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We present our recent progress on mesoscopic modeling of multiphysicochemical transport phenomena in porous media based
on the lattice Boltzmann method. Simulation examples include injection of CO2-saturated brine into a limestone rock, two-phase
behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media.
It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems
and can shed some light on the underlying physics occurring at the fundamental scale. Therefore, it can be a potential powerful
numerical tool to analyze multiphysicochemical processes in various energy, earth, and environmental systems.

1. Introduction

Multiphysicochemical transport phenomena in porous
media are ubiquitous, particularly in various energy, earth,
and environment systems. One example is the disposal
of supercritical CO2 in geologic formations, the most
promising near-term solution to the problem of reducing
carbon emissions into the atmosphere [1]. Experimental
analyses of the long-term fate of CO2 after injection into the
geologic formations are not possible with relatively short-
term laboratory experiments. Therefore it is necessary to
employ comprehensive numerical models that incorporate
multiple physicochemical processes involving interactions
between the injected CO2, the brine in the pore spaces, and
the minerals lining the pores. Supercritical CO2, as a buoyant
and slightly miscible fluid, once injected, displaces brine
from the pore space in a complex pattern. At the interface
with brine, CO2 dissolves into the brine to form carbonic
acid that can react with and dissolve minerals eventually
leading to mineral precipitation further along the flow path.
Clearly, there are multiple physics processes involved, includ-
ing hydrodynamics, thermodynamics, chemical dynamics,
and electrodynamics (because the surface of most natural
media is charged). All these processes are ultimately governed

by pore-scale interfacial phenomena, which occur at scales
of microns. However, because of the wide disparity in scales
ranging from pore to field, a continuum formulation based
on spatial averages taken over length scales much larger
than typical pore and mineral grain sizes is often utilized,
implying the existence of a representative elemental volume
(REV) [2]. As a result, spatial heterogeneities at smaller scales
are unresolved and the aggregate effects of the pore-scale
(mesoscopic scale) processes are taken into account through
various effective constitutive parameters. One of the goals
of performing pore-scale simulations is to obtain values for
these constitutive parameters through upscaling the pore-
scale results. Other goals are to identify key parameters
and physicochemical processes that control macroscopic
phenomena, and to validate continuum descriptions.

Another example is fuel cells, and in particular polymer
electrolyte fuel cells (PEFCs). In PEFCs, the catalyst layer
(CL) is the host to several competing transport mechanisms
involving charge (proton and electron), species (oxygen,
nitrogen, and water vapor), and liquid water transport.
The multi-faceted functionality of a gas diffusion layer
(GDL) includes reactant distribution, liquid water transport,
electron transport, heat conduction, and mechanical support
to the membrane-electrode-assembly. Despite tremendous
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recent progress in enhancing the overall cell performance,
a pivotal performance limitation in PEFCs is manifested in
terms of mass transport loss originating from suboptimal
liquid water transport and resulting flooding in the con-
stituent components [3]. In recent years, several macroscopic
computational models for multiple-physicochemical trans-
port processes in PEFCs [4–10] have been developed. These
macroscopic models again are based on the theory of volume
averaging and treat the catalyst layer and gas diffusion layer as
macrohomogeneous porous layers. Due to their macroscopic
nature, the current models fail to resolve the influence of the
structural morphology of the CL and GDL on the underlying
physics. Mesoscopic modeling is critical to understanding
of the overall structure-wettability-transport interactions as
well as the underlying multiphysicochemical processes in
the CL and GDL, and hence is a useful tool for design
and optimization of microstructures of electrodes for better
performance and durability.

In this paper, we review our recent work on mesoscopic
modeling of multiphysicochemical processes in porous
media, based on the lattice Boltzmann method (LBM),
a relatively new numerical method for simulating fluid
flows and modeling physics in fluids [11]. Originating
from the classical statistical physics, LBM is a mesoscopic
method based on simplified kinetic equations. In the LBM,
the fluid is modeled as a collection of fictitious particles
propagating and colliding over a discrete lattice domain.
Mesoscopic continuity and momentum equations can be
obtained from this propagation-collision dynamics through
a rigors mathematical analysis. The particulate nature and
local dynamics provide advantages for complex boundaries
and parallel computation. In addition, the kinetic nature of
the LBM makes it easy to account for new physics in the
LBM framework, which is especially useful for modeling
multiphysicochemical phenomena. In Section 2, the partial
differential equations governing fluid flow, transport of
reactive species and electric potential, as well as mineral
reactions in porous media will be given. In Section 3,
the implementation of the LBM to solve these governing
equations will be presented. Some simulation examples will
be given in Section 4 and concluding remarks in Section 5.

