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Optimization of mass and energy transfer process is critical to improve energy efficiency. In this contribution we introduce the field
synergy principle as a unified principle for analyzing and improving the performance of the transfer process. Three field synergy
numbers are introduced for heat, mass, and momentum transfer, respectively, and three cases are demonstrated for validation.
The results indicate that the field synergy numbers will increase when reducing the angle between the velocity vector and the
temperature gradient or the species concentration gradient fields in the convective heat or mass transfer, and the overall heat or
mass transfer capability is therefore enhanced. In fluid flows, it will reduce the fluid flow drag to decrease the synergy number
between the velocity and the velocity gradient fields over the entire domain and to decrease the product between the fluid viscosity
and the velocity gradient at the boundary simultaneously.

1. Introduction

Energy conservation is not only a scientific or engineering
problem but also a social one that most people on this planet
are facing [1–3]. Solutions of this problem include both
developments of new substitutable energy products [4–6]
and optimizations of current energy utilizations [7–9]. The
energy efficiency is always expected maximized by enhancing
the energy output for a given cost, or by minimizing the
input energy loss for a given output [10]. In recent years, the
multiphysical transport process in energy systems, involving
mass and energy transfer, has been a hot but challenging
topic [6]. The difficulties come mainly from the coupling
of the multiphysical transport processes. In this work, we
focus on the fluid flow coupled with species or heat transfer,
which is one of the most popular transport phenomena
in energy systems. In such a multiphysical process, three
kinds of transports are involved: the fluid flow (momentum
transport), heat transfer (energy transport), and species
transfer (mass transport) [11–13].

During the past several decades, a great number of heat,
mass transfer enhancement, and fluid flow drag reduction

technologies have been developed including using extended
surfaces, spoiler elements, and external electric or magnetic
field [14–17] for heat and mass transfer, riblet surfaces,
guide plates, and drag-reduction additives of low viscosity
for fluid flow [18–20]. All these methods have successfully
cut down not only the energy consumption but also the
cost of equipment itself. In the meanwhile, in the interest of
revealing the essence of these methods from the viewpoint of
velocity and temperature fields, Guo et al. [21–24] proposed
a concept of field synergy for enhancing convective heat
transfer. They pointed out that increasing the synergy,
that is, reducing the included angle, between velocity and
temperature gradient, can effectively enhance convective heat
transfer. Chen et al. extended this concept to the convective
mass, transfer and fluid flow [25–27].

The purpose of this work is to study the transport
phenomena performance based on the field synergy theory
and the analogy between heat, mass and momentum transfer.
The field synergy principle is available for analyzing and
improving heat, mass and momentum transfer performance.
Some numerical examples will be provided for validation of
this principle.



2 Advances in Mechanical Engineering

2. The Analogies and the Linear Transport Laws
in Transfer Processes

Momentum, heat, and mass transfer processes are always
considered to be three analogous phenomena for the fol-
lowing two reasons: (1) the generation mechanisms are the
same, that is, viscous force, thermal conduction, and mass
diffusion are all caused by the motion and interaction of
molecules, and (2) the govern equations of these phenomena
are similar. That is, when there exists a macroscopic gradient
of velocity, temperature, or concentration in an object, and
the gradient is not large enough, this transport phenomenon
can be described by Newton’s law of viscosity, Fourier’s law
of heat conduction, or Fick’s law of diffusion:

τyx = −μdux
dy

, (1)

q̇ = −λdT
dn

, (2)

ṁ = −ρDdY
dn

. (3)

Equation (1) describes the linear relation of the shearing
force per unit area with the velocity gradient during fluid
flow processes, which is the stress strain constitutive relation
of Newtonian fluid. The velocity gradient is the strain, and
the shearing force is the stress.

