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Abstract

Micro- and nanoscale gas flows are analyzed theoretically and numerically. The analyses of gas flow similarity show that the gas flows
at different scales can be similar only when the gas is treated as a prefect gas. If the gas density is so high that the density effect cannot be
ignored, the three dimensionless parameters, Re, Ma, and Kn, which characterize the micro gas flow, are independent of each other and
cannot be equal for flows at different scales, so the similarity breaks down. The critical density for the similarity failure can be analytically
determined for each kind of gas. The analytical results were validated by numerical simulations. High density, high Knudsen number gas
flows were modeled using a generalized Monte Carlo method based on the Enskog theory which considers both the density effect on the
collision rate and the molecular repulsive and attractive interactions for a Lennard–Jones gas. The predicted transport coefficients agree
better with experimental data than previous predictions. The simulation results show that when the gas density is higher than the critical
density, the denseness effect alters the flow velocity and temperature fields from the direct simulation Monte Carlo results. Higher den-
sities lead to greater deviation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The development of high-speed flight at high altitudes
has created renewed interest in rarefied gas flows. Rarefied
gas flows differ from classical gas dynamics in that the con-
tinuum hypothesis is no longer valid; therefore, the contin-
uum hypothesis cannot be used to analyze rarefied gas
flows. Rarefied gas flows are characterized by the Knudsen
number, which is defined as the ratio of the molecular
mean free path to a characteristic geometric length or a
length over which very large variations of a macroscopic
quantity may take place,

Kn ¼ k
l
; ð1:1Þ

where k is the molecular mean free path and l is the char-
acteristic length. Flow regimes are classified based on the
Knudsen number as [1]
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� continuum flow (Kn 6 0.001),
� slip flow (0.001 < Kn < 0.1),
� transition flow (0.1 < Kn < 10),
� free molecular flow (Kn P 10).

In recent years, Micro/Nano-Electro-Mechanical Sys-
tems (MEMS/NEMS) have been rapidly developed for
important applications in navigation, spaceflight and
industry [2]. Microscale flow systems have been developed
as an important part of MEMS/NEMS [3,4]. The charac-
teristics of these microscale flows differ greatly from those
of macroscale flows. For example, at normal temperatures
and pressures, velocity slip and temperature jumps, which
are called rarefied gas effects, occur on the wall surfaces
in microchannels [1]. Rarefied gas flows and microscale
gas flows also exhibit many other similar phenomena. Pre-
vious works have shown that traditional simulation and
analysis methods used for rarefied gas flows are effective
for analyzing most microscale gas flows [5]. Various studies
have analyzed the similarities between microscale gas flows
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Nomenclature

a local sound speed (m/s)
av attraction strength in van der Waals equation

(J2/mol2 Pa)
D self-diffusion coefficient (m2/s)
Et relative translational energy (J)
k Boltzmann constant (J/K)
Kn Knudsen number
l characteristic length (m)
m molecular mass (kg)
mr reduced molecular mass (kg)
Ma Mach number
n number density (m�3)
p pressure (Pa)
r intermolecular separation (m)
R universal gas constant (J/mol K)
Re Reynolds number
T gas temperature (K)
T* dimensionless temperature: kT/e
U local mean velocity (m/s)
�vm mean molecular speed (m/s)

Greek symbols

a* scattering coefficient for a soft-sphere model
aj model parameters

v correction factor for enhanced collisions
g molecular volume ratio defined as 2pnr3/3
c specific heat ratio
f number of rotational degrees of freedom
k molecular mean free path (m)
l dynamic viscosity (kg/m s)
m kinetic viscosity (Pa s)
q density (kg/m3)
r molecular diameter (m)
rT total collision cross-section (m2)
e molecular potential well depth (J)
erot molecular rotational energy (J)
X(1,1), X(2,2) integrals for calculating the transport coef-

ficients
C(. . .) gamma function
CB scattering probability based on Boltzmann the-

ory
C0 enhanced scattering probability in a dense gas

Subscripts

c critical state
1 case 1
2 case 2
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and macroscale rarefied gas flows [1,5–7]. Gad-el-Hak [1]
also used this similarity to analyze many microchannel
flows.

