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We present a theoretical framework to calculate the electrochemical charge on silica surfaces in contact
with high-ionic-strength solutions in narrow channels. Analytical results indicate that the contribution of
the adsorbed metal cations to the total surface charge is not negligible when the salinity is larger than
1 mM. The electrical triple-layer model is proved much better than other models for high ionic strength.
The charge regulation caused by the double-layer overlap in narrow channels will reduce the surface
charge density but increase the zeta potential on silica surfaces.

Published by Elsevier Inc.
1. Introduction

Electrokinetic transport in microfluidics and nanofluidics has
been an emerging field of interest because of its potential capabil-
ities for controlling and manipulating fluids and inclusions
(particles and ions) exquisitely [1–5], and of its potential applica-
tions in biochemical analysis [6–8] and energy conversion systems
[9–12]. The electrokinetic transport in micro- or nano-scale chan-
nels has two important features compared with that in large chan-
nels: (1) the salt concentration is often high (>1 mM), and (2) the
electrical diffuse layers may often interact with each other. Many
efforts have been reported in recent years for analysis and model-
ing of such a multiphysiochemical transport process using the
continuum-based [2,4,7,9,13–16], molecular-based [17–20], or
mesoscopic methods [21,22]; however, it is still a big challenge
for accurate predictions because of its complexity.

The difficulty comes mainly from two aspects. The first is the
electrochemical charge determination at solid–liquid interfaces.
In most of the previous modeling studies, either constant charge
density [7,9,17–21] or constant zeta potential [15,22] was em-
ployed as the electric boundary conditions at surfaces. However,
as well known, the nonmetal surfaces are generally ionized in
aqueous solutions by physical and chemical adsorptions of ions,
and the surface charge density results from an equilibrium
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between counter ions at the surfaces and free ions in the bulk elec-
trolyte. Behrens and Grier [23] proposed a Basic Stern (BS) model
which provided a relationship between the surface charge and
the bulk electrolyte solution properties, and this chemical equilib-
rium model has been used for modeling of electrokinetic transport
in microfluidic or nanofluidic channels [4,14]. The BS model is sim-
ple in mathematics; however, it considers only the silica dissocia-
tion with water molecules and ignores the contributions from the
salt ions. As a result, the BS model is only available to very dilute
solutions [23]. To involve the contribution from the salt–ion
adsorption to the surface charge on mineral surfaces, an electrical
triple-layer (ETL) model was first proposed by Davis et al. [24,25],
developed by Kitamura et al. [26], and elaborated by Leroy and
coworkers [27,28]. Furthermore, a more complex four-layer model
was proposed to distinguish the sizes of anions and cations ad-
sorbed at the electrolyte/oxide interfaces [29,30]. The ETL model
has been employed for analysis of electrokinetic transport in
geophysics and geochemistry [27,28,31]; however, to the best
knowledge of the authors, neither the triple-layer model nor the
four-layer model have been adopted for predictions of electroki-
netic transport in microfluidics or nanofluidics. The second
difficulty lies in the charge regulation by the electrical diffuse-layer
overlap. When the surface separation of a microchannel is compa-
rable to or smaller than the Debye screening length, the electrical
diffuse-layer overlap will cause the charge regulation both in the
‘‘bulk” solution in the channel and on the surfaces. Behrens and
Grier [23] proposed a method to cover the charge regulation of an-
ionic surfaces by solving the nonlinear Poisson–Boltzmann equa-
tion using the Jacobian elliptic functions. However, this method
has a good numerical convergence only for a very narrow region
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of surface separation [23] and can hardly be extended for the ETL
model. Up to now no charge regulation analysis has been found
subject to the ETL model or the four-layer model.

In this work, we focus on the electrochemical charge for silica
surfaces, which are among the most popularly used materials in
microfluidics and nanofluidics [2,23], at high ionic concentrations
(1 mM to 1 M). In the following sections, the electrical triple-layer
model is first introduced and validated for determinations of
charge density and zeta potential on silica surfaces for various salt
electrolyte solutions at high ionic concentrations. A charge regula-
tion analysis is then performed subject to the ETL model when the
electrical diffuse-layer overlap occurs. The electrochemical charge
in micro- and nanochannels is therefore discussed.

