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Abstract 

The concept of entransy, which describes the capability of heat conduction in the continuum and was 
originally used for optimization of heat transfer devices, has been extended for optimization of transport 
networks in this contribution. Based on the definition of the entransy dissipation rate for transport networks, 
the analysis indicates that the minimum entransy dissipation rate leads to the optimal transfer performance 
of transport network subject to a given constraint. The present optimization analyses agree well with the 
existing experimental data and optimization theories for transport networks. 
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I. Introduction 

Transport networks extensively exist in the 
natural world and the human life. For examples, the 
subground water and the leaf venations of trees in 
nature, the windpipe network in lungs and the 
blood vessel network in human bodies, and the 
water, gas, oil and power supplies of a city or even 
a country. The optimization of transport networks 
has gained much more increasing attentions in 
recent years due to its importance though 
challenging [1-7]. It has been widely accepted that 
the mechanical/electrical energy dissipation rate is 
minimized if a hydraulic/electrical network is 
optimal [3-5,8-11]. Ordonez [7] studied the optimal 
structure of flow network which connected one 
point to a number of points by minimizing the fluid 
power losses, and Durand [3,4] obtained the 
optimal flow networks in terms of minimizing the 
mechanical dissipative energy with respect to two 

constraints: certain total channel volume and 
certain total channel surface area. Bohn [5] 
introduced an electrical energy dissipation rate 
function, which should be minimized for an optimal 
electrical transport network. Rodriguez [10] 
explained the tree-like structure and some empirical 
relationships of the river drainage network by the 
principles of minimum energy expenditure. 

However, the minimum energy dissipation 
principle is hardly applicable directly to heat and 
mass transportation networks, because the concept 
of energy is unsuitable (for a mass transport 
network) or conserved (for the thermal energy in a 
heat conduction network) rather than dissipated. 
New principles had to be developed for the 
optimization of heat and mass transfer processes. A 
constructal theory has been proposed to construct 
an optimal heat conduction network for efficient 
cooling of a heat-generating volume [11] by 
minimizing the overall temperature difference of 
the network, where the energy dissipation principle 
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is not applicable as the thermal energy conserves. 
Most transport processes can be treated as 

movement of a generalized “mass” driven by some 
“potential difference”. Thus people can abstract 
some common characteristics among various 
transport networks such as electrical, hydraulic, and 
heat or mass transport networks. For example, the 
analogy between a thermal system and an electric 
system is apparent, and it is easy to construct an 
electric network that would behave exactly like a 
heat conduction network system. Therefore, once 
the constructed electric network was optimized 
with the minimum energy dissipation principle [5] , 
the corresponding heat conduction network may be 
optimized as well. Alternatively, one can obtain the 
structure of optimal heat conduction networks by 
identifying and minimizing the physical quantity of 
a thermal system which corresponds to the concept 
of energy in electric/hydraulic systems. 

Recently, a physical quantity, “Entransy”, was 
proposed by Guo et al. [12] to characterize the heat 
transfer capability of an object. In analogy with the 
theory system of electricity or mechanics, the 
entransy of an object, defined as UT/2, is featured 
as the “potential energy” of the internal energy U at 
the temperature T. Though the thermal energy is 
conserved, the entransy dissipates in heat transfer 
processes and the entransy dissipation rate can be 
used as a criterion for optimization of heat transfer. 
Examples have shown successes of minimum 
entransy dissipation rate principle for optimization 
of heat and mass transfer in complex systems 
[13-15]. 

Inspired by Guo’s theory [12] , this paper will 
try to extend the concept of entransy into heat and 
mass transport networks. The concept of entransy 
dissipation rate in heat/mass transport network is 
comparable to the concept of energy dissipation 
rate in electrical [5] and hydraulic transport 
networks [3,4,9-11]. Analysis using the minimum 
entransy dissipation principle for optimizations of 
heat and mass transport networks will be compared 

with the existing theoretical and experimental data.  

