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Electrokinetic Transport in Microchannels with
Random Roughness

Moran Wang* and Qinjun Kang

Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, New Mexico 87545

We present a numerical framework to model the electro-
kinetic transport in microchannels with random rough-
ness. The three-dimensional microstructure of the rough
channel is generated by a random generation-growth
method with three statistical parameters to control the
number density, the total volume fraction, and the ani-
sotropy characteristics of roughness elements. The gov-
erning equations for the electrokinetic transport are
solved by a high-efficiency lattice Poisson-Boltzmann
method in complex geometries. The effects from the
geometric characteristics of roughness on the electroki-
netic transport in microchannels are therefore modeled
and analyzed. For a given total roughness volume fraction,
a higher number density leads to a lower fluctuation
because of the random factors. The electroosmotic flow
rate increases with the roughness number density nearly
logarithmically for a given volume fraction of roughness
but decreases with the volume fraction for a given rough-
ness number density. When both the volume fraction and
the number density of roughness are given, the electroos-
motic flow rate is enhanced by the increase of the
characteristic length along the external electric field
direction but is reduced by that in the direction across
the channel. For a given microstructure of the rough
microchannel, the electroosmotic flow rate decreases with
the Debye length. It is found that the shape resistance of
roughness is responsible for the flow rate reduction in the
rough channel compared to the smooth channel even for
very thin double layers, and hence plays an important role
in microchannel electroosmotic flows.

When the characteristic length scale of a system is down to
micro- or nanometers, the interfacial phenomena become very
important.1,2 The electrokinetic transport, as a classical interfacial
phenomenon discovered more than 200 years ago, now plays a
fundamental role for a better understanding of liquid flow
mechanism through microchannels,3 and hence for optimal design
and operation of microsystems, such as Laboratory-on-a-chip
devices4,5 and micro fuel cells.6-8 In the mean time, electrokinetic
flow has become one of the most important non-mechanical

actuating techniques in microfluidics, widely used for pumping,9-12

mixing,13-15 and separating,16 and so on, because of its excellent
scalability, low dispersion, and ease of control.4,10,13,17 Therefore,
analysis and modeling of electrokinetic transport in microchannels
have recently received a lot of attention.18-25

Almost all surfaces have certain degree of roughness, either
incurred during fabrication process or because of the adsorption/
adhesion of other species such as macromolecules. Although it
is well-known that the electrokinetic flow is sensitive to the surface
properties,26 little attention has been paid to the effects of surface
roughness on electrokinetic transport because of its complexity,
especially for random roughness in microchannels.27

Dukhin and Derjaguin28 may be the first ones who performed
systematic theoretical studies on roughness effects on electroki-
netic flows. They introduced two critical length scales to charac-
terize the problem: the Debye length, which is defined as the
thickness of the electrical double layer, and the characteristic
length of surface roughness. For a thin double layer case where
the Debye length is much smaller than the surface roughness
height, the electroosmotic flow near the concave-convex portion
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of the rough surface is essentially the same as that near a smooth
surface, and the Smoluchowski equation is therefore valid. In this
case, the electroosmotic flow in a rough channel can thus be
predicted by the standard linear models. When the Debye length
is comparable to the roughness height, the linearized models fail
to describe the electrokinetic transport. Especially when the
Debye length is much larger than the roughness size, the effective
charge density on the rough surfaces may be higher than that on
the corresponding smooth surfaces because of the increased area
caused by the roughness.26

Thanks to the rapid development of computer and computa-
tional techniques, a few numerical approaches have been applied
to modeling and predicting the electrokinetic transport in rough
microchannels. Hu et al.29-31 studied the electroosmotic flow in
microchannels with three-dimensional (3D) rectangular roughness
elements using a finite-volume-based numerical model within a
thin Debye length limit. Finite element method and analysis have
been employed as well to investigate the electroosmotic flow in
microchannels with two-dimensional sinusoidal roughness.32,33

Recently, a lattice Poisson-Boltzmann method (LPBM) has been
proposed as an efficient solver for the strongly nonlinear equations
governing electrokinetic flows in microchannels24 and has been
used to investigate the two-dimensional rectangular roughness
and cavitation effects.34 Up to now the electrokinetic flows in
microchannels with random roughness have never been studied
to the best knowledge of the authors.