Although the Knudsen number of a micro gas flow may
be of the same magnitude as that of a rarefied gas flow,
they actually come from different phenomena. In micro-
channel, large Knudsen numbers are caused by the small
characteristic length, while in rarefied gas flows, the large
Knudsen number is due to the large molecular mean free
path. Therefore, they result from different mechanisms
despite their similar phenomena. Wang and Li [8] reported
that similarity holds only if the gas can be treated as an
ideal gas. They then studied the fluid characteristics of high
Knudsen number, high density gas flow in micro- and
nanochannels with a consistent Boltzmann algorithm
(CBA) [9,10] and the Enskog simulation Monte Carlo
(ESMC) method [11]. These numerical results showed that
similarity broke down at high gas densities. However, nei-
ther the CBA nor ESMC methods are completely accurate
for these flows. The CBA method changes the gas transport
coefficients from real values at high densities. The ESMC
method is hardly able to simulate the van der Waals force
effects on the flows. Thus, a new efficient numerical method
for the high Knudsen number, high density gas flows is
urgently necessary.

This paper provides systematic analyses and simulations
of gas flows in micro- and nanoscale channels. The analyses
provide the conditions when micro/nano gas flows are sim-
ilar with rarefied gas flows. Then a Monte Carlo method is
used to provide correct predictions of high Knudsen num-
ber, high density gas flows. The characteristics of such
flows are then investigated based on the results.
2. Theoretical analysis

2.1. Similarity of perfect gas

Both micro gas flows and rarefied gas flows have three
dimensionless numbers that characterize the flows: the
Reynolds number, Re, the Mach number, Ma, and the
Knudsen number, Kn. However, these three parameters
are not independent in rarefied gas flows but are related
by [7],

Kn ¼
ffiffiffiffiffi
pc
2

r
Ma
Re

: ð2:1Þ

Several researchers have used this relationship for rare-
fied gas flows in microscale gas flow analyses [1,5,6]. How-
ever, this relationship has limited applications in micro gas
flows. Wang and Li [8] applied this relationship to micro-
scale flows to show that Eq. (2.1) is based on a relationship
between the viscosity and the mean free path. With gas
kinetic theory, when the gas molecules are treated as
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smooth rigid sphere with only a repelling force, the kinetic
viscosity can be simply related to the molecular mean free
path as

m ¼ 1

2
kvm; ð2:2Þ

where �vm is the molecular mean speed which is somewhat
higher than the sound speed a:

vm ¼

ffiffiffiffiffi
8

pc

s
a: ð2:3Þ

With this assumption for Eq. (2.2), if the gas is a perfect
gas, the three dimensionless numbers are not independent.
As a result, gas flows at different scales can be similar (if
other similarity conditions are also satisfied such as similar
geometries and boundary conditions). Therefore, for such
conditions, micro gas flows can be assumed to be similar
to rarefied gas flows. Since rarefied gas flows have been
studied extensively due to their important applications in
astronautics and aeronautics, many theories and much
experimental data can be used for micro gas flow analysis
by the similarity [8].

2.2. Similarity failure in dense gas flows

However, the perfect gas assumption does not always
hold in micro gas flows. When the gas density is high or
the temperature is low, intermolecular attractions become
significant as the denseness effect changes the gas flow char-
acteristics. According to Enskog’s theory, the gas molecu-
lar mean free path in a dense gas, k, is given by [12]:

k ¼ ½
ffiffiffi
2
p

pnvr2��1
; ð2:4Þ

where v is the enhanced collision correction factor, which is
a function of the gas density, which will be determined la-
ter. The dynamic viscosity, l0, including the density effect,
is related to l for a perfect gas by

l0 ¼ l � g½ðgvÞ�1 þ 0:8þ 0:7614ðgvÞ�; ð2:5Þ

where g = 2pnr3/3 represents the molecular volume ratio.
From classical thermodynamic theory, the sound speed in
a dense gas is enhanced by

a0 ¼ a 1þ 8gvþ 4

5
g2 8v2 þ 3

dv
dg

� �� �1=2

: ð2:6Þ

In perfect gas flow, since Kn, Ma and Re are not inde-
pendent, if two of these numbers in two flows at different
scales are equal, then the other one must also be equal.
The two flows at different scales are then similar as a result.
However, in dense gas flows this relationship does not
hold.