II. Entransy and entransy dissipation rate 

Based on the entransy concept [12] , the heat 
transfer capability of a system can be characterized 
by the entransy (G) of the system, calculated as a 
half of the integral of the product between the 
internal energy (U) and the thermal potential (T):  

system

1
2

G UT d
Ω

 = Ω 
 ∫       (1) 

where Ω  is the normalized volume of the system. 
The specific entransy is therefore defined as: 

/ 2g uT=         (2) 

with u representing the specific internal energy, 
calculated by 

u cTρ=         (3) 

where ρ  is the density and c  the specific heat 
capacity. 

For heat conduction without a heat source in 
an object, the thermal energy conservation equation 
is: 

Tc q
t

ρ ∂
= −∇⋅

∂


       (4) 

where q  represents the heat flux. 
Equation (4) multiplied by the temperature 

yields the entransy balance equation: 

( )TcT Tq q T
t

ρ ∂
= −∇⋅ + ⋅∇

∂
 

    (5) 

Based on the definition of specific entransy, Eq. 
(2), the entransy balance equation can then be 
rewritten as: 

( )d
d
g qT J
t
= −∇⋅ −



      (6) 

where J q T= − ⋅∇


 and it has a physical meaning 
as follows. Eq. (6) describes the time variation law 
of specific entransy. The first term on the right side 
is the entransy transfer rate accompanying the heat 
transfer process, and the second term could be 
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understood as the entransy generation or dissipation. 
Since the heat flux ( q ) vector direction is always 
opposite against that of the temperature gradient 
( T∇ ), we define J  as the entransy dissipation 
rate per unit volume in the heat transfer process. Eq. 
(6) indicates that, unlike the thermal energy, the 
entransy is not conserved during heat transfer 
processes.  

The entransy dissipation rate per unit volume, 
which measures the heat transfer irreversibility, is 
proportional to the square of local temperature 
gradient as: 

( )2J q T k T= − ⋅∇ = ∇


     (7) 

Especially, for a one-dimensional steady 
thermal conduction channel with a constant thermal 
conductivity, the entransy dissipation rate in the 
whole channel can be calculated by the entransy 
flow difference between inlet and outlet [12], which 
is proportional to the squared temperature 
difference and inversely proportional to the heat 
transfer distance: 

2( )out in
channel in out

T TJ QT QT kA
d
−

= − =   (8) 

where Tin, Tout, d, Q qA= , K kA=  are the inlet 
and outlet temperatures, the characteristic length of 
the channel, the heat flow and the channel thermal 
conductance with A being the channel cross 
sectional area, respectively. 

 
Fig. 1  General model of transport network 

For an N-node heat conduction network as 
shown in Fig. 1, suppose the whole network 

composing of many one-dimensional thermal 
conduction channels described by Eq. (9). Each 
node may have N-1 such channels with the other 
nodes. The channel conductance between the i-th 
node and the j-th node, ,i jK , is treated as zero if 
there is no really channel between them. The 
entransy dissipation rate for the whole network can 
be calculated based on the Eq.(8): 

( )2

,
network ,

, ,

i j
i j

i j i j

T
J K

d
∆

=∑      (9) 

where ,i jT∆  is the temperature difference and 
,i jd  the characteristic length of channel from the 

i-th to the j-th node.  
The entransy dissipation rate for the whole 

network can be expressed in terms of difference 
between input entransy ( from heat source) and 
output entransy flow ( from heat sink) at nodes as: 

network
,

( , ) ( , ) n n
i j n

J Q i j T i j T S= ⋅∆ =∑ ∑   (10) 

where nT  is the temperature and nS  the heat 
source for the n-th node. 