There are two challenges to model the electrokinetic flows in
microchannels with random roughness. The first one is how to
describe the complex geometries of random roughness in micro-
channels. In most cases the roughness in a real microchannel
caused by manufacture or macromolecule adsorption is uncontrol-
lable, which means that the roughness geometry features, such
as position, shape, and size, are irregular and random. Since the
electrokinetic flows are sensitive to surface characteristics, any
imitation with regular geometry for roughness may lead to
inaccurate predictions and analysis for a real system. However
there is not yet an effective way in the existing literature for
digitalizing the complex geometries of random roughness in
microchannels. Second, solving the governing equations efficiently
for electrokinetic flow in complex geometries is formidable. The
coupled electrostatic, hydrodynamic, and mass transport problem
subject to complex geometrical boundary conditions represented
by the solid-liquid interface in randomly rough channels requires
huge or even unacceptable computational resources for the
traditional partial differential equation (PDE) solvers, such as the
finite difference method (FDM) and the finite element method
(FEM). The difficulty mainly comes from two aspects: the strong
nonlinearity of the governing equations and the irregularity of the
random structures. The former may cause the classical PDE
solvers to be unstable or even disconvergent, while the latter will
lead to a requirement for extreme grid refinements in the

computational domain especially near the roughness. This com-
putational difficulty in traditional PDE solvers thus has limited
modeling and analysis of electrokinetic flow to very simple
geometries.

Facing these challenges, we are aiming to (1) build up a
numerical framework for modeling electrokinetic transport in
microchannels with random roughness; (2) analyze the effects of
roughness geometry on the electrodynamic and hydrodynamic
transport in microchannels. The results will be compared with
the existing theoretical analysis and/or numerical data.

MATHEMATICAL MODELS
Consider an N-component Newtonian electrolyte flowing with

a velocity u(r,t) in microchannels with no polarization or chemical
reactions. Let ψ(r,t) be the electric potential prevailing within the
solution where r is the position vector. The flux Ji of the ith ion
species, composing the solute, is given by the following
constitutive equation:26,35

where ni is the number density of the ith ion species, zi the ith
ion algebraic valence, e the absolute charge of electron, Di the
ion’s diffusivity, k the Boltzmann constant, and T the absolute
temperature. The ionic flux Ji and the concentration ni obey
the equation

For an incompressible laminar electroosmotic flow, the move-
ment of fluid is governed by the continuity and momentum
equations:

where F is the fluid density, and µ the dynamic fluid viscosity. F
can be any kind of body force but here we only consider the
driving force from the electric field. In general, the electric force
in electrokinetic fluids may include the Lorentz force associated
with an external applied electric field, the force caused by the
electromagnetic susceptibility, and the intermolecular electric
attraction.24 In the present contribution, we consider the very slow
quasi-steady-state- electrokinetic flow in microchannels so that all
other electromagnetic forces are negligible compared to the static
electric force. Therefore the driving force is simplified as

where Fe is the net charge density and E is the electric field
strength vector. The net charge density Fe can be expressed
as

The electric potential distribution is governed by the Poisson
equation

(29) Hu, Y. D.; Werner, C.; Li, D. Q. Anal. Chem. 2003, 75, 5747–5758.
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(34) Wang, M. R.; Wang, J. K.; Chen, S. Y. J. Comput. Phys. 2007, 226, 836–

851. (35) Lichtner, P. C. Mater. Res. Soc. Symp. Proc. 1995, 353, 117–130.
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where εr is the dimensionless fluid dielectric constant and ε0

the permittivity of a vacuum.
Equations 2-7 are the governing equations for electroosmosis

in microchannels and can be solved subject to the following
boundary conditions on the liquid-solid interface Ω

where v is the outer normal to Ω, and � the zeta potential.
When the ionic convection is negligible and the electric

potential field is continuously derivable, eq 2 has a simple steady-
state solution for dilute electrolyte solutions in which the ionic
concentration ni falls into the Boltzmann distribution:

where ni,∞ is the bulk ionic number density. Substituting eq
11 into eq 7 yields the famous nonlinear Poisson-Boltzmann
equation for electrokinetic flows:36

The present contribution solves the governing equations (3-6,
11, 12) subject to the boundary conditions eqs 8-10 by the
numerical methods described in the next section.