For convenience, assume Re and Ma are equal in the
two systems:

Re1 ¼ Re2; ð2:7Þ
and
Ma1 ¼ Ma2: ð2:8Þ
Then, from Eqs. (2.4)–(2.6),

U 1l1q1

½ðg1v1Þ
�1 þ 0:8þ 0:7614g1v1�g1

¼ U 2l2q2

½ðg2v2Þ
�1 þ 0:8þ 0:7614g2v2�g2

; ð2:9Þ

U 1ffiffiffiffiffi
T 1

p
1þ 8g1v1 þ 4

5
g2

1 8v2
1 þ 3 dv1

dg

� �h i1=2

¼ U 2ffiffiffiffiffi
T 2

p
1þ 8g2v2 þ 4

5
g2

2 8v2
2 þ 3 dv2

dg

� �h i1=2
: ð2:10Þ

The Knudsen numbers are

Kn1 ¼
k1

l1

¼ ½
ffiffiffi
2
p

pn1v1ðg1Þr2��1

l1

; ð2:11Þ

Kn2 ¼
k2

l2

¼ ½
ffiffiffi
2
p

pn2v2ðg2Þr2��1

l2

: ð2:12Þ

Dividing Eq. (2.11) by Eq. (2.12) gives

Kn1

Kn2

¼ l2g2v2

l1g1v1

: ð2:13Þ

Then from Eqs. (2.9) and (2.10):

l2

l1

¼ ½ðg2v2Þ
�1 þ 0:8þ 0:7614g2v2�g2q1U 1

½ðg1v1Þ
�1 þ 0:8þ 0:7614g1v1�g1q2U 2

; ð2:14Þ

U 1

U 2

¼
ffiffiffiffiffi
T 1

pffiffiffiffiffi
T 2

p �
1þ 8g1v1 þ 4

5
g2

1ð8v2
1 þ 3v01Þ

	 
1=2

1þ 8g2v2 þ 4
5
g2

2ð8v2
2 þ 3v02Þ

	 
1=2
: ð2:15Þ

Substituting Eqs. (2.14) and (2.15) into Eq. (2.13) leads
to

Kn1

Kn2

¼
ffiffiffiffiffi
T 1

pffiffiffiffiffi
T 2

p �
1þ 8g1v1 þ 4

5
g2

1 8v2
1 þ 3 dv1

dg

� �h i1=2

1þ 8g2v2 þ 4
5
g2

2 8v2
2 þ 3 dv2

dg

� �h i1=2

� ½1þ 0:8g2v2 þ 0:7614ðg2v2Þ
2�

½1þ 0:8g1v1 þ 0:7614ðg1v1Þ
2�
: ð2:16Þ

If the dense gas flows at different scales are similar, Kn1

should be equal to Kn2. Therefore the right hand side of
Eq. (2.16) must be equal to unity. Because of the nonlinear
nature of the right hand side of Eq. (2.16), the equation was
evaluated numerically for various conditions at T1 = T2.

The numerator and denominator of the right hand side
of Eq. (2.16) are functions of the gas number density:

f1 ¼ 1þ 8g1v1 þ
4

5
g2

1 8v2
1 þ 3

dv1

dg

� �� �1=2

� ½1þ 0:8g2v2 þ 0:7614ðg2v2Þ
2�; ð2:17Þ

f2 ¼ 1þ 8g2v2 þ
4

5
g2

2 8v2
2 þ 3

dv2

dg

� �� �1=2

� ½1þ 0:8g1v1 þ 0:7614ðg1v1Þ
2�; ð2:18Þ
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Fig. 1. Variation of the Knudsen number ratio for dense gases as represented by f as functions of the molecular densities of the two gases, g1 and g2.
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where g1,g2 2 [0, 1). Defining f as the difference between f1

and f2, if f is equal to zero, then f1 = f2 and, therefore,
Kn1 = Kn2. Fig. 1 shows the sign function of the absolute
value of f for various values of g1 and g2 which are propor-
tional to the gas densities. The result indicates that f1 = f2

(Kn1 = Kn2) only when g1 = g2. A detailed data analysis
also validated this result. Thus, the characteristic lengths
must be the same if the two dense gas flows are similar.
If g1 6¼ g2 (namely l1 6¼ l2), Kn1 6¼ Kn2. Therefore, the three
dimensionless parameters in dense gas flows at different
scales cannot be equal, and the two flows cannot be similar.