Based on the similarity between the heat 
transfer and the diffusive transport, the entransy 
and its dissipation concepts can be extended to the 
diffusion process. The entransy dissipation rate for 
the diffusion driven by concentration gradient can 
thus be defined as: 

( )2massJ D C= ∇        (11) 

where D  and C  represent the diffusion 
coefficient and concentration. Through a very 
similar process of Eq. (9), the entransy dissipation 
rate for a steady mass diffusion network is 
expressed as: 

( )2

,mass
network ,

, ,

D i j
i j

i j i j

C
J

d
∆

=∑      (12) 

For a network with mass sources, the entransy 
dissipation rate of the system can be expressed as: 

mass
network , ,

,

mass mass
i j i j n n

i j n
J Q C C S= ∆ =∑ ∑   (13) 

N=1 N=2 

N=3 

N=… N=Nmax 

L(1,2)=L(2,1)=
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where ,
mass
i jQ  represents the mass flow through a 

channel (i, j) from the i-th to the j-th node, and 
mass
nS  the mass source on the n-th node. 

III. Minimum entransy dissipation principle 

Let us consider the physical significance of the 
minimized entransy dissipation rate. Suppose the 
symbol F  representing the generalized flux, S  
the generalized source and P  the generalized 
potential for either heat or mass transfer. For a 
steady system, the sum of all heat/mass sources is 
zero. When at least one source does not equal zero, 
we can define the sum of all positive sources as the 
injecting heat/mass flux *F : 

{ } { }

*

: 0 : 0n n

n n
n S n S

F S S
> <

= = −∑ ∑     (14) 

Thus the entransy dissipation rate in Eq. (11) 
or (14) can be rewritten as:  

{ } { }

*
network * *

: 0 : 0

*

n n

n n
n n

n S n S

S SJ F P P
F F

F P

> <

 −
= −  

 
= ∆

∑ ∑  (15) 

Eq.  (15) indicates that the entransy dissipation 
rate J is determined by the injecting flow *F  and 
the weighted average potential difference P∆ . For a 
given injecting flow *F , a minimized entransy 
dissipation rate leads to a minimum average 
potential difference in the system. In other words, 
for example of a heat transfer network, we can 
minimize the driving weighted average temperature 
difference by minimizing the entransy dissipation 
rate at fixed injecting heat flux, which means the 
heat transport network is optimal. The mass 
transport network is very similar. 

IV. Optimization Applications 

This section gives two examples that 
demonstrate the applications of minimum entrasy 
dissipation rate principle for the optimization of 
heat and mass transport networks. Three steps are 

performed for the optimizations: i) write out the 
entransy dissipation rate for the system based on 
the analysis in Section II; ii) find out the correct 
expression of constraint for optimization; iii) build 
the optimization function and do the optimization. 
The present demonstrations and theoretical analysis 
provide new explanations of optimal thermal 
conduction structure and biological hydraulic 
network structure, and will be compared with the 
existing theories and experimental data as well. 

A. Volume-point problem 
Cooling enhancement using high-conductivity 

material structures has very popular and important 
applications in N/MEMS device designs, such as 
CPU or micro fuel cells [14]. Fig. 2 shows a typical 
structure of a high-thermal-conductivity material 
distributed in a volume with uniform heat source. 
The volume needs to be cooled through a small 
boundary patch (point) located in the left center of 
the volume. The problem is to optimize the 
distribution of the network material in the volume 
for the best cooling effect, i.e. the highest 
temperature in the volume is minimized subject to 
the given internal heat source. This problem was 
often referred to as the volume-point problem [11]. 
A T-structure network solution of volume-point 
problem is demonstrated using the constructal 
theory, as shown in Fig. 2, where the high thermal 
conductivity material was distributed as 
hierarchical interconnected channels with different 
widths, and a parent channel was split 
perpendicularly into two equal daughter channels. 

 

 

Fig. 2   Volume-point problem 

A1 
A2 

q1 
heat  
flux 

Local Volume 

q2 
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Assuming the background thermal 
conductivity is much smaller than that of the 
network material, we can regard that the thermal 
transport occurs mainly through the T-structure 
network. The Fourier’s conduction law gives the 
heat flow for each channel as: 

i
i i

i

TQ kA
L
∆

=         (16) 

where iA  and iL  are the cross-sectional area and 
length of the i-th channel, respectively. 