NUMERICAL METHODS
This section describes the numerical methods used to simulate

electrokinetic flows in microchannels with random roughness,
including a reproduction algorithm for 3D random roughness
microstructures and a mesoscopic PDE solver for the multiphysi-
cal transport equations, the lattice Poisson-Boltzmann method.

Reproduction of Random Roughness in 3D Microchan-
nels. The geometric characteristics of random roughness in
microchannels are very complicated. Although the geometric
details of each roughness element, such as shape, size, and
connections, are quite random in a real microchannel, people can
still measure and summarize essential statistical information of
morphology and then generate an equivalent structure on a
computer. The macroscopic statistical information of random
roughness may include the following: the roughness position
distribution, the roughness elements’ shape and size, the anisot-
ropy of roughness elements, and so on. The reproduced rough-
ness microstructure may not have to be identical with the real
one in every detail but should include the same main statistical
macroscopic structure characteristics.

Description of Algorithm. No references have been found to
reproduce the random roughness in microchannels because of
its complexity. Our objective is to digitalize the rough channel
geometry into a reasonable grid set. Inspired by the random

generation-growth method for constructing random microstruc-
tures of porous media,37,38 we develop a new method to reproduce
microstructures of random roughness on upper and lower smooth
walls in a 3D microchannel.

The main idea is to reproduce the rough microchannel
geometry in a 3D digital grid matrix, with 0 representing the fluid
and 1 the solid on each node. The initial state is a smooth straight
channel, whose grid matrix is composed of all zeros (0) except
the top and bottom walls. The roughness geometry is then
reproduced by the random generation growth model described
below.

(i) Randomly locate seeds of roughness elements on the upper
and lower wall surfaces based on a roughness distribution
probability, sd. The value of sd cannot be greater than the total
volume fraction of roughness, VR, defined as the ratio of the
total volume of roughness elements to the fluid volume for the
original smooth channel. Each cell of both walls is assigned a
random number by a uniform distribution function within (0,
1). The cell whose random number is no greater than sd will
be chosen as a roughness element seed;

(ii) Grow every cell of the existing roughness elements to its
neighboring fluid cells along its six possible directions (front, back,
left, right, up and down) based on a given directional growth
probability, Dj, where j represents the direction. Again for each
neighboring cell, a new random number will be assigned and
the one whose random number is no greater than Dj, will
become part of roughness. If the neighboring cell is already
part of wall or roughness, it will remain in its state.

(iii) Repeat the growth process of (ii) until the total volume
fraction of roughness elements reaches the given value VR.

Thus the generated microstructure is controlled by the three
statistical parameters, sd, Dj and VR.

Discussion on Parameters. The roughness distribution prob-
ability, sd, defined as the probability of a cell/grid on the walls
to become a seed of roughness, is strongly related to the
number density of roughness elements. For a given total
roughness volume fraction VR, the number density of rough-
ness elements nR is related to sd as follows:

where Nwall and Awall denote the total cell number and area of
each wall, respectively. The average volume of each roughness
element V̄r_e is

with V0 representing the volume of the original smooth channel
and V0VR the total volume of the roughness elements.

The value of sd also controls the degree of structure details
for a given volume fraction of roughness and grid systems. A
smaller sd is required for a finer description of the microstruc-
tures, including shape and connections of the roughness
elements.

The directional growth probability Dj, defined as the prob-
ability of a neighboring cell in the j-th direction to become a
part of roughness elements, controls the degree of anisotropy.

(36) Honig, B.; A, N. Science 1995, 268, 1144–1149.

(37) Wang, M. R.; Wang, J. K.; Pan, N.; Chen, S. Y. Phys. Rev. E 2007, 75,
036702.

