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a b s t r a c t

Optimization of a fluid distributing tube network plays a critical role in the operation efficiency and
energy conservation of a cooling system. In this paper, we analyze the effect of multi-dimension on the
structure of a fluid distributing tube network for cooling heat-generating, and then seek the optimal
fluid structure with minimal pressure drop for a given total volume of the tube network. The theoretical
vailable online 16 July 2010
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results show that the pressure drop of a laminar flow in the tube network reaches the minimum when
the cubic value of the parent tube diameter equals to the sum of those of the daughter tube diameter,
consistent with Murray’s law. Furthermore, it is advantageous to have a higher dimension structure in
network arrangement when the number of heat generation units increases, i.e., network performance
improves by adopting a two-dimensional and even three-dimensional format as the number of units
eating and cooling system grows.

. Introduction

As various systems become more sophisticated and densely
ntegrated, the need for heat dissipation rate of the devices has
een rising so quickly to such a significantly high level that simple
ooling mode is no longer sufficient, and more complex and effec-
ive cooling mechanisms become urgently required. Thus, study of
ooling system with fluid distributing network has attracted more
nd more attention, especially in electronic, chemical, and energy
elds [1–3]. This kind of cooling system can be simply described as a
etwork of tubes with cooling fluid, arranged in a device consisting
f n heat generation units/elements, while both the heat generation
ate and the cooling fluid flow rate, Ġ0, in each unit remain equal
nd constant. Thus, the function of the network is to distribute the
ooling fluid with the inlet flow rate, nĠ0, into the n heat genera-
ion elements, collect the used cooling fluid after passing through

hese elements, and finally discharge the fluid from the outlet. In
he interest of energy conservation, we would like to optimize the
istribution network for the lowest pressure drop between the inlet
nd outlet at a given flow rate [3,4]. Meanwhile, because the whole
olume of the system is related to the total cost, it makes sense to

∗ Corresponding author at: Department of Engineering Mechanics, Tsinghua Uni-
ersity, Beijing, 100084, China. Tel.: +86 10 6278 1610.
∗∗ Corresponding author.

E-mail addresses: chenqun@tsinghua.edu.cn (Q. Chen), moralwang@gmail.com
M. Wang).

255-2701/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.cep.2010.07.006
© 2010 Elsevier B.V. All rights reserved.

treat the total volume of the cooling fluid distributing network as
a constraint.

Duan et al. [5] proposed a method for optimizing the shape of a
single fluid distributor based on the variational level set method, in
which a relatively smooth flow path is maintained with the mini-
mum flow resistance at a given constant fluid flow rate. Aragon et
al. [6] developed a multi-objective genetic algorithm in designing a
two-dimensional (2D) and a three-dimensional (3D) microvascular
networks embedded in the bio-mimetic self-heating/self-cooling
polymeric materials, and investigated the effects of such factors
as the network redundancy, template geometry and microchan-
nel diameter on the Pareto-optimal fronts generated by the genetic
algorithm. Gosselin and da Silva [7] optimized a rarefied gas dis-
tribution network from a source point to a given number of
equidistant users with given microscale pipes carrying the fluid.
Furthermore, in order to increase the computational efficiency,
Saber et al. [8] performed a hydrodynamic analysis of such multi-
scale networks under isothermal and laminar flow conditions, and
then introduced a simple method to quickly select an appropriate
numbering-up operation.

Meanwhile, by the analogy between fluid flow and electrical
circuits, Zhmoginov and Fisch [9] obtained an optimal exit flux
arrangement in networks of intersecting diffusion domains with
a special form of thin paths. Also, inspired by the fractal pat-

tern of mammalian circulatory and respiratory systems [10], Chen
and Cheng [11] designed a fractal branching channel conformation
to cool down electronic chips, exhibiting a greater heat transfer
capability yet requiring a lower pumping power, compared to the
traditional parallel network. Next, Tondeur and Luo [12–14] exper-
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mentally investigated a typical fluid distributor widely used in
atalytic/adsorbent monoliths for homogenously distributing the
nlet fluid to a plane surface, where each bigger tube splits into two
maller ones in each subsequent step. They pointed out that the
adius ratio for the succeeding tubes in the branching network sat-
sfies the Murray’s Law [15], while the viscous dissipation per unit
olume in all tubes remains constant so that the overall viscous
issipation in the entire fluid distributor is the lowest.