Based on Eq. (8), the entransy dissipation rate 
is 

( )2

network
i

i
i i

T
J kA

L
∆

=∑      (17) 

The constraint is the given total volume of the 
high thermal conductivity material. Therefore we 
build the optimization function by introducing a 
Lagrange multiplier λ  to minimize the entransy 
dissipation rate [5] : 

( )2

heat network
i

i i i i
i i ii

T
J V kA A L

L
λ λ

∆
Π = − = −∑ ∑ ∑

(18) 
In order to minimize the entransy dissipation 

rate, the partial derivative of the Lagrange function 

heatΠ  with respect to Ai has to be zero: 

( )2
heat 0i

i
ii i

T
k L

A L
λ

 ∆∂Π
= − = 

∂   
∑    (19) 

A generalized solution for Eq. (19) is 

i iT Lα∆ = , where kα λ=  is a constant. The 
conservation of heat at a junction gives 1 22Q Q= , 
which leads to the relation between the 
cross-sectional area of a parent channel and that of 
the daughter channels: 

21 2AA =         (20) 

This result agrees well with the optimization 
design using the constructal theory, which 
concluded 1 2i iA A + →  for 3i ≥  [11] . 

B. The optimal vasculature of mammalian animals 
As well known, the vasculature system of 

mammalian animals consists of multi-level blood 
vessel networks, as shown in Fig. 3. The blood flow 
in the hydraulic network is driven by the heart 
power of the animal, and nutrients were transported 
to the tissue throughout the body. Since the 
pumping power of the heart of an adult animal is 
approximately a constant, there must be an optimal 
blood vessel network where the transmural 
nutrients transfer rate is maximized. We can further 
affirm that the current mammalian animal 
vasculature structure has maximized the transmural 
nutrients transfer rate during the long period of 
evolution and natural selection. 

 

Fig. 3  A junction of blood vessels 

The transmural nutrients transport from blood 
to the tissue is a mass transfer process. The “driving 
force” is the concentration difference C∆ , and the 
mass flux per unit blood vessel surface area Fmass is 
proportional to C∆  according to a linear transport 
law, mass mF D C= ∆ , where mD  is the mass 
diffusion coefficient. 

Eq. (12) gives the entransy dissipation rate for 
one-dimensional diffusive process. For the 
transmural nutrients transport in blood vessel 
network, the entransy dissipation rate for the i-th 
vessel is proportional to the vessel surface area as 
well [13] : 

( )22mass
i i i mJ rd D Cπ= ⋅ ∆      (21) 

with assuming the blood vessels are straight tubes 
with a radius of ir  and a length of id . Therefore 
the total entransy dissipation rate is: 

2R1 

R2 

R3 

R4 

Blood 
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( )2 2mass mass
network i m i i

i i
J J D C rdπ= = ∆ ⋅∑ ∑  (22) 

The constraint is the given heart pumping 
power. Suppose the blood flow in the vessels obeys 
the Hagen-Poiseuille’s law. The heart pumping 
power W  equals to the total viscous dissipation 
rate of all blood vessels:  

( )24

8
ii

i i

prW
d

π
µ

∆
=∑       (23) 

where µ  is the viscosity of the blood and ip∆  
the pressure drop within the length id . 

The optimization function is: 

( ) ( )24
2

mass 2
8

imass i
network m i i

i i i

prJ W D C rd
d

πλ π λ
µ

∆
Π = − = ∆ −∑ ∑

(24) 
The partial derivative of Πmass with respect to 

radius ir  have to equal zero to maximum the 
vessel surface area and therefore the nutrients 
transfer performance of the hydraulic network 
under the constraint of Eq. (23): 

mass 0
ir

∂Π
=

∂
        (25) 

A generalized solution of Eq. (25) is 
3 2

i i ip d rβ∆ = ,where 4 mD Cβ µ λ= ∆  
approximated to be a constant. The mass at the 
junction (in Fig. 3) conserves when the nutrients 
mass transfer through the vessel surface is 
negligible in contrast to the mass flowing in the 
vessel 

1
2

n

i
i

m m
=

=∑ . 
The Hagen-Poiseuille’s law results in: 