(38) Wang, M.; Chen, S. J. Colloid Interface Sci. 2007, 314, 264–273.
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Different from those for porous media,38 there are only six
growth directions (front, back, left, right, up and down) for
roughness elements because any roughness cell has to be
connected with other solid cells rather than stay isolated. We
can obtain an “isotropic” structure of roughness elements by
assigning each directional growth probability the same value.
The so-called isotropic structure for a single roughness element
is a half-spherical structure in statistics. We can vary the
anisotropy of roughness structures by changing the ratio (not
the absolute value) of the growth probabilities for different
directions. Half-elliptical structures will be generated if the ratio
Dx:Dy:Dz does not equal unit, and the ratio of the mean radius
(R̄j) is proportional to that of the square root of the growth
probability: R̄x:R̄y:R̄z ) �Dx:�Dy:�Dz.

Examples. To show the roughness shape changing with the
directional growth probability, we first generate one single
roughness element in the channel by placing only one seed on
the center of the lower wall. Figure 1a-c shows three generated
3D geometries of one single roughness element on a grid system
of 60 × 60 × 60. The seed position is at the center of the lower
wall. The stochastic characteristics of structures are depicted quite
realistically in the figures. Figure 1a shows a half-sphere-like
structure since the growth probabilities in all directions into the
fluid are equal. The structure is therefore statistically isotropic
from its seed position, which is the center of the half-sphere.

Anisotropic structures are demonstrated in Figure 1b,c by chang-
ing the growth probability ratios. Half-ellipse-like structures are
generated. When the growth probability in the z direction is four
times of that in the other two directions, the z-directional mean
radius is approximately two times of that in the other two
directions, as shown in Figure 1b. The z-directional mean radius
is half of that in the x- and y-directions if its growth probability is
a quarter of the other ones (see Figure 1c). These results confirm
that the characteristic length in each direction is proportional to
the square root of its growth probability.

Panels d and f of Figure 1 show the effects of the roughness
distribution probability and the roughness volume fraction on the
geometries and connections in the rough microchannels. The
roughness elements are supposed to be isotropic statistically.
The 60 × 60 × 60 grid is used and the locations of the x-z cross
section profiles are randomly chosen. Comparisons between
panels d and e of Figure 1 indicate that a larger roughness
distribution probability leads to more roughness elements with a
smaller averaged roughness element size for the same roughness
volume fraction. A larger total roughness volume fraction results
in larger roughness size and greater roughness connections
according to Figure 1d,f.

Lattice Poisson-Boltzmann Method. After the rough chan-
nel is generated, the set of coupled hydrodynamic and electro-
dynamic governing equations for the electrokinetic flows subject

Figure 1. Generated 3D geometries for different parameters. Panels a-c show the single roughness element cases at the center of the lower
wall at VR ) 0.05 where (a) Dx:Dy:Dz ) 1:1:1; (b) Dx:Dy:Dz ) 1:1:4; (c) Dx:Dy:Dz ) 4:4:1. Panels d-f show the random roughness in 3D and x-z
cross sections for different parameters: (d) sd ) 0.03 and VR ) 0.06; (e) sd ) 0.01 and VR ) 0.06; (f) sd ) 0.03 and VR ) 0.1.
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to the appropriate boundary conditions will be solved by the
LPBM. This method combines an electric potential evolution
method on discrete lattices to solve the nonlinear Poisson equation
(lattice Poisson method) with a density evolution method on the
same set of discrete lattices to solve the Boltzmann-BGK equation
(lattice Boltzmann method).24 The equations are only solved in
the liquid phase, and the solid phase is silent and charged
homogeneously on the surfaces.

Evolution Equations. Unlike conventional computational meth-
ods based on macroscopic continuum equations, the lattice
Boltzmann method (LBM) employs the mesoscopic Boltzmann
equation to determine macroscopic transport dynamics, and solves
the governing equations by tracking distribution functions of
particle packets on lattices.39 For laminar flows driven by an
external force, the Boltzmann-BGK equation with an external force
term, F, is

where f ≡ f(x,�,t) is the single particle distribution function in the
phase space (x,�), � the microscopic velocity, τ the relaxation time,
f eq the Maxwell-Boltzmann equilibrium distribution, and F the
external force term which has the following form

where G is the external force per unit mass,40 u the fluid
macroscopic velocity vector, and c the lattice speed for mass
transfer defined as δx/δt with δx representing the lattice
constant (grid size) and δt the time step.