2. Governing Equations

Consider the electrolyte fluid flowing through solid porous
media. Although the pore scale in this study may be at
micrometer scale, the fluid can still be treated as a continuum
Newtonian fluid since the characteristic size is much larger
than the molecular diameters [12–14].

2.1. Continuity and Momentum Equations. For isothermal
incompressible fluid flow, the continuity and momentum
equations can be written as [15]

∇ · u = 0,

ρ
∂u
∂t

+ ρu · ∇u = −∇p + ρν∇2u + F,
(1)

where ρ represents the density of the fluid, t the time, u the
velocity vector, p the pressure, ν the kinetic viscosity, and F
the body force density which may include all the effective
body forces.

For the hydrodynamic boundary condition, we use the
nonslip model at the solid surfaces. The slip boundary
conditions have been adopted in some recent studies [16,
17]; however, a careful molecular study showed that the
hydrodynamic boundary condition, slip or not, depended
on the molecular interactions between fluid and solid and
on the channel size [18, 19]. For the flow in porous media
considered in this work, the nonslip boundary condition is
still valid.

2.2. Transport Equations for Aqueous Species and Electrical
Potential. For the ith ion species in the solute, the mass
conservation equation describing transport and reaction can
be written in the general form [20]

∂Ci
∂t

+∇ · Ji + λiCi = Ri, (2)

where Ci denotes the ionic concentration, Ji the species flux,
λi a radioactive decay constant, and Ri the rate at which the
ith species is produced or consumed by chemical reactions.
The flux Ji, consisting of contributions from advection,
diffusion, and electrochemical migration terms has the form
[20]

Ji = −eziDi

kT
Ci∇Ψ−Di

(∇Ci + Ci∇ ln γi
)

+ Ciu, (3)

where the first term on the right refers to electrochemical
migration, the second term to aqueous diffusion, and the last
term to advective transport. Here zi,Di, and γi denote the ion
algebraic valence, the diffusivity, and the activity coefficient
of the ith species, respectively; and e, k, and T denote the
absolute charge of electron, the Boltzmann constant, and the
absolute temperature, respectively. The quantityΨ represents
the local electrical potential caused by the ionic distribution
which is governed by the Poisson equation

∇ · (εrε0∇Ψ) = −ρe = −
∑

i

eziCi, (4)

where εr is the local dimensionless fluid dielectric constant,
ε0 the permittivity of a vacuum, and ρe the net charge density.
Assuming no radiation and constant activity coefficient and
substituting (4) into (2), we have

∂Ci
∂t

+ u · ∇Ci = Di∇2Ci +
eziDi

kT
∇ · (Ci∇Ψ). (5)

This is the Nernst-Planck equation [21], where F can be any
kind of effective body force. In this contribution we only
consider the static electrical force from an external electric
field. The general form of electrical force in electrokinetic
fluids can be expressed as

FE = −ρe∇Ψext, (6)

where Ψext is the external electrical potential field.
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When the ionic convection is negligible and the electric
potential is continuously derivable, (5) has a simple steady-
state solution for dilute electrolyte solutions:

Ci = Ci,∞e−eziΨ/kT . (7)

Substituting (7) into (4) yields the nonlinear PB equation
[22]

∇2Ψ = − 1
εrε0

∑

i

eziCi,∞ exp
(
− ezi
kT

Ψ
)
. (8)

2.3. Equations for Mineral Reaction Rates. Heterogeneous
reactions between aqueous species and minerals at the pore-
mineral interface are given by [23]

AD
∂Ψ j

∂n

∣∣
∣
∣
∣
s

=
∑

s

ν jsAsÎs(s), (9)

where n denotes the unit normal perpendicular to the fluid-
mineral interface pointing toward the fluid phase, D denotes
the aqueous diffusion coefficient assumed to be the same
for all species for simplicity, and Îs(s) denotes the reaction
flux of the sth mineral at its surface, taken as positive for
precipitation and negative for dissolution. The total surface
area A across which diffusion takes place equal to the sum of
individual mineral surface areas As is given as