The high gas density affects the gas characteristics such
as the viscosity and the sound speed which then affect the
dimensionless parameters. Therefore, a critical density
can be specified so that for densities below this critical den-
sity, the perfect gas assumption and the similarity between
gas flows holds. The critical density can be calculated based
on Eqs. (2.4)–(2.6) for a specified deviation of 5%. For
nitrogen gas as an example, the critical density for the per-
fect gas assumption is
Table 1
Critical densities for various gases

Gas type qc/q0 Gas type qc/q0

SO2 2.72 NO 5.33
CO2 3.49 NH3 5.47
CH4 3.81 O2 5.51
N2O 3.82 Ar 5.58
N2 4.47 H2 8.53
Air 4.71 Ne 10.27
CO 4.82 He 13.04

The molecular parameters were taken from Hirschfelder et al. (1954 Table.
8.4-1).
qc � 4:5q0; ð2:19Þ

where q0 is the density at standard state using the gas
parameters in Hirschfelder et al. [13]. Eq. (2.19) indicates
the denseness effect must be considered when the micro-
scale flow density is larger than 4.5 times the standard state
density. Critical values for several often gases are listed in
Table 1. The results show that larger molecular diameter
leads to a smaller critical density with (SO2) having a crit-
ical density less than three times the standard state density,
while the value for (He) is larger than 13 times the standard
state density.

3. Numerical simulations

Numerical simulations were performed to validate the
theoretical analyses. A hard sphere model of the direct sim-
ulation Monte Carlo (DSMC) method was used to verify
the similarity of gas flows that are perfect gases. For the
high density, high Knudsen number gas flows, we used a
new Monte Carlo method, generalized Enskog Monte Car-
lo (GEMC), to simulate the dense gas flows in micro- and
nanochannels.

3.1. Direct simulation Monte Carlo method

The DSMC method is a molecular-based statistical sim-
ulation method for rarefied gas flows introduced by Bird
[14]. The method numerically solves the dynamic equations
for the gas flow using thousands of simulated molecules.
Each simulated molecule represents a large number of real
molecules. Assuming molecular chaos and a rarefied gas,
only binary collisions need be considered, so the molecular
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motion and the collisions are uncoupled if the computa-
tional time step is smaller than the physical collision time.
Interactions with boundaries and with other molecules
conserve both momentum and energy. The macroscopic
flow characteristics are obtained by statistically sampling
the molecular properties in each cell. At the beginning of
the calculation, the simulated particles are uniformly dis-
tributed in the cells. In each time step, all particles move
according to their individual velocities, interact with the
boundaries and are then indexed. A number of collision
pairs are selected in each cell using the no-time-counter
(NTC) method for the collision calculations. These steps
are repeated with increased sample sizes until the statistical
errors are small. The DSMC method can simulate non-
equilibrium and unsteady gas flows. A steady-state flow
field is obtained with a sufficiently long simulation time.

The variable hard sphere (VHS) model [14] incorporates
the hard sphere scattering law for collisions and treats the
molecular cross-sections as functions of the relative trans-
lational energy during the collision. In the VHS model,
the gas molecules are actually treated as hard spheres with
only a repelling force, which is consistent with the perfect
gas assumption. The time step used in DSMC method
should be less than the mean collision time and the cell
(or subcell) size should be less than the mean free path in
the simulated situation. Violation of this condition may
produce solutions that are not physically realistic [15–17].

The wall temperature was all assumed to be equal.
When the simulated particle collides with the wall, the dif-
fuse reflection model is used to determine the reflection. In
this model, the emission of molecules impinging on the wall
is not correlated with the pre-impingement state of the mol-
ecules. The outgoing velocity is randomly assigned accord-
ing to a half-range Maxwellian distribution determined by
the wall temperature. This is also known as the full thermal
and momentum accommodation method [18,19]. We use
freestream boundary conditions at both inlet and outlet
of a channel [14,20].