The discrete density evolution equation can be written as

where eR denote the discrete velocities and for a 3D nineteen-
speed (D3Q19) system,

and τν the dimensionless relaxation time which is a function
of the fluid viscosity,

with ν representing the kinetic viscosity.
For the D3Q19 model, the density equilibrium distribution f Req

takes the following form

with

The external force in the discrete evolution equation is

The macroscopic density and velocity can be calculated using

To solve the Poisson equation with strong nonlinearity, eq 12,
we employ another evolution method on the same grid system,
the lattice Poisson method (LPM),24,41 by tracking the electric
potential distribution transporting on the discrete lattices. First
we extend eq 12 into a time-dependent form

with gs )[1/(εε0)]∑izieni,∞ exp{[-zie/(kbT)]ψ}. Thus, the Pois-
son equation becomes a Navier-Stokes type PDE with a source
term gs and can be solved numerically by another set of lattice
evolution method equations. Because the source term is
extremely large near the boundaries, the popular 3D fifteen-
speed model (D3Q15) is not stable. We adopt the following
discrete evolution equation in the D3Q19 model for electric
potential distribution24,41

where the equilibrium distribution of the electric potential evolu-
tion variable g is

The time step for the electric potential evolution is

where cg is the lattice speed for the electric potential propaga-
tion.41 The dimensionless relaxation time is

It has been proved that cg can be any positive number as
long as the value of τg is within 0.5 and 2.41,42 After evolving on
the discrete lattices, the macroscopic electric potential can be
calculated using

(39) Chen, S.; Doolen, G. D. Annu. Rev. Fluid Mech. 1998, 30, 329–364.
(40) He, X.; Chen, S.; Doolen, G. D. J. Comput. Phys. 1998, 146, 282–300.

(41) Wang, J. K.; Wang, M.; Li, Z. X. Commun. Nonlinear Sci. Numer. Simul.
2008, 13, 575–583.

(42) Wang, J. K.; Wang, M.; Li, Z. X. Int. J. Therm. Sci. 2007, 46, 228–234.

Df
Dt
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c2 f eq (15)
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[fR(r, t) - f R
eq(r, t)] + δtFR

(16)
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f R
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eR·u
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fa (23)
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∂ψ
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) ∇ 2ψ + gs(r, ψ, t) (25)
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τg
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)δt,gωRgrhs (26)
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Such an evolution equation for the electric potential distribu-
tion, eq 26, is valid for both steady flows and unsteady flows at
very low velocities because the electromagnetic susceptibility
effect is neglected. Although the lattice evolution method for the
nonlinear Poisson equation is not as efficient as the multigrid
solutions for simple geometries because of its long wavelength
limit, it is more suitable for parallel computing and for geometrical
complexity.43,44

Boundary Condition Treatments. The boundary condition
implementations are critical to the accuracy of the numerical
simulations. The hydrodynamic boundary conditions for the LBM
have been studied extensively.45-48 The conventional bounce-back
rule is the most commonly used method to treat the velocity
boundary condition at the solid-fluid interface because of its easy
implementation, where momentum from an incoming fluid particle
is simply bounced back in the opposite direction as it hits the
wall.39 However, the conventional bounce-back rule has two main
disadvantages. First, it requires the dimensionless relaxation time
strictly within the range of (0.5, 2), otherwise the prediction will
deviate from the correct result.45 Second, the non-slip boundary
implemented by the conventional bounce-back rule is not exactly
located at the boundary nodes, which will lead to inconsistencies
when the LBM is coupled with other PDE solvers on the same
grid set.48 To overcome the inconsistencies between the LBM
and other PDE solvers on the same grid set, one can replace the
bounce-back rule with another “non-slip” boundary treatment, such
as the one proposed by Inamuro et al.,46 with the cost of losing
the easy implementation for complicated geometries. An alterna-
tive solution is to modify the boundary condition treatments of
the PDE solver for the electric potential distribution to be
consistent with the LBM with the conventional bounce-back rule.