2. Electrical triple-layer model

Let us consider a silica surface in contact with a binary symmet-
ric aqueous electrolyte such as the NaCl or KCl solution for the sim-
plicity of presentation. The silica surface acquires charges by
chemical adsorptions of ions in the solution, and the surface charge
strongly depends on the local environmental factors such as pH, io-
nic strength, and temperature. Fig. 1 sketches the adsorption effect
on the ions distribution, based on which the electrical triple-layer
(ETL) model is established [24,25,27,28]. In the pH range 3–9, the
typical chemical reactions of surface adsorption at the silica sur-
face can be written as

SiOHþ2 ¢ SiOHþHþ; K int
a1 ; ð1Þ

SiOH ¢ SiO� þHþ; K int
a2 ; ð2Þ

and

SiO� þMþ
¢ SiOM; K int

M ; ð3Þ
SiOHþ2 þ A�¢ SioH2A K int

A ; ð4Þ

where K int
a1 ;K

int
a2 ;K

int
M ; and K int

A are the associated equilibrium con-
stants for the reactions, respectively. More reaction equations can
be easily added for multicomponent electrolyte similar to Eqs. (3)
and (4) [27,28] or Eq. (3) can be adapted for a multivalent cations
[26]; therefore, the present model is not limited to the binary salt.
The protonation of surface siloxane groups is extremely low so that
Fig. 1. Sketch of the electrical triple-layer model [24,25,27,28]. The symbol M
represents the metal cations (e.g., Na+ or K+) and A the anions (e.g., Cl�). Q0 and w0

are the surface charge density and the electrical potential of the silica surface, Qb

and wb are the surface charge density and the electrical potential of the Stern layer,
and Qd and wd are the equivalent surface charge density and the electrical potential
(zeta potential, f) of the diffuse layer.
they are generally considered inert [32]. The silanol group may be-
come positively charged by accepting protons under very acidic
solutions (pH < 3), and the silica significantly dissolves into silicate
ions HSO�3 in basic solution (pH > 9); therefore, the present ETL
model is restricted to the pH range 3–9.

Note that in Fig. 1 the adsorption of anion A� by the SiOHþ2 sites
is sketched by a dashed-line connection because this reaction rate
is extremely low at the pH range 3–9 and can only be considerable
when pH < pH(pzc), where pH(pzc) denotes the pH at the point of
zero charge of surfaces. For silica surfaces, pH(pzc) is around 2–3
and has a relationship with kint

a1 and kint
a2 :

pHðpzcÞ ¼ 1
2
ðlog K int

a1 þ log K int
a2 Þ: ð5Þ

In the present work, we have pH(pzc) � 2.5 [33]. Once the
adsorption rate of anion Cl� is not negligible, the four-layer model
may be more suitable to describe the ions distributions because of
the size difference between cations and anions [30].

Based on the law of mass action, the reaction equilibrium con-
stants for the chemical adsorptions can be expressed as

K int
a1 ¼

rSiOH

rSiOHþ2

Cb
Hþ exp � ewo

kT

� �
; ð6Þ

K int
a2 ¼

rSiO�

rSiOH
Cb

Hþ exp � ewo

kT

� �
; ð7Þ

K int
M ¼

rSiOM

rSiO�

1

Cb
Mþ

exp �
ewb

kT

� �
; ð8Þ

where r denotes the surface charge density, Cb the bulk molar con-
centration of ions (in M), w the electric potential, e the electron
charge, k the Boltzmann constant, and T the temperature.

The continuity equation for the surface charge density yields

eC0 ¼ rSiOH þ rSiO� þ rSiOHþ2
þ rSiOM; ð9Þ

where C0 is the total surface site density (in sites/m2). The ETL mod-
el in Fig. 1 yields the surface charge density at the silica surface, Qo,
as

Qo ¼ rSiOHþ2
� rSiO� � rSiOM; ð10Þ

and the surface charge density of the Stern layer, Qb, as

Qb ¼ rSiOM: ð11Þ

The site charge density rSiOM contributes to Qo because the site
SiOM is actually SiO� �M+ with SiO� located on the silica surface
and M+ located in the Stern layer, as shown in Fig. 1.