A =
∑

s

As. (10)

3. Lattice Boltzmann Model Implementation

3.1. Incompressible Lattice Boltzmann Model for Single-Phase
Flow. In order to eliminate compressible effects in the
conventional LBM, here we use an incompressible LB model
constructed by Guo et al. [24]. The pore-scale flow of a single
aqueous fluid phase is simulated by the following evolution
equation:

fα(x + eαδt, t + δt) = fα(x, t)− fα(x, t)− fα
eq(x, t)

τ
. (11)

In the above equation, δt is the time increment, fα the
distribution function along the α direction in velocity space,
fα

eq the corresponding equilibrium distribution function,
and τ the dimensionless relaxation time. For the commonly
used two-dimensional, nine-speed LB model (D2Q9), the
discrete velocities eα have the following form:

eα =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0), α = 0,

(cos θα, sin θα)c, θα = (α− 1)π
2

, α = 1− 4,

√
2(cos θα, sin θα)c, θα = (α− 5)π

2
+
π

4
, α = 5− 8.

(12)

For the incompressible LB model, the equilibrium distri-
bution is defined by Guo et al. [24]:

fα
eq =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4σ
p

ρc2
+ sα(u), α = 0,

λ
p

ρc2
+ sα(u), α = 1− 4,

γ
p

ρc2
+ sα(u), α = 5− 8,

(13)

where σ , λ, and γ are the parameters satisfying

λ + γ = σ ,

λ + 2γ = 1
2

,

sα(u) = ωα

[

3
eα · u
c2

+ 9
(eα · u)2

2c4
− 3u2

2c2

]

.

(14)

In these equations, c = δx/δt, where δx is the space
increment, and p and u are the pressure and velocity of the
fluid, respectively. The corresponding weight coefficients are

ωα =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
9

, α = 0,

1
9

, α = 1− 4,

1
36

, α = 5− 8.

(15)

Equation (11) has been shown to recover (1) [24], with
the velocity and pressure given by

u =
8∑

α=1

eα fα (16)

p

ρ
= c2

4σ

⎡

⎣
8∑

α=1

fα + s0(u)

⎤

⎦, (17)

respectively.

3.2. Lattice Boltzmann Model for Two-Phase Flow. The
interaction-potential model, originally proposed by Shan
and Chen [25], and henceforth referred to as the S-C model,
introduces k distribution functions for a fluid mixture
comprising of k components. Each distribution function
represents a fluid component and satisfies the evolution
equation. The nonlocal interaction between particles at
neighboring lattice sites is included in the kinetics through
a set of potentials. The LB equation for the kth component
can be written as

f ki (x + eiδt, t + δt)− f ki (x, t) = − f ki (x, t)− f
k(eq)
i (x, t)

τk
,

(18)

where f ki (x, t) is the number-density distribution function
for the kth component in the ith velocity direction at
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position x and time t, and δt is the time increment. In
the term on the right-hand side, τk is the relaxation time

of the kth component in lattice unit, and f
k(eq)
i (x, t) is the

corresponding equilibrium distribution function.
The phase separation between different fluid phases, the

wettability of a particular fluid phase to the solid, and the
body force are taken into account by modifying the velocity
used to calculate the equilibrium distribution function.
An extra component-specific velocity due to interparticle
interaction is added on top of a common velocity for each
component. Interparticle interaction is realized through the
total force, Fk, acting on the kth component, including
fluid/fluid interaction, fluid/solid interaction, and external
force. More details can be found in [26, 27].

The continuity and momentum equations can be
obtained for the fluid mixture as a single fluid using
Chapman-Enskog expansion procedure in the nearly incom-
pressible limit:

∂ρ

∂t
+∇ · (ρu

) = 0,

ρ
[
∂u
∂t

+ (u · ∇)u
]
= −∇p +∇ · [ρν(∇u + u∇)

]
+ ρg,

(19)

where the total density and velocity of the fluid mixture are
given, respectively, by

ρ =
∑

k

ρk,

ρu =
∑

k

ρkuk +
1
2

∑

k

Fk

(20)

with a nonideal gas equation of state given by [28].