On the other hand, the so-called constructal theory was then
ntroduced for designing the network of conducting path for cool-
ng a heat generation system [16]. Based on the theory, in a system
ssembled by a number of smaller units, the system properties can
e estimated from the performance parameters of the constituents
16]. Furthermore, Gosselin [17,18] discussed the influence of tur-
ulence flow instead of the usual laminar one in a tube on the
ptimal structure of the flow tube network. Besides, Fan et al.
19] in their own experiments investigated the flow distribution
ehavior of a plate-type constructal flow distributor, which has one

nlet and 16 outlets and was designed according to the construc-
al theory to achieve a uniform flow distribution with the smallest

echanical energy dissipation and the shortest residence time.
owever, the validity of the constructal theory was also questioned
y other scholars. Ghodoossi [20] found that the supposedly opti-
ized results from the constructal theory were in fact not optimal
ith the increasing constructal steps, i.e. the increasing structure

omplexity. Likewise, Wu et al. [21] obtained a result with perfor-
ance better than the one based on the constructal theory [16]

nd thus challenged the assumption that a system is automatically
ptimal if consisting of optimal constituents. Overall, in the above
eferences, based on the constructal theory, the optimized net-
orks usually have hierarchal fractal networks as shown in Fig. 1

16–18], but the influences of the branch number and the system
imension on the performance of such tube network have not been
xplicitly discussed in those reports.

In this paper, several cooling fluid distributing networks com-
osed of many heat generation units are investigated. The pressure
rops of the distributing networks in one-dimensional (1D), two-
imensional (2D) and three-dimensional (3D) cases are calculated,
he relationship between the dimension of the optimal fluid dis-
ributing network and the number of heat generation elements is
iscussed, and finally with the constraint of a constant total vol-
me, some new design approaches for optimization in network
esign with minimal pressure drop and the major factors involved
re developed.

. 1D structure optimization

Consider a cubic heat generation element with length, width
nd height of x0, y0 and z0, respectively, where x0 < y0 < z0. n = pqr
uch heat units form a practical heat generator, with p, q, and r units
n x, y, and z direction, respectively. Thus, the total length, width
nd height of the heat generator are px0, qy0 and rz0. The cooling
uid flow rates Ġ0 in each heat generation element are the same,
o the total cooling fluid flow rate in the entire heat generator is
Ġ0. Because the main objective of this paper is to study the cooling
uid distributing process, for brevity the details in the heat transfer
rocess between the cooling fluid and each heat unit is not included.

Ideally, the cooling fluid needs to be distributed homogenously
nto the n units and collected by a fluid distributing tube network
imilar to Fig. 1. For a single heat unit clearly, neither the fluid dis-

ributing network nor its optimization is existent. In the case that
he heat generator is composed of two or more elements however,
e need a network to distributing the fluid to cool these elements
niformly. Because the electronic elements and the cabinets are
sually the source for expenditure, the total volume Vall of the
Fig. 1. Sketches of some fluid distributors. (a) The fluid distributor with 128 flow
outlets by 7 two-bifurcates [13]; (b) the overlook sketch of fluid distributor with
four-bifurcates [12].

cooling fluid distributing network is taken as the constraint for opti-
mization. Note here Vall is not the total volume of all the heat units
V = nx0y0z0, but the total volume of all the tubes in the distributing
network, derived from the diameter and length of each tube.

On condition that at least two or more heat generation elements
are in a heat generator, the simplest method to design the cooling
fluid distributing network for the system is that each element is
connected by two tubes side by side, one distributing and the other
collecting the fluid. Fig. 2 shows such a distributing tube network
with the heat units arranged in x direction. For clarity, the two heat
generation elements at a given gap in between are shown in the
left of Fig. 2, while in the right, the solid lines stand for the fluid
distributing/collecting tubes and dashed lines the heat exchange
tubes.