As is shown in (2) and (3), the transferred parameters are
proportional to the gradients of some corresponding phys-
ical quantities, respectively, during heat and mass transfer
processes, where the gradient of the temperature and the
concentration are understood as “driving forces,” and heat
and mass crossing a unit area per unit time are the “fluxes”.
Furthermore, the “fluxes” have linear relationship with their
corresponding “driving forces”. Thus, it can be concluded
that both Fourier’s law and Fick’s law reflect and express
the general rules of diffusion processes, not the stress strain
constitutive relation. It seems that neither heat nor mass
transfer process is analogous to fluid flow process.

However, Newton’s law of viscosity has double meanings.
It expresses not only the constitutive relation of fluids
but also the relationship between the velocity gradient
and the momentum flux. In this connection, the velocity
gradient, caused by the fluid deformation during fluid flow
processes, leads to the diffusion of momentum in fluids,
where the velocity gradient and the transferred momentum
can therefore be thought as the driving force and the flux as
momentum transport, respectively. Newton’s law is the same
as Fourier’s law and Fick’s law, which all expresses the general
rules of diffusion processes. Here, (1) can also be expressed
as

qmom,y = ρuxv
∗
y = −μ

dux
dy

, (4)

where qmom,y stands for the momentum flux in the y
direction and v∗y is the diffusion velocity in the y direction of
x-momentum component, rather than the velocity of fluid
itself.

In addition, the governing equations are the energy
conservation equation for convective heat transfer

ρcp
−→
U · ∇T = ∇ · (λ∇T) +Q, (5)

the species conservation equation for convective mass trans-
fer

ρ
−→
U · ∇Y = ∇ · (ρD∇Y) +M, (6)

and the momentum conservation equation for fluid flow,

ρ
−→
U · ∇−→U = −∇P + μ∇2−→U + F, (7)

can be rewritten to a generalized form as follows:

ρ
−→
U · ∇ϕ = η∇ · (∇ϕ) +G, (8)

where
−→
U is the velocity vector, ϕ is the universal variable (e.g.,

temperature, mass fraction and velocity), η is the generalized
diffusion coefficient, and G is the source term.

In summary, due to the aforementioned analogy between
heat, mass, and momentum transfer, a unified principle can
be developed to analyze these transfer phenomena.

3. Field Synergy Principle in
Convective Heat Transfer

For two-dimensional boundary layer flows and heat transfer
along a plate [23], the energy conservation equation is

ρcp
(−→
U · ∇T

)
= ∂

∂y

(

λ
∂T

∂y

)

. (9)

Integrating (9) along the thermal boundary layer with
the boundary condition at the outer edge of the thermal
boundary layer being (∂T/∂y)δt,x = 0 gives

∫ δt,x

0
ρcp
(−→
U · ∇T

)
dy = −λ ∂T

∂y

∣
∣
∣
∣∣
w

. (10)

The right-hand side is the heat flux, qw, between the
solid wall and the fluid, while the left-hand side is the scalar
product between the velocity vector and the temperature
gradient, which can be written as

∫ δt,x

0
ρcp
(−→
U · ∇T

)
dy =

∫ δt,x

0
ρcp
∣∣
∣
−→
U
∣∣
∣|∇T| cosβhdy, (11)

where βh is the included angle between the velocity vector
and the temperature gradient. Thus, for two-dimensional
boundary heat transfer along a plate, the boundary heat flux
depends not only on the magnitude of the velocity and the
temperature gradient but also on the included angle between
them. It is obvious that for a fixed flow rate and temperature
difference, a smaller intersection angle between the velocity
and the temperature gradient will lead to a larger heat flow
rate.
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For a three-dimensional elliptic heat transfer process
without internal heat source [28], the energy conservation
equation is

ρcp
−→
U · ∇T = ∇ · (λ∇T). (12)

Integrating this equation over the entire heat transfer
domain, Ω, and transforming the volume integral to a
surface integral using the Green’s theorem give

∫∫∫

Ω
ρcp
−→
U · ∇TdV =

∫∫

Γ

−→n · (λ∇T)dS, (13)

where −→n is the outward normal unit vector, and Γ is the
boundary of the heat transfer area, which will be divided
into heat transfer surfaces, adiabatic surfaces, fluid inlets, and
outlets. Thus, the right-hand side of (13) is divided into four
terms:
∫∫

Γ

−→n · (λ∇T)dS =
∫∫

hts

−→n · (λ∇T)dS +
∫∫

as

−→n · (λ∇T)dS

+
∫∫

in

−→n · (λ∇T)dS+
∫∫

out

−→n ·(λ∇T)dS.