3.3. Lattice Boltzmann Model for Transport of Reactive Solutes.
In a previous article, Kang et al. [29] have derived the follow-
ing LB equation for the total primary species concentrations
for chemical systems with reactions written in canonical
form:

Gαj(x + eαδt , t + δt) = Gαj(x, t)−
Gαj(x, t)−Geq

α j

(
Ψ j , u

)

τaq
,

(
j = 1, . . . ,NC

)
,

(21)

where NC is the number of primary species, Ψ j is the
total concentration of the jth primary species, Gαj is its
distribution function along the α direction, G

eq
α j is the

corresponding equilibrium distribution function, eα are
velocity vectors, δt is the time increment, andτaq is the
dimensionless relaxation time.

It has been shown that the above equation can recover
the following pore-scale advection-diffusion equation for Ψ j

[30]:

∂Ψ j

∂t
+ (u · ∇)Ψ j = ∇ ·

(
D∇Ψ j

)
. (22)

This equation is the same as (5) except that here the
electrochemical migration is neglected. Assuming that the
homogeneous reactions are in instantaneous equilibrium, we
have the following mass action equation [31, 32]:

Ci = (γi)
−1Ki

Nc∏

j=1

(
γjCj

)ν ji
, (23)

where ν ji are the stoichiometric coefficients, Ki is the
equilibrium constant of the ith homogeneous reaction, γi is
the activity coefficient of the ith secondary species, and Cj

and Ci are solute concentrations for primary and secondary
species, respectively. They are related by

Ψ j = Cj +
NR∑

i=1

ν jiCi, (24)

where NR is the number of independent homogeneous
reactions, or, equivalently, secondary species.

More details on the heterogeneous reactions between
aqueous species and minerals at the pore-mineral interface
described by (9), and on the update of solid phase, can be
found in [29, 33].

3.4. Lattice Poisson Method. To solve the Poisson equation
with strong nonlinearity, (8), we adopt the lattice Poisson
method (LPM) developed previously [34, 35], which tracks
the electrical potential distribution transporting on the
discrete lattices. By expanding (8) into the time-dependent
form

∂ψ

∂t
= ∇2ψ + grhs

(
r,ψ, t

)
(25)

with grhs = (1/εε0)
∑

i zieni,∞ exp(−(zie/kbT)ψ) representing
the negative right-hand side (RHS) term of the original
(8), we get the discrete evolution equation for the electrical
potential distribution

gα
(

r + Δr, t + δt,g
)
− gα(r, t)

= − 1
τg

[
gα(r, t)− geq

α (r, t)
]

+

(

1− 0.5
τg

)

δt,gωαgrhs,

(26)

where g
eq
α is the equilibrium distribution of the electric

potential evolution variable. The time step for the electrical
potential evolution is

δt,g = δx
c′

, (27)

where c′ is a pseudo-sound speed in the potential field. After
evolving on the discrete lattices, the mesoscopic electrical
potential can be calculated using

ψ =
∑

α

(
gα + 0.5δt,ggrhsωα

)
. (28)

Although the electrical potential evolution equations
are in an unsteady form, only the steady state result is
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Figure 1: Photographic image of a limestone rock thin section
(640× 480 pixels).

60

80

Figure 2: Digitized image with reduced resolution.

realistic, because the electromagnetic susceptibility has not
been considered. Although the lattice evolution method for
nonlinear Poisson equation is not as efficient as the multi-
grid solutions due to its long wavelength limit, it has the
advantages of suitability for geometrical complexity and
parallel computing.

4. Simulation Examples

4.1. Injection of CO2 into a Limestone Rock. We first
present some modeling results on the injection of a
fluid saturated with 170 bars CO2(g) into a limestone
rock at the pore scale. The pore structure was derived
from a digitized image of a limestone rock thin sec-
tion with 640 × 480 pixels (Figure 1). We reduced the
original resolution to save computational time (Figure 2).
The chemical system of Na+-Ca2+-Mg2+-H+-SO4

2−-Cl−-
CO2 with the reaction of calcite to form dolomite and
gypsum is considered. Secondary species included in the
simulation are OH−, HSO4