3.2. Generalized Enskog Monte Carlo method

Dense gas flows have two distinctive characteristics that
require a different type of analysis from rarefied gas flows:
the collisions are much more frequent and the van der
Waals force cannot be ignored. Alexander et al. [21] devel-
oped a consistent Boltzmann algorithm (CBA) to expand
the DSMC method to dense gases and even liquids by
introducing an additional displacement after the molecular
collisions. This modification adapts the gas properties
described by the van der Waals equation instead of by
the equation of state (EOS) for a perfect gas. This method
has been applied to model gas–liquid interface characteris-
tics [22], and micro and nanoscale non-ideal gas flows
[9,10]. However, the additional displacement changed not
only the EOS but also the gas transport characteristics.
As a result, when the ratio of the gas molecular volume
to the whole volume is relatively high, the gas transport
characteristics become unrealistic and the predictions fail
[23–25,11].

Other method was developed based on Enskog dense
gas theory. Enskog developed the Enskog equation (EE)
for hard spheres to incorporate finite-density effects. His
two significant changes were the finite distance between
the centers of a colliding pair and the increased collision
frequency due to excluded volume effects [26]. Montanero
et al. [27–29] then developed an Enskog simulation Monte
Carlo (ESMC) method which extended Bird’s DSMC for a
hard sphere fluid at finite densities. However, the ESMC
methods did not include attractive interactions between
molecules, therefore, the transport properties predicted
by the ESMC methods did not agree well with the experi-
mental data or the theoretical values [11].

This paper uses a generalized Enskog Monte Carlo
method (GEMC) developed by Wang and Li [30]. The
method employs the Lennard–Jones (L–J) potential
between molecules with a generalized collision model intro-
duced into the Monte Carlo method. The method also con-
siders the finite-density effects on the molecular collision
rate and transport properties to obtain an equation of state
for non-ideal gases. The resulted transport properties agree
better with experimental data and theoretical values than
previous methods for dense gas flow predictions. The main
idea is described as follows and the details can be found in
Ref. [30].

In actual gases the force between two molecules is repul-
sive at small distances and weakly attractive at larger dis-
tances. This behavior is most simply described by the
Lennard–Jones (6–12) potential [12]

uðrÞ ¼ 4e
r
r

� �12

� r
r

� �6
� �

; ð3:1Þ
where r denotes the low-velocity diameter and e is the
depth of the potential well, which are constants character-
istic of the chemical species of the colliding molecules, and
r is the intermolecular separation. This potential has been
found to be adequate for a number of nonpolar molecules.
Many efforts have been made to establish collision models
to include the Lennard–Jones potential in the molecular
interaction process [31,32]. These models have defined the
total collision cross-section as

rT

r2
¼
X

aj
Et

e

� ��xj

; ð3:2Þ
where rT is the total collision cross-section, Et denotes the
relative translational energy, the parameters xj are related
to the Lennard–Jones potential [31], and aj are determined
from the transport property data, depending on whether
the interaction is between like or unlike molecules. The
coefficients of viscosity and self-diffusion of a simple gas,
to the first approximation, are expressed as functions of
temperature by [12]
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l ¼ 5

16

pmkTð Þ1=2

pr2Xð2;2Þ
�

 !
; ð3:3Þ

D ¼ 3

16

2pkT=mrð Þ1=2

npr2Xð1;1Þ
�

 !
; ð3:4Þ

where m is the particle mass, k is the Boltzmann constant, n

is the number density and Xð1;1Þ
�

and Xð2;2Þ
�

are integrals for
calculating the transport coefficients for the Lennard–Jones
potential [13]. For a L–J gas model with a total collision
cross-section given by Eq. (3.1), the self-diffusion and vis-
cosity integrals are
Fig. 2. Viscosities predicted by the present method co
Xð1;1Þ
�
¼ 1

pða� þ 1Þ
X

ajCð3� xjÞT�xj
� ; ð3:5Þ

Xð2;2Þ
�
¼ a�

pða� þ 1Þða� þ 2Þ
X

ajCð4� xjÞT�xj
� ; ð3:6Þ

where a* denotes the scattering coefficient for a soft-sphere
model, T* = kT/e, and C(. . .) denotes the gamma function.
These parameters can be determined by numerical fitting
using the data of Xð2;2Þ

�
tabulated in, Table I–M of Hirschf-

elder et al. [13]. Such a significant job has been found in the
GSS model [32,33]. We are here employing Fan’s results of
the parameter values: a1 = 3.962, a2 = 4.558, x1 = 0.133,
mpared with experimental data and other models.