(14)

The first term is the heat flow rate between the solid
wall and the fluid. On adiabatic surfaces, the temperature
gradient is zero, and so the second integral is zero. The
third and fourth terms are the axial thermal diffusion at the
inlet and outlet, respectively, which may be neglected when
compared to the energy transferred by the fluid motion [28].
Thus, (13) is simplified as

∫∫∫

Ω
ρcp
−→
U · ∇TdV

=
∫∫∫

Ω
ρcp
∣∣
∣
−→
U
∣∣
∣|∇T| cosβhdV =

∫∫

hts

−→n · (λ∇T)dS.

(15)

For a convective heat transfer process, V is the volume and
Shts is the heat transfer surface, and then a characteristic
length, L = V/Shts, can be defined. After introducing the
dimensionless variables,

−→
U =

−→
U

Uin
, ∇T = ∇T

(Thts − Tin)/L
, dV = dV

V
,

(16)

equation (15) will be written in a dimensionless form as

Nu=Re Pr
∫∫∫

Ω

−→
U ·∇TdV=Re Pr

∫∫∫

Ω

∣
∣∣
∣
−→
U
∣
∣∣
∣

∣
∣
∣∇T

∣
∣
∣ cosβhdV.

(17)

Equation (17) shows that the Nusselt number, that is,
convective heat transfer performance, depends not only on
the Reynolds number and the Prandtl number but also on

the value of
∫∫∫

Ω

−→
U · ∇TdV .

According to the Webster Dictionary [29], when several
actions or forces are cooperative or combined, such situation
can be called “synergy”. Thus, the above idea is named
the “field synergy principle” by Guo et al. [21], and
∫∫∫

Ω

−→
U · ∇TdV is named the heat transfer field synergy

number, Fch, which represents the synergic degree of the
velocity vector and the temperature gradient over the entire
volume. When the heat transfer fluid is selected and the flow
rate is fixed, both the Reynolds number and the Prandtl are
constant, and then the heat transfer field synergy number
determines the convective heat transfer capability.

For three-dimensional turbulent heat transfer without
internal heat source, the time-averaged energy conservation
equation is

ρcp
〈−→
U
〉
· 〈∇T〉 = ∇ · [(λ + λt)〈∇T〉]. (18)

Similarly, integrating (18) over the entire heat transfer
domain and transforming the volume integral to a surface
integral give
∫∫∫

Ω
ρcp
〈−→
U
〉
· 〈∇T〉dV =

∫∫

hts

−→n · (λ + λt)〈∇T〉dS,

(19)

where 〈−→U〉 and 〈∇T〉 are the time-averaged velocity vector
and the time-averaged temperature gradient, respectively.
λt is the turbulent thermal conductivity.

The turbulent thermal conductivity vanishes at the
boundary; thus (19) is simplified as

∫∫∫

Ω
ρcp
〈−→
U
〉
· 〈∇T〉dV =

∫∫

hts

−→n · λ〈∇T〉dS. (20)

The right-hand side is the heat flow rate between the solid
wall and the fluid. Introducing some dimensionless variables,
as shown in (16), to (20) gives

Nu = Re Pr
∫∫∫

Ω

〈−→
U
�
·
〈
∇T

〉
dV

= Re Pr
∫∫∫

Ω

∣∣
∣
∣

〈−→
U
�∣∣
∣
∣

∣
∣
∣
〈
∇T

〉∣∣
∣ cosβhtdV ,

(21)

where
∫∫∫

Ω〈
−→
U〉 · 〈∇T〉dV is the field synergy number

for turbulent heat transfer, Fcht, and βht is the included
angle between the time-averaged velocity vector and the
time-averaged temperature gradient. For a given flow rate,
increasing the field synergy number will enhance turbulent
heat transfer.