For an insulated surface, the equivalent surface charge of the
diffuse layer, Qd, can be calculated using the classical Gouy–Chap-
man model. Especially for a symmetric monovalent electrolyte, it
has

Qd ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ekTnb

s

q
sinh

ewd

2kT

� �
; ð12Þ

where e is the permittivity of the electrolyte, and nb
s is the bulk

number density of salt (in m�3) which is related to the bulk ionic
molar concentration as

nb
s ¼ 1000NAðCb

Mþ þ Cb
Hþ Þ; ð13Þ

with NA representing the Avogadro constant and ðCb
Mþ þ Cb

Hþ Þ the
counterions bulk molar concentration (in M).

The global electroneutrality within the triple layers yields

Qo þ Qb þ Qd ¼ 0: ð14Þ

The electric potentials of the triple layers are related to the
charge densities by



Table 1
Parameters in the ETL model for silica surfaces.a

Electrolyte
solution

LiCl NaCl KCl CsCl

C1 2.21 ± 0.46 1.07 ± 0.13 1.16 ± 0.14 1.84 ± 0.23

LogK int
a2

�6.74 ± 0.12 �6.73 ± 0.11 �6.64 ± 0.20 �6.56 ± 0.12

LogK int
M

�0.35 ± 0.24 �0.25 ± 0.20 0.06 ± 0.30 �0.01 ± 0.20

a The parameters are obtained through fitting the experimental data for given
C1 = 5 sites/nm2 and C2 = 0.20 F/m2. The parameters are best fit for the most pop-
ular amorphous silica [26].
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wo � wb ¼ Q o=C1; ð15Þ
wb � wd ¼ �Q d=C2; ð16Þ

where C1and C2 (in F/m2) are the integral electrical capacities of the
inner and outer parts of the Stern layer, respectively, assuming con-
stant in the regions between planes [30].

Eqs. (6)–(16) yield the coupled nonlinear equations for the
charge densities and electric potentials of the triple layers
(Qo, Qb, Qd, wo, wb, wd) when the other parameters are given. The
surface charge density and the zeta potential are therefore solved
out using the Newton method numerically by Matlab [34].

To validate the ETL model, we compare the predictions with the
available experimental data from the literatures [26,35]. Fig. 2
shows the predicted surface charge density and zeta potential on
silica surfaces versus the pH value of NaCl solutions. The
lines are the ETL predictions, and the symbols are the experimental
data. The parameters in the ETL model are C0 = 5 sites/nm2,
K int

a2 = 10�6.73, K int
M = 10�0.25, C1 = 1.07 F/m2, and C2 = 0.2 F/m2. The

temperature is T = 298 K. The results show that the ETL predictions
agree well with the experimental data from different researchers
[26,35] for ionic concentrations at 10�3–10�1 M, which validates
the ETL model for high salt concentrations.

This mathematical framework presented by Eqs. (6)–(16) is also
suitable directly to other kinds of monovalent salts interacting
with silica surfaces. Table 1 lists the parameters of the ETL model
for four most popular salts. However, the present ETL model is
not limited to monovalent salts. For multivalence salts, the chem-
ical reaction equilibrium Eqs. (3) and (4) are little different [26].
Besides, Eq. (12) may have a more complex form.