44
1 1

218 8

n
i i

i i

r pr p
d d

ππ
µ µ=

∆∆
=∑ ,     (26) 

which leads to: 

2.5 2.5
1

2

n

i
i

r r
=

∝∑         (27) 

Sherman [17] measured the vessel radii and 
distributions of the blood vessel of the small 
intestine of dogs and compared the data with the 

Murray’ law. In this work, we re-calculated S 
Sherman’s data of the first 4 ranks using 

different power numbers and listed the results in 
Table I. The results show that the summation 
increases with the level remarkably for a power 
number at 2 and decrease greatly for that at 3. The 
relative standard derivation of summations of radii 
to the 2.5th power is significantly lower than those 
of the other two exponents calculated in Table 1, 
which strongly supports the present optimal radius 
relation of Eq.(27). This result suggests that the 
vasculature system of mammalian animals is an 
optimal hydraulic transport network which has the 
best transmural nutrients transport performance 
subject to the constraint of a given total pumping 
power. 

Table I  Vessel data from small intestine of dogs 

Rank Radius  
R(m) N ∑ 2R  ∑ 3R  ∑ 5.2R  

0 1500×10-6 1 2.250×10-6 3.375×10-9 8.714×10-8 
1 500×10-6 15 3.750×10-6 1.875×10-9 8.385×10-8 
2 300×10-6 45 4.050×10-6 1.215×10-9 7.015×10-8 

3 40×10-6 1440 6.534×10-6 0.498×10-9 5.602×10-8 96×10-6 459 

4 25×10-6 8640 18.04×10-6 0.470×10-9 9.207×10-8 26.5×10-6 18000 
Relative standard 

deviation 92.4% 81.0% 18.8% 

It is also noticed that the optimal radius 
relationship in Eq.(27) is similar to the famous 
Murray’s law but with a different exponent. As well 
known, the Murray’s law has been validated in 
many cases, such as the water transport in plants [1] 
and river network on the earth [9]. The former 
studies derived the Murray’s law based on the 
minimum mechanical energy dissipation and the 
constraint of total blood vessel volume [16,17]. 
Based on the minimum entransy dissipation 
principle, we can also get the Murray’s law in Eq. 
(28) if the optimization objective is to maximize the 
flow rate through the network subject to a given 
total network volume. 
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3 3
1

2

n

i
i

r r
=

∝∑         (28) 

This result indicates that the optimized 
transport network structure depends on the 
optimization objective and the constraint. If the 
optimization objective is to maximize the diffusive 
transport flux through the network surfaces subject 
to a given pumping power, such as the bronchia 
network in lung and the vasculature system in 
intestine, the optimal network structure obeys the 
law of Eq. (27); however, if the optimization 
objective is to maximize the flow rate through the 
network subject to the constraint of a given total 
network volume, such the artery system in animals 
or water transport system in plants, the optimized 
network structure obeys the Murray’s law of Eq. 
(28). 

V. Conclusions 

The concept of entransy has been extended for 
the optimization of heat and mass transport 
networks. Based on a definition of the entransy 
dissipation rate for heat and mass transport 
networks, the entransy analysis indicates that the 
minimum entransy dissipation rate leads to the 
optimal transport performance of heat and mass 
transport network subject to certain constraints. The 
minimum entransy dissipation principle has been 
validated by comparing with the existing 
experimental data and other optimization theories 
for different transport networks. The entransy 
analysis gets good agreements with the constructal 
theory for optimal thermal conduction network. The 
optimal structure of mass transfer network depends 
on the optimization objective and the constraint. 
When the optimization objective is to maximize the 
diffusive transport flux through the network 
surfaces subject to a given pumping power, for 
example of the vessel networks in small intestine, 
the optimization result indicates that the radii for 

different levels satisfy the 2.5th power law, which 
has better agreements with the existing anatomical 
data of the small intestine of dogs than the classical 
Murray’s law. If the optimization objective is to 
maximize the flow rate through the network subject 
to the constraint of a given total network volume, 
the optimized network structure obeys the Murray’s 
law. 
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