The field synergy principle in convective heat transfer
has been validated numerically and experimentally [21–24,
30, 31]. Based on this principle, some existing heat transfer
enhancement methods will be furthermore understood.
Tao et al. [22] showed that reducing the thickness of the
thermal boundary layer, increasing the disturbance in the
fluid, and increasing the velocity gradient at the solid wall
are all unified by the field synergy principle. That is, all
of these methods reduce the included angle between the
(time-averaged) velocity vector and the (time-averaged)
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Figure 1: Cross-section and side view of gas flow channel with
periodic wave-like geometry in bipolar plate of a PEMFC [35].

temperature gradient and finally increase the field synergy
number between them [31]. Moreover, the field synergy
principle led to the development of some novel heat transfer
enhancement technologies, such as the alternating elliptical
axis tubes [32], the discrete double inclined ribs tubes
[33], and the “front coarse and rear dense” slotted fins
[34].

In addition, by using the field synergy principle, Kuo and
Chen [35] numerically studied a gas flow channel with a
periodic wave-like geometry, shown in Figure 1, to improve
the heat transfer of the bipolar plate in dissipating the heat
generated during the catalysis reaction and, consequently,
to improve the performance of PEMFC. In this config-
uration, the porosity and thickness of the gas diffusion
layer are 0.5 and 300 μm, respectively. The cross-section
hydraulic diameter and length of the gas flow channels
are 0.015 m and 0.1 m, respectively. The bipolar plate side
of the channel has a wave-like form with a period of
0.01 m.

Figure 2 shows the variation of the Nusselt number with
the Reynolds number in the straight and wave-like form gas
flow channels, respectively. The wave-like geometry enhances
the thermal performance, particularly at higher Reynolds
numbers. When Re = 200, the wave-like geometry increases
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Figure 2: Variation of average Nusselt number with Reynolds
number in two gas flow channel geometries (straight and wave-like)
[35].
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Figure 3: Variation of average intersection angle with Reynolds
number in two gas flow channel geometries (straight and wave-like)
[35].

the value of Nu by approximately 20%. Figure 3 shows the
variation of the average included angle with the Reynolds
number for the straight gas flow channel and for the channel
with the wave-like form geometry. When Re = 200, the
average intersection angle of the velocity vector and the
temperature gradient in the straight channel is 87◦, while the
intersection angle is reduced to 70.5◦ in the gas flow channel
with the wave-like form geometry. Hence, improving the
field synergic degree between the velocity vector and the
temperature gradient by reducing their average included
angleover the entire domain will improve convective heat
transfer capacity.
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4. Field Synergy Principle in
Convective Mass Transfer

For convective mass transfer processes [25, 26], the steady-
state three-dimensional species conservation equation with-
out mass sources can be written as

ρ
−→
U · ∇Y = ∇ · (ρD∇Y). (22)

Integrating this equation over the entire mass transfer
domain, Ω, and transforming the volume integral to the
surface integral yield

∫∫∫

Ω
ρ
−→
U · ∇YdV =

∫∫

Γ

−→n · (ρD∇Y)dS. (23)

Similar to convective heat transfer processes, the domain
boundary will be divided into species emitting surfaces,
surface without mass transfer, inlets, and outlets. Thus (23)
is written as
∫∫

Γ

−→n · (ρD∇Y)dS

=
∫∫

ms

−→n · (ρD∇Y)dS +
∫∫

nms

−→n · (ρD∇Y)dS

+
∫∫

in

−→n · (ρD∇Y)dS +
∫∫

out

−→n · (ρD∇Y)dS.