As we stated before, we introduce the ETL model just to over-
come the difficulties from high salinities for other simple models,
such as the popular Basic Stern model. Fig. 3a compares the theo-
retical predictions using the ETL model and the Basic Stern model
with the measured zeta potentials by Gaudin and Fuerstenau [36]
at high salinity range. The result indicates that the ETL model
agrees much better than the Basic Stern model with the experi-
mental data. The reason lies mainly in the contribution of the ad-
sorbed metal cations on silica surfaces, which is taken into
account in the ETL model (shown in Eq. (3)) but ignored in the Ba-
sic Stern model. Such a contribution increases sharply with the
salinity. Fig. 3b shows the proportion of surface charge by the ad-
sorbed metal cations to the total surface charge (rSiOM/Q0) as a
function of the NaCl salinity. If we define 3% as a critical value that
the contribution is not negligible, we find that the corresponding
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Fig. 2. Comparisons between the predictions by the TLM and the experimental data for
function of pH for three different NaCl concentrations. The symbols are the experimen
different NaCl concentrations. The symbols are the experimental data from Crespy et al. [
are C0 ¼ 5 sites=nm2;K int

a2 ¼ 10�6:73 ;K int
M ¼ 10�0:25; C1 ¼ 1:07 F=m2

; andC2 ¼ 0:2 F=m2. The
salinity is around 10�3 M. This result indicates that the contribu-
tion from the adsorbed metal cations to the total surface charge
is not negligible when the NaCl salinity is larger than 1 mM. The
Basic Stern model and other models in which the adsorption of me-
tal cations is not considered are only valid for low ionic strength
ðC1S < 1 mMÞ For high ionic strength ðC1S > 1 mMÞ, the ETL model
is a better choice.

After validation, the ETL model is employed to investigate the
surface charge density and zeta potential varieties on silica sur-
faces with the ionic strength and the pH of electrolyte solutions.
The surface charge densities and zeta potentials changing with
pH values for three different ionic strengths are shown in Fig. 2.
Both the surface charge density and the absolute value of zeta po-
tential increase nonlinearly with the pH value of solutions if the io-
nic concentration is given. Fig. 4a and b shows the surface charge
density and zeta potential as a function of salinity, respectively,
for three pH values. The surface charge density increases with
the salinity, while the absolute value of zeta potential decreases
with the salinity, if the pH of solution is given. When the surface
charge density versus salinity is plotted into a log–log frame sys-
tem, the curves are almost straight lines, as shown in Fig. 4a. A
higher ionic concentration leads to a larger difference for surface
charge densities, but a smaller one for zeta potentials, between dif-
ferent pH values.
3. Charge regulation caused by EDL overlap

Eq. (12) is available only when the surface separation is much
larger than the screening length. If the surface separations h of
interest are comparable to or smaller than the screening length,
the EDL interactions may influence the charge regulations at the
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Fig. 3. Effects of salinity on the electrochemical boundaries. (a) The ETL model predictions are compared with the EDL model predictions and the experimental data for
different NaCl salinities (data from Refs. [36,37]). (b) The contributions of salt-ion adsorption on the surface charge density for different salinities. The model parameters in
ETL are the same as those in Fig. 2. The parameters in the Basic Stern model are C = 8 sites/nm2, pK = 7.5 and C = 2.9 F/m2 (data from Ref. [23]). The other working parameters
are pH 6.5 and T = 298 K.

Fig. 4. The surface charge density and the zeta potential of silica surfaces versus salinity for different pH values of NaCl solutions. The surface parameters are as in the
previous figures.
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surfaces. For electrokinetic transport in a long homogeneously
charged channel, at equilibrium state the electric potential gradi-
ents along the channel for every species are zero, which leads to
the ionic concentrations related to the electric potential by the
Boltzmann distribution function [38]:

niðrÞ ¼ nm
i exp � ezi

kT
wðrÞ � wmð Þ

� �
ð17Þ

This relationship has been proved valid through the atomistic
simulations for a high ionic concentration even up to almost 1 M
[39]. The midline ionic concentration ðnm

i Þ and the corresponding
electric potential (wm) are both unknown at this stage. Under the
conditions of electrostatic equilibrium and long homogeneously
charged surfaces, the ionic concentration at the midline of the
channel is related with that of free far from the surfaces by

nm
i ¼ n1i exp � ezi

kT
wm

� �
; ð18Þ

where n1i denotes the ionic concentration at the reference electric
potential w1 = 0. Therefore, the ion distribution in diffuse layer
can be expressed as [38]
niðrÞ ¼ n1i exp � ezi

kT
wm

� �
exp � ezi

kT
ðwðrÞ � wmÞ

� �
¼ n1i exp � ezi

kT
wðrÞ

� �
: ð19Þ

To build up the relationship between the charge density at
outer H layer (Qd) and the zeta potential w1 = 0 for thick diffuse
layers, we have to solve a one-dimensional nonlinear Poisson
equation for the electric potential within the diffuse layers.