In this contribution, the bounce-back rule for the non-
equilibrium distribution proposed by Zou and He47 is extended
to both hydrodynamic and electrodynamic boundary treatments
to deal with the complex geometries of random roughness.

At the boundary the following hydrodynamic condition holds:

where the subscripts R and 	 represent the opposite directions.
Analogously, the non-equilibrium “bounce-back” rule for the

electric potential distribution at the wall surfaces is suggested as

These boundary treatments are easy to implement for
complicated geometries and have approximately second-order
accuracy.47,48

RESULTS AND DISCUSSION
We consider the electrokinetic flows in a 3D charged rough

microchannel. The 3D roughness is generated by the algorithm

described in section 3.1. The solid surfaces are homogeneously
charged with a zeta potential, �, and the electrolyte solution is
driven to flow through the channel by an external electric field
(E) along the x direction.

In the present simulations, the channel width H, defined as
the distance between the two original smooth base walls, is fixed
at one micron. A 60 × 60 × 60 uniform cubic grid is used. Periodic
boundary conditions are implemented in the x and y directions.
We change the values of the generation parameters (sd, Di and
VR) to vary the geometries of roughness. The bulk ionic
concentration n∞ is 0.3 × 10-5 M for most cases and is varied
from 0.3 to 3.3 × 10-5 M when the Debye length needs to be
changed. Other properties and parameters used in this work
are as follows: the fluid density F ) 999.9 kg/m3, the dielectric
constant εrε0 ) 6.95 × 10-10 C2/J m, the dynamic viscosity µ )
0.889 mPa s, the temperature T ) 273 K, the surface zeta
potential -50 mV, and the external electric field strength E )
1 × 106 V/m. The electroosmotic flow considered in this
contribution is very slow and the Reynolds number is on the
order of 10-3-10-5.

Effect of Roughness Number Density. First we consider the
effects of the roughness number density nR for a given total
roughness volume fraction (VR ) 0.05). The roughness ele-
ments are assumed to be isotropic. The roughness number
density is changed through the value of the roughness
distribution probability sd, with the corresponding nR calculated
by eq 13a.

Figure 2 shows the dimensionless flow rate for three different
roughness number density cases. The volume flow rate, Q, for
the incompressible fluid is calculated by

where ux is the velocity in x direction (same as the direction of
E) and A the area of cross section. Q0 is the volume flow rate
for the original smooth channel with all the same conditions.
For all the three cases, the total volume fraction of roughness
is 0.05, and the bulk ionic concentration is 0.3 × 10-5 M.

Since the generated structure of roughness is random, the
calculated flow rates do not fall into the same value even for the
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Figure 2. Flow rate for three roughness number densities. The
symbols are simulated results for different samples, and the lines
represent the statistical average values for each case, where VR )
0.05 and λ/H ) 0.1683 with λ representing the Debye length.

Q ) ∫ ux dA (33)
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same set of parameters but fluctuate around the statistical average.
Figure 2 indicates that the fluctuation decreases as the roughness
number density increases for a given total roughness volume
fraction. For the current three cases with finite samples, the
fluctuation is greater than 6% for nR ) 3.6/µm2 (sd ) 0.001),
around 3% for nR ) 36/µm2 (sd ) 0.01), and less than 1% for nR

) 360/µm2 (sd ) 0.1).
Figure 3 shows the calculated dimensionless electroosmotic

flow rates when the roughness number density varies from 3.6
to 1800 /µm2, where the total volume fraction of roughness is
0.05 and the bulk ionic concentration n∞ is 0.3 × 10-5 M. The
flow rate increases with the roughness number density. When
a logarithmic scale is used for the x axis, the flow rate appears
to increase linearly. In other words, the flow rate increases with
the roughness number density nearly logarithmically.