(24)

On surfaces without mass transfer, the species concentra-
tion gradient is zero, so the second integral on the right hand
is zero. At the inlet and outlet, the air velocity is high and
the species concentration gradient is relatively small; and so
the axial diffusion of the species at the inlet and outlet, that
is, the third and fourth integrals on the right hand, can be
neglected. Thus, (23) is simplified as
∫∫∫

Ω
ρ
−→
U · ∇YdV

=
∫∫∫

Ω
ρ
∣
∣∣
−→
U
∣
∣∣|∇Y | cosβmdV =

∫∫

ms

−→n · (ρD∇Y)dS,

(25)

where βm is the included angle between the velocity vector
and the concentration gradient. As seen from (25), the inte-
gral of the density times the dot product of the velocity vector
and the concentration gradient over the entire domains
equals the overall mass flow rate, ṁ.

Introducing some dimensionless variables to (25) leads
to a dimensionless form:

Sh = Re Sc
∫∫∫

Ω

∣
∣
∣
∣
−→
U
∣
∣
∣
∣

∣
∣∣∇Y

∣
∣∣ cosβmdV. (26)

Similar to turbulent heat transfer, substituting some
turbulent physical parameters for laminar ones in (26) gives

Sh = Re Sc
∫∫∫

Ω

∣
∣∣
∣

〈−→
U
�∣∣∣
∣

∣
∣
∣
〈
∇Y

〉∣∣
∣ cosβmtdV , (27)

where Sh and Sc represent the Sherwood number and
the Schmidt number. 〈∇Y〉 is the time-averaged species

concentration gradient. Both (26) and (27) show that the
Sherwood numbers for laminar and turbulent mass transfer
depend not only on the Reynolds number and the Schmidt

number but also on the integral value of
−→
U · ∇Y and 〈−→U〉 ·

〈∇Y〉, respectively. These values are defined as the mass
transfer field synergy numbers, Fcm or Fcmt , which represent
the synergy between the (time-averaged) velocity vector and
the (time-averaged) species concentration over the entire
volume. Similarly, when the fluid is selected, the various
ways for increasing the overall strength of convective mass
transfer can be classified into: (1) increasing the Reynolds
number which means increasing the fluid flow rates and (2)
increasing the mass transfer field synergy number. For a given
fluid flow rate, the Reynolds number is constant, and the
convective mass transfer capability is determined by the mass
transfer field synergy number.

In the field of indoor air purification, the field synergy
principle in convective mass transfer has led to the devel-
opment of the decontamination ventilation designs [25] and
the discrete double-inclined ribs in photocatalytic oxidation
reactors [26] to enhance convective mass transfer and, con-
sequently, to improve contaminant removal performance.
To illustrate the applicability of field synergy principle for
convective mass transfer processes, the decontamination
quality was varied by changing the boundary conditions. The
results were used to analyze the influence of the convective
mass transfer field synergy on the overall mass transfer rate.

The overall mass transfer rate and field synergy number
for various ventilation types are compared, including a
horizontal inlet at the lower left corner (type A, Figure 4(a)),
a vertical inlet at the top left corner (type B, Figure 4(b)), a
horizontal inlet at the top right corner (type C, Figure 4(c)),
a horizontal inlet at the top left corner (type D, Figure 4(d)),
and a vertical inlet at the top right corner (type E,
Figure 4(e)). The dimensions of all the rectangular cavity
are: L = 4 mm, H = 3 mm, and W1 = W2 = W3 = W4

= 0.2 mm. The air intake velocities are 1 m/s or 2 m/s. The
inlet air has a contaminant mass fraction of 0. The bottom is
the contaminant source with a contaminant mass fraction of
0.01, while the left, right, and upper surfaces of the cavity all
have no mass transfer.

The numerical results in Figures 5 and 6 show that for
the same air inlet velocity, both the overall mass transfer rate
and the mass transfer field synergy number decrease from the
highest in type A to B, C, D, and the lowest in type E. For a
given air inlet velocity, the Reynolds number is constant; so
the overall mass transfer rate is only determined by the mass
transfer field synergy number. Therefore, a better ventilation
arrangement can be obtained by comparing various velocity
fields for various ventilation arrangements, and by selecting
the arrangement with largest mass transfer field synergy
number.