Considering the fluid distributing network with all straight
tubes in Fig. 2, the total volume of the tubes Vall, except for the
heat exchange tubes, is readily calculated as

Vall = (n − 1)�D2
x

2
x0, (1)

where Dx is the diameter of the tube in x direction.
Assuming laminar flows are fully developed in all tubes and the

pressure drop caused by the heat exchange tube is neglected, the
total pressure drop of the cooling fluid flowing from the inlet A to
the outlet B is expressed as
�P1 = 128�
∑n−1

i=1 (iĠ0)

�D4
x

x0, (2)

where � is the fluid viscosity, and Ġ0 the flux shown in Fig. 2.
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Fig. 2. Arrangement of two or more heat

t

�

Fig. 3. Arrangement of two or more heat generation elements in y direction.
Substituting Eq. (1) into Eq. (2) yields the total pressure drop of
he one-dimensional fluid distributing network:

P1 = 16��(n − 1)3x3
0

V2
all

nĠ0. (3)

Fig. 4. Two-dimensional tube network arrange
generation elements in x direction.

Similarly, when the heat generation elements are arranged in y
direction alone shown in Fig. 3, the total pressure drop becomes:

�P2 = 16��(n − 1)3y3
0

V2
all

nĠ0. (4)

Because the length of the heat generation element in x direction
is less than that in y direction, the pressure drop in Fig. 2 is smaller
than that in Fig. 3, which is in turn smaller than the one when the
heat generation elements are arranged in z direction. Thus, the tube
network shown in Fig. 2 is the optimal 1D structure for the cooling
fluid distributing network.

3. 2D structure optimization with p × q heat generation
elements

As shown in Fig. 4 for the 2D case, a heat generator is composed
of n = p × q units. The cooling fluid is first uniformly distributed in y
direction to each tube along x direction, and then to each heat gen-
eration element along the way, termed the “first y next x” approach
in Fig. 4. Similarly, the fluid can also be distributed in x direction to

each tube along y direction, and then to each element, as the “first
x next y” approach in Fig. 4.

For the “first y next x” tube network, assuming the diameter
of the tubes along x and y directions as Dx, and Dy, respectively,
and again ignoring the influence of the heat exchanging tubes, the

ment of p × q heat generation elements.



ng and

p

�

i

V

t
D
t
n
D
t

�

D

v
i
t
t
i
a
e
a

s
l
t
“
n

�

4

t
i
w

F

X.-B. Liu et al. / Chemical Engineeri

ressure drop from the inlet A to the outlet B can be expressed as

P3 = 128�
∑q−1

i=1 (piĠ0)

�D4
y

y0 + 128�
∑p−1

i=1 (iĠ0)

�D4
x

x0. (5)

The total volume of all the tubes, except the heat exchange ones,
s

all = (p − 1)q�D2
x

2
x0 + (q − 1)�D2

y

2
y0. (6)

Based on Eqs. (5) and (6), we find that the pressure drop of
he “first y next x” tube network reaches the minimum when
x/Dy = q−1/3, i.e., the optimal diameter ratio of the adjacent two

ubes is determined by the number of the daughter tubes q con-
ected to the parent tube. A smaller q leads to a greater ratio of
x/Dy, as shown in Eq. (8). Here, the lowest pressure drop between

he inlet A and the outlet B is

P3,min = 16��[(p − 1)q1/3x0 + (q − 1)y0]
3

V2
all

pqĠ0. (7)

The expression, Dx/Dy = q−1/3 is equivalent to

3
y = qD3

x . (8)

As Murray’s Law [5] indicated, the cube of the radius of a parent
essel equals to the sum of the cubic radius of the daughter vessels
n an organism. In the fluid distributing tube network studied in
his paper, due to mass conservation, the flow rate in each parent
ube equals to the total flow rates in q daughter tubes. As expressed
n Eq. (8), the fluid flow rates in the parent and the daughter tubes
re proportional to the cubic values of their corresponding diam-
ters. That is to say, Eq. (8) is equivalent to Murray’s law for the
forementioned tube network.