Effect of Roughness Volume Fraction. For the given
roughness number density (nR) and anisotropy parameters (Di),
the total roughness volume directly influences the size of
roughness elements and therefore the resistance of the channel
flow. Figure 4 shows the flow rates when the roughness total
volume fraction is changing from 0.01 to 0.09 for two given
roughness number densities, where n∞ ) 0.3 × 10-5 M. There
are 1% fluctuation error bars for nR ) 360/µm2 (sd ) 0.1) and
3% fluctuations for nR ) 36/µm2 (sd ) 0.01). For both cases,
the flow rate decreases with the roughness total volume
fraction. The flow rate difference between the two roughness
number densities increases with the roughness volume fraction
in the current volume fraction range (0.01∼0.09).

Anisotropy Effect. So far the roughness elements considered
are statistically isotropic. In this section we investigate the
anisotropy effect of the roughness elements. As mentioned above,
the anisotropy of the roughness geometry can be controlled by
the directional growth probabilities, and the ratio rather than the
absolute values of Dj plays the key role in determining the
anisotropy. The directional characteristic length is proportional
to the square root of the corresponding directional growth
probability. To make the anisotropy effects easily understood,
we keep the other two directional growth probabilities equal
when changing the concerned one. For example, when we

consider the y directional anisotropy effect, we keep Dx:Dy:Dz

) 1:Ly
2:1 and change the value of Ly

2. For such a case, Ly will be
the value of x axis for y directional characteristic length ratio
in Figure 5.

Figure 5 shows the normalized flow rates for different anisot-
ropy characteristics for the given roughness number density (nR

) 36/µm2) and roughness volume fraction (VR ) 0.05), where
Qi denotes the volume flow rate for the isotropic roughness
geometry. The x axis denotes the specified directional char-
acteristic length ratio to the other two, which could be Lx, Ly,
or Lz. The result indicates that, first of all, the flow rate varies
with the directional anisotropy monotonically for all the three
directions. The flow rate decreases with the z-directional
characteristic length (roughness height), but increases with
both x-directional length (roughness length) and y-directional
length (roughness width). For the current geometric param-
eters and electrolyte properties, (1) compared with the isotropic
structure case, that is, the ratio equals unity, the flow rate will
be lower once the roughness height (z length) is larger;
otherwise the flow rate will be higher; (2) the increase in

Figure 3. Electroosmotic flow rate versus roughness number density.
The symbols are the simulated results, and the solid line is a linear
fit. VR ) 0.05 and λ/H ) 0.1683.

Figure 4. Electroosmotic flow rates versus total roughness volume
fraction. The squares are results for nR ) 360/µm2 with 1% error bars
and the circles are those for nR ) 36/µm2 with 3% error bars.

Figure 5. Anisotropic geometry effects on electroosmotic flow rate
for different directional characteristic length ratios, where nR ) 36/
µm2 (sd ) 0.01), VR ) 0.05 and λ/H ) 0.1683.
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roughness length (the flow direction) will enhance the flow
rate more than that in roughness width.

Effect of the Debye Length. Theoretical studies on electroos-
motic flows in rough channels have been reported for both thin
and thick double layers.28 However, it is challenging to do similar
analyses when the Debye length is comparable to the character-
istic length of roughness because the linear assumptions are not
valid any more. Using our numerical framework, the Debye length
effects on the electroosmotic flows in rough microchannels have
been investigated when the Debye length is close to the roughness
size.

We have generated the microstructure of a rough microchan-
nel with the parameters: sd ) 0.01, Dx:Dy:Dz ) 1:1:1 and VR )
0.05. The characteristic height of roughness (LR) can be then
calculated from eq 13b, that is, LR ) 0.088H. We change the
bulk ionic concentration n∞ from 3.3 to 0.3 × 10-5 M to vary
the normalized Debye length (λ/LR) from 0.57 to 1.91.

The Debye length effect on the electroosmotic flow rate in a
rough microchannel is shown in Figure 6 when the Debye length
is around the roughness characteristic length. The flow rate is
normalized by the flow rate in the corresponding original smooth
channel at the same ionic concentration, Q0. The result indicates
that the normalized electroosmotic flow rate decreases with
the Debye length monotonically. The solid line in Figure 6 is
the quadratic fitting curve for the simulation results. From this
curve, when the Debye length (λ) is much smaller than the
roughness characteristic length (LR), that is, λ/LR , 1, the flow
rate in the rough microchannel is still lower than that in the
corresponding original smooth microchannel (Q ≈ 0.805Q0).
This result is inconsistent with the theoretical prediction for
the large scale channel flows with the thin Debye layer
assumption,49,50 which concludes that the flow rate ratio should
approach 1 for small values of the Debye length. The reason may
lie in that in the microchannel the roughness occupies much more
volume fraction and causes larger shape resistance than those in
the large scale channel, even though the absolute size of
roughness elements might be similar.