5. Field Synergy Principle in Momentum
Transfer-Fluid Flow

For fluid flows [27], the momentum equation for steady-
state fluid flow without volume force can be written as
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Figure 4: Sketches of ventilation configurations.

ρuj
∂ui
∂xj

= − ∂P
∂xi

+
∂

∂xj

(

μ
∂ui
∂xj

)

, (28)

where P is the pressure, μ is the kinematic viscosity, and
ui and uj are the velocity components in i, j direction.
Integrating this equation over the entire domain, Ω, and
transforming the volume integral into a surface integral, we
have
∫∫∫

Ω
ρuj

∂ui
∂xj

dV = −
∫∫∫

Ω

∂P

∂xi
dV +

∫∫

Γ
μ
∂ui
∂xj

· −→n dS. (29)

By introducing the dimensionless variables

ui = ui
uin

, uj =
uj
uin

, ∇ui = ∇ui
uin/D

,

dV = dV

V
, dS = dS

S
,

(30)

equation (30) can be rewritten as

− D

ρu2
in

∫∫∫

Ω

∂P

∂xi
dV=

∫∫∫

Ω
ρuj

∂ui
∂xj

dV− μ

ρuinD

∫∫

Γ
∇ui · −→n dS.

(31)

The term on the left-hand side of (31) is the dimension-
less pressure drop in xi direction, denoted as the drag during
the flow:

ΔPi = − D

ρu2
in

∫∫∫

Ω

∂P

∂xi
dV. (32)

The first term on the right-hand side is the integration
of the dot product between the dimensionless velocity and

the velocity gradient vectors, representing the field synergy
between them in the entire domain, which referred to as the
flow field synergy number:

FSfi =
∫∫∫

Ω
uj
∂ui
∂xj

dV =
∫∫∫

Ω
U · ∇uidV

=
∫∫∫

Ω

∣
∣
∣U
∣
∣
∣|∇ui| cosβ f idV ,

(33)

where β f i denotes the included angle between the velocity
and the xi-velocity component gradient vectors. The value
of Fc f i depends not only on the velocity and the xi-velocity
component gradient but also on their included angle (their
synergy). A large value of β f i leads to a small value of
Fc f i, indicating a weak synergy between the velocity and xi-
velocity component gradient fields, and consequently a small
flow drag in xi direction. In addition, it is worth noting that
the fluid viscosity μ is not involved in (34). That is, the flow
field synergy number is not influenced by the fluid viscosity.

The second term on the right hand is the total dimen-
sionless boundary viscous force due to xi-velocity compo-
nent gradient, determined by both the dynamic viscosity and
the velocity gradient at the boundary:

τi = 1
ρuinD

∫∫

Γ
μ

(

− ∂ui
∂xj

· −→n
)

dS. (34)

Substituting (32), (33), and (34) into (31) gives

ΔPi = FSi + τi. (35)
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As is seen in (35), the flow drag depends on two factors:
one is the synergy between the velocity and its gradient
over the entire flow domain, and the other is the viscous
force at the boundary. Hence, for a given flow rate, there
are two ways to reduce the flow drag, such as (1) reducing
the flow field synergy number by enlarging the synergy
angle β f i between the velocity and its xi-velocity component
gradient and (2) decreasing the fluid viscosity μ and/or
the velocity gradient at the boundary Γ, rather than the
entire flow domain. This field synergy principle in fluid
flows also presents a novel approach for analyzing flow
processes and sets the direction for developing new flow
drag reduction technologies including designing suitable
velocity distributors [27] for pipe networks and generating
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Figure 7: Sketch of the flow in a simple duct network.
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multilongitude vortexes during heavy oil transport processes
[36].

