/kf and ks2/kf markedly, qy,ave/qy,cond changes very lit-
tle from 0.966 to 1.001. qy,ave in the oscillating flow is not a func-
tion of ks1/kf and ks2/kf which indicates that the oscillating flow
has little effect on the heat transfer.
5. Conclusions

The thermal lattice Boltzmann method (LBM) was used to sim-
ulate the conjugate heat transfer in high-frequency oscillating
flows between two plates with different outer surface tempera-
tures. A method was developed to accurately treat the conjugate
thermal boundary condition on the fluid–solid interface in the
thermal LBM simulations. The simulation results show that both
the temperature and heat flux distributions are continuous at the
interface.

The velocity, temperature and y-direction heat flux distribution
characteristics were analyzed for the high-frequency flow oscilla-
tions. The velocity, temperature and heat flux distributions are
oscillating with the same period. The y-direction velocity distribu-
tion profile across each cross section was anti-symmetric about a
standing wave point. With large p1/pm oscillations, the fluid tem-
perature may sometimes be higher than that of the high tempera-
ture bottom plate.

For x/2p < 100 kHz and p1/pm 6 0.01, the oscillations were lin-
ear and the average y-direction heat flux for one period was nearly
equal to that for pure heat conduction. qy,ave/qy,cond was less than 1
for large p1/pm oscillations with x/2p = 30 kHz and decreased as p1/
pm increased because the fluid compression increased the heat
transfer resistance. The plate and fluid thermal conductivities
had no influence on qy,ave/qy,cond which was about 1 for oscillations
with x/2p = 30 kHz and p1/pm 6 0.01. For high-frequency oscilla-
tions, the heat transfer was enhanced by nonlinear acoustic
streaming. qy,ave/qy,cond was greater than 1 and rapidly increased
with the frequency, which means that marked heat transfer
enhancement can be achieved with high-frequency oscillations.
For example, qy,ave increased by about 30% for oscillations with
x/2p = 900 kHz.
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