Similarly, for the “first x next y” network arrangement, the pres-
ure drop is lowest when Dy/Dx = p−1/3, i.e. a larger number p will
ead to a greater diameter Dy of the daughter distributing tube than
he diameter Dx of the parent one. The lowest pressure drop of the
first x next y” tube network between the inlet A and the outlet B
ow is

P4,min = 16��[(p − 1)x0 + (q − 1)p1/3y0]
3

V2
all

pqĠ0. (9)

. Transition of optimal network from 1D to 2D
Eqs. (7) and (9) give the lowest pressure drop in the fluid dis-
ributing network for p × q heat generation elements, arranged as
n Fig. 4. Alternatively, the network can also be constructed as Fig. 5,

hose pressure drop can then be calculated approximately by using

ig. 5. The snakelike distributing tube network for p × q heat generation elements.
Processing 49 (2010) 1038–1043 1041

the pressure drop formula Eq. (3) in one-dimensional arrangement
in Fig. 2. The amount of the elements, n = p × q, is substituted into
Eq. (3) to calculate the pressure drop for the snakelike structure in
Fig. 5. Thus, for a heat generator consisted of p × q elements, three
possible arrangements exist, i.e. the snakelike one-dimensional
one, the “first y next x” and the “first x next y” two-dimensional
arrays, respectively. The following is the comparison of the pressure
drop in these three cases.

From Eqs. (3) and (7), it is clear that the pressure drop of the
one-dimensional network is less than that of “first y next x” tube
network if

p ≤ y0

x0
+ y0/x0 − 1

q2/3 + q1/3
. (10)

When q � 1 or the ratio y0/x0 approximates to 1, the condition
in Eq. (10) is reduced into

pqx0

qy0
≤ 1. (11)

Similarly, comparing Eq. (3) and Eq. (9), the pressure drop in the
one-dimensional case lower than that in “first x next y” network if

p ≤
(

y0

x0

)3/2
. (12)

From Eq. (7) and Eq. (9), the condition that “first y next x” tube
network is better than “first x next y” tube network is

x0

y0
≤ q2/3 + q1/3 + 1

p2/3 + p1/3 + 1
. (13)

When both the ratio, x0/y0, and the value q of the elements in
y direction are given, Eq. (13) can be simplified into a quadratic
inequality with an unknown variable p1/3 with only one non-trivial
solution, i.e.,

pc =
[√

y0

x0
q2/3 + y0

x0
q1/3 + y0

x0
− 3

4
− 1

2

]3

. (14)

Thus, of the two 2D arrangements, the pressure drop of “first
y next x” network is lower when p < pc, and the “first x next y”
tube network is better when p > pc. As shown in Eq. (14), the larger
the ratio y0/x0, the wider the range [0,pc] for p, and thus a lower
pressure drop for the “first y next x” network.

If the number q of the elements in y direction is large enough so
that (y0/x0)q2/3 becomes much greater than any other items in Eq.
(14), then, Eq. (14) is simplified into

pc =
(

y0

x0

)3/2
q. (15)

Eq. (15) can be used as an approximate criterion to compare the
performance between the “first y next x” and the “first x next y” net-
works. More importantly, Eq. (15) connects the macro-size of the
heat generator (px0)/(qy0) with the element size x0/y0, clearly use-
ful for design and other applications in engineering. For instance,
for given element dimension x0/y0 and pc, by adjusting q we can
design a network in either 2D format with lower pressure drop.

In summary and on assumption q � 1, the relationship and com-
parison of the pressure drops for the three network arrangements
are concluded in Table 1.

As shown in Table 1, for a given size of the heat generator and
heat element, there exists the following relations in terms of the
pressure drops: from the first and second rows, if 1D is not the best

of the three, then 2DYX is always a better design than 2DXY; if 1D
is the best as in rows 3 and 4, there is no definite relation between
2DYX and 2DXY.

From Eq. (11), we can further conclude that: if the characteris-
tic length pqx0 of a one-dimensional network is smaller than the
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Table 1
Pressure drops for three network arrangements: one-dimensional (1D), two-dimensional “first y next x” (2DYX) and “first x next y” (2DXY).