For instance, consider a 2D fluid flow in a simple duct
network [27] shown in Figure 7. The channel splits into two
paths forming the shape of a rectangle which later converge
back into one channel. The dimensions are Lc =Hc = 10 mm,
Lin = Lout = 4 mm, and WU = WD = WL = WR = 1 mm.
The wall thickness of the duct is neglected. Air flows in the
flow domain horizontally from the top left corner with a
velocity of 5 m/s and out from the lower right corner. The
air density and dynamic viscosity are 1.225 kg/m3 and 1.7894
×10−5 kg/(m · s), respectively.

Numerical results for the air streamlines nearby the top
left fork are presented in Figure 8. Due to the impact of
inertia, most of the air flows in the upper path straightly,
while the rest is deflexed and flows in the left path. The air
flow rate in the upper path is larger than the one in the
left path, which increases the overall velocity gradient at the
boundary. Furthermore, there exists a large clockwise vortex
in the left path, which not only increases the velocity gradient
at the boundary but also improves the field synergy between
the velocity and its gradient. According to the field synergy
principle, the above two reasons result in a large pressure
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Figure 9: Sketch of the velocity distributor position near the top left
fork.
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Figure 10: Air streamline field nearby the top left fork with a
velocity distributor.

drop in the entire flow domain. In this case, the pressure drop
is 47.4 Pa.

If a velocity distributor is placed along the middle
streamline nearby the top left fork as shown in Figure 9, we
will obtain the air streamlines as shown in Figure 10. The
air flow rates in the upper and the left paths are nearly the
same, which will decrease the overall velocity gradient at
the boundary. In the meanwhile, compared with the result
without the velocity distributor, the clockwise vortex in the
left path is smaller, which reduces the field synergy number
of the velocity and its gradient. As a result, the pressure drop
is reduced from 47.4 to 44.9 Pa.

6. Conclusions

Due to the same generation mechanism and govern equa-
tions, momentum, heat, and mass transfer processes are
the three analogous phenomena. Hence, the field synergy
principle proposed earlier by Guo et al. [21] is extended from
convective heat transfer to convective mass transfer and fluid
flow as a unified principle for analyzing and improving the
performance of these transfer phenomena.

In convective heat transfer, a smaller intersection angle,
that is, a better field synergy, between the velocity and
the temperature gradient will lead to a larger heat flow

rate. In convective mass transfer, the overall mass transfer
capability can be enhanced by decreasing the interaction
angle, that is, increasing the field synergy number, between
the velocity vectors and the species concentration gradients
for a given fluid flow rate. In fluid flows, the flow drag
depends not only on the velocity and the velocity gradient
fields but also on their synergy. For a given flow rate or
inlet velocity, reducing the synergy between the velocity
and the velocity gradient fields over the entire domain and
decreasing the fluid viscosity and the velocity gradient at
the flow boundary will decrease the fluid flow drag. Several
numerical examples are also provided to show the validity
and applications of the principle.

Nomenclature

cp: Specific heat capacity, J kg−1K−1

D: Mass diffusion coefficient, m2s−1

ṁ: Mass flux, kg m−2

n: Gradient orientation
A: Heat transfer area, m2

E: Entransy, J K
F: Volume force, N m−3

M: Mass source, kg s−1m−3

Q: Heat source, W m−3

P: Pressure, Pa
S: Surface area, m2

q̇: Heat flux, W m−2

T : Temperature, K−→
U : Velocity vector, m s−1

V : Volume, m3

Y : Mass friction, kg kg−1

Nu: Nusselt number
Pr: Prandtl number
Re: Reynolds number
Sc: Schmidt number
Sh: Sherwood number
β: Included angel
ρ: Density, kg m−3

μ: Dynamic viscosity, kg m−1s−1

η: Generalized diffusion coefficient
φ: Universal variable
λ: Thermal conductivity, W m−1K−1

λt : Turbulent thermal conductivity, W m−1K−1

δt,x: Thermal boundary layer thickness, m.
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