−, H2SO4(aq), CO3
2−, HCO3

−,
CaCO3(aq), CaHCO3

+, CaOH+, CaSO4(aq), MgCO3(aq),
MgHCO3

+, MgSO4(aq), MgOH+, NaCl(aq), NaHCO3(aq),
and NaOH(aq). Initial fluid composition is pH 7.75 and
2.69 m NaCl brine, equilibrium with minerals calcite,
dolomite and gypsum at 25◦C. Initial rock composition is
calcite. Secondary minerals include dolomite and gypsum.
For boundary conditions, a constant pressure gradient is

Calcite
Dolomite
Gypsum

(a)

Calcite
Dolomite
Gypsum

(b)

Figure 3: Resulting geometries at time = 15625 seconds for two
different mineral reaction rate constants: (a) large reaction rate
constants; (b) small reaction rate constants.

imposed across the domain for flow. When flow reaches
steady state, a fluid with a pH of 3.87 and in equilibrium
with 179 bars CO2(g) and minerals dolomite and gypsum
is introduced at the inlet. Zero gradient boundary conditions
are imposed at the outlet. Two different cases are considered
with different mineral reaction rates to show their effects on
solution concentration, mineral deposition, and change in
geometry.

Resulting geometries at time = 15625 seconds for two
different mineral reaction rate constants are plotted in
Figure 3. Damkohler is 7.375 for calcite and gypsum, 0.7375
for dolomite for the faster mineral reactions, 7.375×10−2 for
calcite and gypsum, and 7.375×10−3 for dolomite for slower
reactions. Concentration distribution of total Ca2+, Mg2+,
and SO4

2−, pH, and reaction rates for calcite, dolomite,
and gypsum for the slower reactions are plotted in Figure 4.
As can been seen from the figures, as the reaction rate
constants decrease, the deposition of dolomite becomes more
uniform surrounding the dissolving calcite grains. Only a
small amount of gypsum forms on top of dolomite. At some
point in the simulation, the major pores for flow become
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0.232
0.2225
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0.2035
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0.1845
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0.0895
0.08

(a)

Mg++ tot

0.29
0.27575
0.2615
0.24725
0.233
0.21875
0.2045
0.19025
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0.16175
0.1475
0.13325
0.119
0.10475
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0.01925
0.005

(b)

SO4
− tot
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0.031595
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0.02738
0.025975
0.02457
0.023165
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0.01895
0.017545
0.01614
0.014735
0.01333
0.011925
0.01052
0.009115
0.00771
0.006305
0.0049

(c)

pH
7.7
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7.31
7.115
6.92
6.725
6.53
6.335
6.14
5.945
5.75
5.555
5.36
5.165
4.97
4.775
4.58
4.385
4.19
3.995
3.8

(d)

Calcite rte
0.000E+00

−8.850E−06
−1.770E−05
−2.655E−05
−3.540E−05
−4.425E−05
−5.310E−05
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−7.080E−05
−7.965E−05
−8.850E−05
−9.735E−05
−1.062E−04
−1.151E−04
−1.239E−04
−1.328E−04
−1.416E−04
−1.505E−04
−1.593E−04
−1.681E−04
−1.770E−04

(e)

Dolomite rte
5.05E−05
4.7975E−05
4.545E−05
4.2925E−05
4.04E−05
3.7875E−05
3.535E−05
3.2825E−05
3.03E−05
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2.525E−05
2.2725E−05
2.02E−05
1.7675E−05
1.515E−05
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0

(f)

Gypsum rte
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1.05E−05
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7.5E−06
6E−06
4.5E−06
3E−06
1.5E−06
0

(g)

Figure 4: Distribution of solute concentrations, pH value, and reaction rates at time = 15625 seconds for small reaction rate constants.

blocked halting further fluid flow through the medium. The
pH is uniform over the entire pore space. All reaction rates
have finite values at the mineral surface in the whole domain,
outlining the solid geometry. The reaction rate is negative
for calcite and positive for dolomite and gypsum, confirming
that calcite is dissolving while dolomite and gypsum are
precipitating.