Exact range for p Approximate range for p Comparison of pressure drop

1 < p < y0
x0

+ y0/x0−1

q2/3+q1/3 1 < p < y0
x0

1D < 2DYX < 2DXY

y0
x0

+ y0/x0−1

q2/3+q1/3 < p <
(

y0
x0

)3/2 y0
x0

< p <
(

y0
x0

)3/2
2DYX < 1D < 2DXY(

y0
x0

)3/2
< p <

[√
y0
x0

q2/3 + y0
x0

q1/3 + y0
x0

− 3
4 − 1

2

]3 (
y0
x0

)3/2
< p < q

(
y0
x0

)3/2
2DYX < 2DXY < 1D[√

y0
x0

q2/3 + y0
x0

q1/3 + y0
x0

− 3
4 − 1

2

]3
< p q

(
y0
x0

)3/2
< p 2DXY < 2DYX < 1D

F
(
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e
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a

ig. 6. Pressure drop in different arrangements for given number of elements n = pq
x0/y0 = 0.5 and q = 5).

arent length qy0 in a 2DYX network, then the 1D network is a bet-
er choice, i.e., resulting in a lower pressure drop. Otherwise, the
everse is true. Or in more brief terms, the approximate criterion
or judging one- or two-dimensional cooling flow distributing net-
orks can be expressed as the shorter the characteristic length, the

etter the network.
To further elucidate the results from Eq. (10) to Eq. (15), assum-

ng x0/y0 = 0.5 and q = 5, and the total heat generation elements
= pq, Fig. 6 and Table 2 present the dimensionless pressure drop

or the three cooling flow distributing networks illustrated in
igs. 5 and 6.

In the figure there are four points of intersection by the
hree curves, i.e. Points a, b, c and d. The physical meanings of
hese points are as follows. Point a corresponds to the case n = 1,
.e. p = 1, where 2DXY = 2DYX; point b indicates the conditions
or 1D = 2DYX, when p ≤ (y0/x0) + (y0/x0 − 1)/(q2/3 + q1/3) ≈ 2.2
nd n = pq ≤ 11, as shown in Eq. (10), below which the ID
rrangement becomes the best owing to the lowest pres-
ure drop. Point c stands for the critical value 1D = 2DXY
rom Eq. (12) when p ≤ (y0/x0)3/2 = 81/2, i.e. n ≤ 2001/2. Once
gain, 2DXY = 2DYX at point d as defined in Eq. (14) when p ≤√
(y0/x0)q2/3 + (y0/x0)q1/3 + (y0/x0) − (3/4) − (1/2)]
3

≈ 20.6,
.e. n = pq ≤ 103. Overall, a complete criterion can be formed by the
nvelope connecting all the segments located between the four
rossing points, for such tube network design of different size n as

able 2
imensionless pressure drop for various tube networks at given sizes n (x0/y0 = 0.5
nd q = 5).

p n = pq �P for 1D
network

�P for 2DYX
network

�P for 2DYX
network

1 5 4.00 × 10−2 3.20 × 10−1 3.20 × 10−1

2 10 9.11 × 10−1 1.14 1.70
3 15 5.15 2.79 4.65

20 100 1.21 × 104 8.30 × 102 8.44 × 102

21 105 1.48 × 104 9.86 × 102 9.77 × 102

100 500 7.77 × 106 3.48 × 105 1.58 × 105
Fig. 7. Pressure drop in different arrangements for given number of elements n = pqr
(x0/y0 = 0.5, y0/z0 = 0.5, q = 5 and r = 2).

indicated in Table 2. In addition, it is important to note that Fig. 7 is
a logarithmic plot. Thus, pressure drops vary more markedly than
appeared in the figures.

5. 3D structure optimization with p × q × r heat generation
elements

The third option to design the cooling fluid distributing tube
network using given heat generation elements is that the cooling
fluid is homogeneously distributed into the heat generation units
in three steps. For the heat generator composed of p × q × r heat
units in x, y and z directions, the fluid can be first distributed from
the tube in z direction to the inlet of the daughter tube network
of p × q at a given x–y plane, and then distributed by the 2DXY
or 2DYX methods, leading to six 3D arrangements with different
combination of X, Y, and Z.