Fig. 3. Schematic of the physical problem.

Table 2
Properties of N2

m (kg) f dref (m) Tref x

4.65 � 10�26 2 4.17 � 10�10 273 0.74

m is the gas molecular mass, f is the number of internal degrees of free-
dom, dref is the reference molecular diameter, Tref is the reference tem-
perature and x is the viscosity temperature index.

Table 3
Simulation conditions for subsonic channel flow (Kn = 1, Ma = 0.57,
T1 = 300 K, Tw = 300 K)

Case H (m) n1 Ntotal Nsample

1 1 1.29 � 1018 101,133 1,011,050
2 1 � 10�3 1.29 � 1021 101,253 1,005,050
3 1 � 10�6 1.29 � 1024 101,552 1,010,050
4 1 � 10�8 1.29 � 1026 101,329 1,010,050

H is the height of the computational domain, n1 is the gas molecular
number density of the inlet flow, Ntotal represents the total number of
simulated particles and Nsample is the number of time steps.
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x2 = 1.25 and a* = 1.5. These values are generally suitable
for simple nonpolar gases.

Based on the Enskog equation for dense gases [26], when
a gas is so dense that the covolume of the molecules is com-
parable with the total system volume, the molecules can no
longer be treated as point particles. Therefore, the common
position of two colliding molecules in the Boltzmann equa-
tion should be replaced by the actual positions of the cen-
ters of two tangent spheres. The collision frequency is
influenced by corelational effects that depend on the density
at the point of contact.

A modified higher scattering probability due to the
reduced volume occupied by the molecules is

C0 ¼ ð1� 4npr3=3ÞCB: ð3:7Þ
However, the scattering probability is lowered again by

the particles screening each other. A particle might not be
available for scattering with another particle because there
might be a third particle in between. This effect leads to a
reduction of the scattering probability by a factor
(1 � 11npr3/12). With this factor, the modified scattering
probability is

C0 ¼ v � CB; ð3:8Þ
where vðgÞ ¼ 1�11g=8

1�2g .
This result can, however, be trusted for low orders of n,

since four particle configurations have not been considered.
The expression up to third order is [26]

vðgÞ ¼ 1þ 0:625gþ 0:2869g2 þ 0:1103g3: ð3:9Þ
In the standard Enskog theory, the pressure in a dense

gas is

p ¼ knT ½1þ gv�: ð3:10Þ
However, Enskog preferred a different procedure based

on the close relation between (g � v) and the compressibil-
ity. He observed that, if the hard sphere molecules are sur-
rounded by weak attractive fields of force, the equation of
state would be modified to the following form

p þ avq
2 ¼ knT ½1þ gv�; ð3:11Þ

where av denotes the strength of the attraction, which is
independent of the temperature and dependent on the gas
properties [34]

av ¼
27

64

R2T 2
c

pc

; ð3:12Þ

where R denotes the gas constant, Tc the critical tempera-
ture, and pc the critical pressure.

Thus GEMC method solves the Enskog equation for a
dense gas statistically while keeping the gas transport prop-
erties in good agreement with experimental data. The
transport coefficient viscosity from this method is com-
pared with predictions from other methods and experimen-
tal data [13] in Fig. 2a which shows the viscosity changes
with temperature at low or moderate gas densities. The
GEMC method gives much better agreement with experi-
mental data at both lower and higher temperatures than
the Boltzmann theory or the viscosity–temperature power
law used in the variable hard sphere (VHS) model in the
DSMC or ESMC methods. The viscosity changes with den-
sity below 150 � 105 Pa pressures are shown in Fig. 2b. The
GEMC predictions agrees well with the experimental data
and the Enskog theory, while the CBA and DSMC meth-
ods deviate from the experimental data at high gas densi-
ties. Therefore, the GEMC method gives the best
agreements with experimental data over a large of temper-
atures and densities.
4. Simulation results and discussion

4.1. Similarity of perfect gas flows

When a gas is treated as a perfect gas, flows at different
scales will be similar. This analytical result was numerically
validated by the DSMC simulations in the variable hard
sphere model.