4.2. Two-Phase Behavior and Flooding Phenomena in Polymer
Electrolyte Fuel Cells. In this Section, we present some results
for two-phase flow through the porous CL and the fibrous
GDL in a PEFC. Details can be found in [36]. Figure 5
displays the steady state invading liquid water fronts corre-
sponding to increasing capillary pressures from the primary
drainage simulation in the reconstructed CL microstructure
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Figure 5: Advancing liquid water front with increasing capillary pressure through the initially air-saturated reconstructed CL microstructure
from the primary drainage simulation.

characterized by slightly hydrophobic wetting characteristics
with a static contact angle of 100◦. At lower capillary
pressures, the liquid water saturation front exhibits finger
like pattern, similar to the displacement pattern observed
typically in the capillary fingering regime. The displacing
liquid water phase penetrates into the body of the resident
wetting phase (i.e., air) in the shape of fingers owing to
the surface tension driven capillary force. However, at high
saturation levels, the invading nonwetting phase tends to
exhibit a somewhat flat advancing front. This observation,
as highlighted in Figure 5(b), indicates that with increasing
capillary pressure, even at very low capillary number (Ca),
several penetrating saturation fronts tend to merge and form
a stable front. The invasion pattern transitions from the
capillary fingering regime to the stable displacement regime
and potentially lies in the transition zone in between. In an
operating fuel cell, the resulting liquid water displacement
pattern pertaining to the underlying pore-morphology and

wetting characteristics would play a vital role in the transport
of the liquid water and hence the overall flooding behavior.

Figure 6 shows the liquid water distribution as well as
the invasion pattern from the primary drainage simula-
tion with increasing capillary pressure in the initially air-
saturated reconstructed carbon paper GDL characterized
by hydrophobic wetting characteristics with a static contact
angle of 140◦. The reconstructed GDL structure used in the
two-phase simulation consists of 100 × 100 × 100 lattice
points in order to manage the computational overhead to a
reasonable level. Physically, this scenario corresponds to the
transport of liquid water generated from the electrochemical
reaction in a hydrophobic CL into the otherwise air-occupied
GDL in an operating fuel cell. At the initially very low
capillary pressure, the invading front overcomes the barrier
pressure only at some preferential locations depending upon
the pore size along with the emergence of droplets owing to
strong hydrophobicity. As the capillary pressure increases,
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Figure 6: Advancing liquid water front with increasing capillary pressure through the initially air-saturated reconstructed GDL micro-
structure from the primary drainage simulation.

several liquid water fronts start to penetrate into the air
occupied domain. Further increase in capillary pressure
exhibits growth of droplets at two invasion fronts, followed
by the coalescence of the drops and collapsing into a single
front. This newly formed front then invades into the less
tortuous in-plane direction. Additionally, emergence of tiny
droplets and subsequent growth can be observed in the
constricted pores in the vicinity of the inlet region primarily
due to strong wall adhesion forces from interactions with
highly hydrophobic fibers with the increasing capillary
pressure. One of the several invading fronts finally reaches
the air reservoir, physically the GDL/channel interface,
at a preferential location corresponding to the capillary
pressure and is also referred to as the bubble point. It
is important to note that the mesoscopic LB simulations
provide fundamental insight into the pore-scale liquid water

transport through different GDL structures and would likely
enable novel GDL design with better water removal and
flooding mitigation.

4.3. Electroosmosis in Homogeneously Charged Micro- and
Nanoscale Porous Media. In this section, we briefly present
some simulation results on electroosmotic flows (EOFs)
in charged micro porous media using the lattice Poisson-
Boltzmann method (LPBM), with geometry effects, solution
and surface charge effects considered. More details can be
found in [35]. We focus on a cubic system of which each side
is 1 micron long. A 60 × 60 × 60 uniform grid is used. We
change microstructure geometries of porous media by vary-
ing the porosity ε from 0.1 to 0.9. The average characteristic
length of particles varies from 20 to 150 nm. Figure 7 shows
Schematics of the generated porous structures for porosity
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(a)

(b)

Figure 7: Schematics of the generated porous structures on 60 ×
60 × 60 grid systems. The white is solid particles and the dark is
fluid: (a) porosity = 0.6, (b) porosity = 0.3.

0.3 and 0.6. The bulk ionic concentration n∞ varies from
10−6 to 10−3 M and the surface zeta potential from 0 to
−100 mV. The other properties and parameters used in this
work are the fluid density ρ = 999.9 kg/m3, the dielectric
constant εrε0 = 6.95 × 10−10 C2/Jm, the dynamic viscosity
μ = 0.889 mPas, the temperature T = 273 K and the external
electrical field strength E = 1× 104 V/m.