Effects of the Shape Resistance. To find out whether the
shape resistance is the main reason for the electroosmotic flow
rate reduction in rough microchannels even at very small Debye
length, we simulate the Poiseuille flows driven by a pressure
gradient in both the given rough channel and its original smooth
channel, and then compare the velocity profiles. We use the
Poiseuille flow because we can compare the results with the
theoretical solutions. The same rough channel used in Figure 6
is adopted here. We fit the averaged velocities of the bulk flow to
a parabolic form. The viscosity can be obtained from the fitting
parabolic relationship. This process can be found in the Supporting
Information, section S-1. It has been found that the roughness
does not influence the viscosity of the fluid but only extends the
walls into the fluid by some distance. This effect caused by the
shape resistance of roughness certainly decreases the flow
rate in the electroosmotic flows in rough microchannels. From
the fitted parabolic curve we can determine the effective smooth
channel width (He) and hence the effective wall extension length
(Lw) for the rough channel. The values of He and Lw depend
on the roughness shape, size, and number density as well. For
the current case (sd ) 0.01, VR ) 0.05 and isotropic roughness
elements) the effective wall extension length (Lw) is ap-
proximately equal to the roughness averaged height (LR), that
is, He ≈ H - 2LR.

We then compute the electroosmotic flow rates for both the
rough channel (Q), the original smooth channel (Q0), and the
effective smooth channel (Qe) for seven different conditions
shown in Figure 6. The effective smooth channel width He ) H
- 2LR is used. We find that the relative errors between Qe and
Q0 are larger than 25% but the relative errors between Qe and
Q are less than 3%, which is on the same order of errors
introduced by the randomness of the roughness structure. The
detail data can be found in the Supporting Information, section
S-2. This result indicates that it is the shape resistance of
roughness that reduces significantly the flow rate in the rough
microchannel compared with that in the original smooth channel,
and that makes the flow rate ratio less than 1 even for the case of
a thin Debye layer. The inconsistence with the conventional
theoretical analysis in rough channel with the thin Debye layer
assumption50 lies in that the relative size of roughness in
microchannels is much larger than that in large channels even if
the absolute size of roughness is similar. The shape resistance in
rough microchannels therefore has much stronger effect than in
the large channels and reduces the electroosmotic flow rate
significantly.

CONCLUSIONS
In this contribution, we presented a numerical framework to

model the electrokinetic transport in microchannels with random
roughness. The 3D microstructure of the rough channel is
generated by a random generation-growth method with three
statistical parameters to control the geometric characteristics of
the roughness. The governing equations for the electrokinetic
transport are then solved by a high-efficiency lattice Poisson-
Boltzmann method in the complex geometries.

The electrokinetic transport in the rough channel is greatly
influenced by the geometric characteristics of the roughness. For
a given total volume fraction of roughness elements, a higher
number density not only results in a higher electroosmotic flow
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Figure 6. Dimensionless electroosmotic flow rate for different Debye
length. The symbols are the simulation results, while the line is the
quadratic fitting curve.
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rate through the channel but also leads to a lower fluctuation
because of the randomness. The electroosmotic flow rate in-
creases with the roughness number density nearly logarithmically
for a given volume fraction of roughness but decreases with the
volume fraction of roughness for a given roughness number
density. For both given volume fraction and number density of
roughness, the electroosmotic flow rate is enhanced by the
increase in roughness length and width or the decrease in
roughness height. For a given microstructure of rough micro-
channel, the electroosmotic flow rate decreases with the Debye
length. The shape resistance of roughness plays an important role
in microchannel flows leading to an electroosmotic flow rate lower
than that in the original smooth channel even for a very thin
double layer.
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