d2w

dy2 ¼ �
1
e
X

i

zienm
i exp � ezi

kT
ðw� wmÞ

� �
: ð20Þ

Integrate and apply symmetry at the middle of channel,

dw
dy

����
y¼m

¼ 0; ð21Þ

and then we obtain

dw
dy
¼ � 2kT

e

� �1=2 X
i

nm
i exp � ezi

kT
ðw� wmÞ

� �
� 1

h i !1=2

: ð22Þ



Fig. 5. The surface charge density and the zeta potential of silica surfaces as a function of the channel wall separation. The NaCl solution in the channel is at pH = 7, T = 298 K,
and C1s = 1, 2 and 5 mM. The channel width (h) varies from 1 to 50 nm. The surface parameters are as in the previous figures.
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The classical electrodynamics gives

Q d ¼ �e
dw
dy

����
y¼o

: ð23Þ

Substitution of Eq. (22) into (23) yields the new relationship be-
tween the charge density and the electric potential of the diffuse
layer

Q d ¼ 2kTe1=2
X

i

nm
i exp � ezi

kT
ðwd � wmÞ

� �
� 1

h i !1=2

: ð24Þ

Eq. (24) is a general form, suitable for all kinds of ionic valences.
Especially, for the monovalent electrolyte, it has a simplified form
as [40]

Q d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ekTn1s

q
sinh2 ewd

2kT

� �
� sinh2 ewm

2kT

� �� �1=2

: ð25Þ

Introducing Eq. (25) to replace Eq. (12) into our previous framework
yields the coupled governing equations for the surface charge den-
sity and zeta potential on silica surfaces even when the double-lay-
ers in the channel overlap. The final solutions will be obtained
through an iteration process: (i) to solve the old framework (Eqs.
(1)–(16)) to get an initial wd(f); (ii) to solve the Poisson equations,
Eq. (20), to get a new wm using the wd as boundary conditions;
(iii) to solve the new framework (Eqs. (1)–(16) and (25)) with the
updated wm to get a new wd; (iv) repeat (ii) and (iii) until the iter-
ation error reaches the expected tolerance. In our calculations, we
set the relative tolerance at 10�6.

Fig. 5 shows the surface charge density and zeta potential
changing with the wall separation (jh) in a long parallel-plate sil-
ica channel when the channel width (h) varies from 1 to 50 nm. j�1

is defined as the Debye screening length given by j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2nb

s =ekT
p

.
The results indicate that the surface charge density increases with
the channel wall separation, similar to the result in Ref. [23] and
that the absolute zeta potential decreases with the wall separation.
It suggests that the double-layer overlap in channels will decrease
the surface charge density but increase the zeta potential on
surfaces.

4. Conclusions

We have developed a theoretical framework to calculate the
electric charge density and zeta potential on silica surfaces inter-
acting with high-ionic-strength (1 mM to 1 M) solutions in micro-
fluidic and nanofluidic channels. The electrical triple-layer (ETL)
model takes the contributions of the adsorbed metal cations on so-
lid surfaces into account, which increases with the ionic strength.
Analytical results indicate that the contribution of the adsorbed
metal cations to the total surface charge is not negligible when
the salinity is larger than 1 mM. The Basic Stern model in which
the adsorption of metal cations is not considered is only valid for
low ionic strength (C1S < 1 mM). The regulated charge of silica sur-
faces in micro- and nanochannels has been derived from an exact
relationship between ion density and electric potential when the
double-layer overlap occurs. An iteration process is proposed to
solve the surface charge density and the zeta potential in very nar-
row channels. The results indicate that the double-layer overlap
(lower jh) in narrow channels will decrease the surface charge
density but increase the zeta potential on surfaces.
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