For instance in the arrangement 3DZXY, the diameters of tubes
in x, y and z directions are Dx, Dy and Dz, respectively, and the
pressure drop of the tube network is expressed as

�P5 = 128�
∑p−1

i=1 (qiĠ0)

�D4
x

x0 + 128�
∑q−1

i=1 (iĠ0)

�D4
y

y0

+ 128�
∑r−1

i=1 (pqiĠ0)

�D4
z

z0. (16)

The total volume of all the tubes, except the heat exchange ones,
is again

Vall = (p − 1)R�D2
x

2
x0 + p(q − 1)r�D2

y

2
y0 + (r − 1)�D2

z

2
z0. (17)
Based on Eqs. (16) and (17), the pressure drop in this 3DZXY
tube network reaches the minimum when

Dy/Dx = p−1/3 and Dx/Dz = r−1/3. (18)
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Table 3
Dimensionless pressure drop for various tube networks at given sizes n = pqr
(x0/y0 = 0.5, y0/z0 = 0.5, q = 5 and r = 2).

p n = pqr �P for 1D
network

�P for 2DYX
network

�P for 3DZXY
network

1 10 9.11 × 10−1 7.29 1.20 × 101

2 20 1.71 × 101 2.05 × 101 2.85 × 101

1 1 1

�
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[

[

[

[

[

[

[

[
distribution of a 2-dimensional constructal distributor, Experimental Thermal
and Fluid Science 33 (2008) 77–83.
3 30 9.15 × 10 4.16 × 10 5.03 × 10
4 40 2.97 × 102 7.32 × 101 7.83 × 101

5 50 7.35 × 102 1.18 × 102 1.13 × 102

100 1000 1.25 × 108 1.55 × 106 3.89 × 105

Here, the lowest pressure drop is

P5,min = 16��[(p − 1)r1/3x0 + (q − 1)p1/3r1/3y0 + (r − 1)z0]
3

V2
all

× pqrĠ0. (19)

Besides such six three-dimensional arrangements, the p × q × r
eat generation elements can also be arranged in a one-
imensional format shown in Fig. 2, or three two-dimensional
rrangements with p rows and qr columns, pq rows and r columns,
r pr rows and q columns, respectively. Each two-dimensional
rrangement has again two conformations, i.e. 2DXY and 2DYX.
or brevity and comparison purpose, we analyze in this paper only
he 1D arrangement in Fig. 2, the 2DYX arrangement with p rows
nd qr columns in Fig. 5, and the 3DZXY.

Fig. 7 and Table 3 give the results at n = pqr, q = 5 and r = 2 for
he three cases. The figure shows that with increasing number of
he heat generation elements, the optimal arrangement transcends
rom 1D at n < 20, to 2D at 20 < n < 50, and finally to 3D at n > 50.
hat is, when the number of heat units increases, the arrangement
t higher dimension offers a better performance.

. Conclusions

Structure optimization of fluid distributing tube network for
ooling systems has been investigated in this paper to empha-
ize the effect of multi-dimensional conformation. The concerned
ystem consists of one single inlet and outlet and a fluid tube net-
ork in between, and can be in one-, two- or three-dimensional

rrangement. The one-dimensional network will exhibit better per-
ormance, i.e., with lowest pressure drop if the number of the
lement n = p ≤ (y0/x0)3/2, where (y0/x0) is the prescribed element
spect ratio. Beyond this n value, two-dimensional arrangement
ecomes more favorable. As the total number of elements n

ncreases further, a three-dimensional network will provide bet-
er performance. In other words, as the number of heat generation
lements (the total system size) n increases, the optimal structure
f fluid distributing tube network for the lowest pressure drop will

ransit from one-dimensional to two-dimensional, and finally to
hree-dimensional structures.

Most importantly, the present contribution points out that in a
uid distributing network the optimal branch level (or dimension)
f a fluid distributing network should be carefully chosen based on

[

[

Processing 49 (2010) 1038–1043 1043

the problem scale, and more branch layers do not always lead to
better performance.
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