The physical model is shown in Fig. 3. The channel
aspect ratio was set to 5 for all cases. The computational
grid contained rectangular cells (100 � 60) with four sub-
cells (2 � 2) per cell. The working fluid was nitrogen with
the properties listed in Table 2. Table 3 lists the conditions
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for the four subsonic channel flows. The channel height, H,
was varied from one meter to ten nanometers. The free-
stream temperature, T1, as well as the temperatures of
both walls, were set at 300 K. The Knudsen number and
Mach number of the incoming gas flow were unity and
0.57 for all cases. Over 105 molecules were used in each
simulation with over 106 times steps for each case.

The temperature and x-direction velocity profiles at the
inlet and outlet are compared in Figs. 4 and 5 for the four
cases. The macroscale rarefied gas flow and the microscale
dense gas flow both have the same velocity slips and tem-
perature jumps as long as the Knudsen numbers are equal.
The velocity and temperature profiles were also almost the
Fig. 4. Inlet and outlet x-direction velocit
same for the different scales with the differences in the
curves caused by statistical fluctuations.

4.2. Denseness effects

Table 4 lists the conditions for the three cases used to
study the effect of gas density on the subsonic flow in
micro- and nanochannels. The aspect ratio, L/H, was 5.0
for all three cases with uniform rectangular cells
(100 � 60) used in the analysis. The freestream velocity,
u1, and the temperature, T1, were imposed as the bound-
ary conditions at the inlet. The temperatures of both walls
were the same as the freestream gas temperature.
y profiles at Kn = 1.0 and Ma = 0.57.



Fig. 5. Inlet and outlet temperature profiles at Kn = 1.0 and Ma = 0.57.

Table 4
Simulation conditions for density effect (Kn = 0.05, u1 = 200 m/s,
T1 = 300 K, Tw = 300 K)

Cases H (lm) n1 qc/q0 Ntotal Nsample

1 1 2.59 � 1025 1.186 57,042 500,000
2 0.1 2.59 � 1026 11.88 57,117 301,050
3 0.01 2.59 � 1027 118.7 99,687 257,050
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Figs. 6 and 7 show the GEMC results for the velocity
and temperature profiles at the inlet and outlet for various
channel sizes and Kn = 0.05. For comparison, the DSMC
results with the perfect gas assumption are also plotted in
the figures. The results show that when the gas density is
not high (case 1, qc/q0 = 1.186 < 4.5), the GEMC results
almost overlap the DSMC results with the fluctuations in
the profiles coming from statistical variations. When the
gas density is moderately high (case 2, qc/
q0 = 11.88 > 4.5), the perfect gas assumption breaks down
and the GEMC results begin depart from the DSMC
results. As the density increases (case 3, qc/q0 = 118.7),
the deviations between the GEMC results and the DSMC
results increases significantly. Note that the abnormal tem-
perature distributions near the wall surfaces predicted by
the CBA method do not occur [9]. These results indicate
that when the density is larger than the critical density,
qc, the denseness effect on the flow and heat transfer char-
acteristics must be considered.
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Fig. 6. Inlet and outlet velocity distributions for Kn = 0.05.
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5. Conclusions

The theoretical and numerical analyses of micro- and
nanoscale gas flows show that

(1) Microscale gas flows will be similar to normal-scale
rarefied gas flows only when the gas is a perfect gas.
When the gas is so dense that the density affects the
gas characteristics, then the three dimensionless
parameters are independent of each other, and the
dimensionless parameters for the two different scale
flows cannot be equal, meaning that the two flows
cannot be similar.
(2) The critical densities for which similarity fails were
determined analytically with different gases having
different critical densities. A large molecular diameter
leads to a smaller critical density. For the most com-
monly used gases, nitrogen and air, the critical densi-
ties are both about five times that of the standard
state using the molecular parameters in Hirschfelder
et al.’s book.

(3) The analytical results were validated by numerical
calculations. The dense gas flow was properly simu-
lated using a generalized Enkog Monte Carlo
(GEMC) method which considers both the high den-
sity effect on the collision rate and the molecular
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Fig. 7. Inlet and outlet temperature distributions for Kn = 0.05.
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repulsive and attractive interactions for a Lennard–
Jones fluid. The predicted transport coefficients agree
better with experimental data than the previous meth-
ods. The simulation results show that when the gas
density is higher than the critical density, the velocity
and temperature fields differ from the predictions of
the DSMC method with large differences at very high
densities.
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