First, the geometry effects on the electroosmotic perme-
ability in micro porous media are investigated by changing
volume fraction and particle size (or number density) of the
solid phase. We define the electroosmotic permeability, κe, as

κe = u

E
, (29)

where u is the averaged velocity of EOF along the direc-
tion of the driving electrical field E. The coefficients of
electroosmotic permeability (κe) for different porosities
(ε) of porous media are shown in Figure 8. The bulk
molar concentration c∞ = 10−4 M, and ζ = −50 mV.
The electroosmotic permeability increases with the porosity
monotonically. The increasing rate rises with the porosity
as well which is very low when the porosity is smaller than
0.5 and becomes sharply high when the porosity is larger
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Figure 8: Predicted electroosmotic permeabilities for various
porosities of porous media at c∞ = 10−4 M, ζ = −50 mV, E =
1× 104 V/m.
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Figure 9: The electroosmotic permeability changing with the bulk
ionic concentration for ε = 0.38, ζ = −50 mV, and E = 1×104 V/m.

than 0.7. The predicted electroosmotic permeability is in the
order of 10−9 m2/sV, which is consistent with the existing
experimental measurements.

Figure 9 shows the predicted electroosmotic permeability
versus the bulk ionic concentration of the electrolyte solu-
tion. We used ε = 0.38. The electroosmotic permeability κe
increase monotonically with the bulk ionic concentration c∞
as c∞ varies from 10−6 to 10−3 M. This result can be explained
by the undeveloped electrical potential distributions in
narrow channels, whose similar results can be found in
[37, Figure 2] and [38, Figures 1 and 2]. When c∞ is
lower than 10−4 M, the electroosmotic permeability is nearly
proportional to the bulk ionic concentration. When c∞ is
higher, the increasing rate becomes a little smaller.
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Figure 10: The electroosmotic permeability versus the zeta poten-
tial for ε = 0.38, c∞ = 10−4 M, and E = 1× 104 V/m.

Zeta potential on solid surfaces of porous media affects
EOF permeability directly. Simple proportional relationships
have been obtained between the electroosmotic permeability
and the zeta potential for electrical transports in soils and
in polymer composites recently based on the boundary-layer
theory. Here we analyze such effects using our numerical
methods.

Figure 10 shows the calculated electroosmotic perme-
ability versus the zeta potential on solid surfaces of porous
media. All surfaces are homogeneously charged with a same
value of ζ . The other parameters used are: c∞ = 10−4 M,
cd = 0.1 and ε = 0.38. The zeta potential ζ changes
from 0 to 90 mV. It shows that the proportionally linear
relationship between electroosmotic permeability and zeta
potential is accurate only when ζ is very small (<30 mV). The
permeability increases much sharper when the zeta potential
ζ is larger than 40 mV.

5. Conclusions

We have presented our recent work on mesoscopic modeling
of multiphysicochemical processes in porous media, based
on the LBM. For the problem of injecting CO2 saturated
brine into a limestone rock, it is shown that the LBM is
able to provide detailed information on fluid velocity, solute
concentration, mineral composition, and reaction rates, as
well as the evolution of the porous media geometry, and
therefore can shed some light on the fundamental physics
occurring at the pore scale for reactive transport involved
in geologic CO2 sequestration. For two-phase behavior and
flooding phenomena in PEFCs, the LBM is a powerful
tool to study the influence of the pore structure and
surface wettability on liquid water transport and interfacial
dynamics in the PEFC catalyst layer and gas diffusion layer.
Particularly, the two-phase regime transition phenomenon
in the capillary dominated transport in the CL and the
influence of the mixed wetting characteristics on the flooding

dynamics in the GDL are demonstrated. For electroosmotic
flows in charged porous media, the strongly nonlinear
governing equations of electroosmosis in three-dimensional
porous media are solved using the LPBM. The effects of pore
structure, bulk ionic concentration, and the surface charge
on electroosmotic permeability are carefully investigated. It
is concluded that the LBM is a powerful numerical tool to
simulate multiphysicochemical processes in porous media at
the pore-scale.
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