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The anomalous thermal transport properties of nanotubes may lead to many important applications, but
the mechanisms are still unclear. In this work, we present new governing equations for non-Fourier heat
conduction in nanomaterials based on the concept of thermomass. The effective thermal conductivities of
nanotubes are therefore predicted which agree very well with the available experimental data. Analysis
suggests that the inertial effect of heat and the confined heat flux by nanostructured surfaces are two key
mechanisms causing the anomalous temperature and size dependences of effective thermal conductivity
of nanotubes.
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Nanotubes, as a typical one-dimensional nanostructured mate-
rial, have received significant attention since discovery [1] because
of their quite different effective properties from bulk materials
[2,3], and various potential applications in electronic, optical and
energy conversion devices [4]. In particular, a better understanding
of thermal transport in nanotubes is crucial for new design and
optimization of thermoelectric power generation [5–7] and ther-
mal management of microelectronics [8]. Numerous experiments
have reported that the effective thermal conductivity of nanotubes
strongly depends on temperature and size (length and diameters)
[9–13]. The Fourier’s law has been proved violated in nanoma-
terials even when the phonon mean free path is much shorter
than the characteristic length [14,15]. Therefore mesoscopic mod-
els based on the Boltzmann equation [16,17] and atomistic sim-
ulations [18–21] have been employed to analyze such anomalous
varieties of thermal transport in nanotubes, which are often as-
cribed to the contribution of ballistic conduction. Unfortunately
there is still no prediction with reasonable agreements with ex-
perimental data up to now based on these first-principle analyses
[22]. In principle, the effective thermal properties need to be de-
termined through the governing equations of thermal transport in
nanostructures, which is one of typical non-Fourier conductions.
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We develop in this Letter a set of heat-conduction equations for
the thermal transport in nanostructures based on the concept of
thermomass, and demonstrate that the equation has good estima-
tions of effective thermal conductivity of nanotubes compared with
available experimental data. The analysis from this theory reveals
the physical essence of the non-Fourier appearance of heat con-
duction in nanostructures.

Heat has been generally regarded as a process of energy
transfer, instead of substance transport, since the famous Caloric-
Dynamic argument in the 19th century [23]. However, theoretical
and experimental studies since the early of the 20th century [24–
26] have shown that heat owns “inertia”. Recently Guo et al. [27–
29] have proposed a thermomass concept, stating that heat owns
a mass–energy duality, exhibiting energy-like features in conver-
sion processes and mass-like characteristics in transfer processes.
The mass of heat is determined by the mass–energy equivalence
of Einstein, which therefore leads to the “inertia” and “weight” of
heat in heat transfer. Because the mass of heat is extremely small
(10−16 kg for 1 J heat), it has been seldom measured but may
show its significance in ultrafast heating or ultrahigh-rate heat
transfer processes. Distinguished from the traditional Caloric the-
ory [23], the thermomass theory treats heat as a flux of substance
with mass.

We assume that heat conduction can be treated as a thermo-
mass gas flow in media driven by a thermal potential gradient.
The thermomass gas is a gas-like collection of massive thermons,
which is defined as quasi-particles of heat carriers. To concern the
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heat transfer behavior in a medium, we only focus on the macro-
scopic flow behavior of thermomass gas rather than the details of
each single thermon, so that the thermomass gas is assumed as a
continuum and its transport process can be described by the clas-
sical fluid mechanics and gas dynamics.

Similar to the real gas, the thermomass gas may have a com-
plicated equation of state (EOS) if the thermon interactions are not
negligible. However for most dielectric solids, the EOS of thermo-
mass gas (phonon gas) falls into a simple form based on the Debye
state equation [28–30]:

pT = γρTC T , (1)

where pT is the thermomass gas pressure, γ the Grüneisen con-
stant, ρT the density of thermomass gas defined as ρT = ρC T /c2

with ρ representing the solid density and c the speed of light, C is
the solid specific heat capacity and T is the local thermodynamic
equilibrium temperature.

The mass flow rate (ṁT) of the thermomass gas can be calcu-
lated by ṁT = q/c2 = ρTuT, which leads to the determination of
the macroscopic drift velocity of thermomass gas

uT = q

ρC T
. (2)

Eq. (2) indicates that the macroscopic velocity of thermomass
gas is identical to the transport velocity of heat flow, which is de-
fined as the heat flux divided by the thermal energy per volume.
Consider the thermomass gas flowing in a continuum medium
driven by a thermomass pressure difference without internal heat
sources. The governing equations for the thermomass gas transport
can be derived very similarly to the classical gas dynamic theories,

∂ρT

∂t
+ ∇ · (ρTuT) = 0, (3)

ρT
DuT

Dt
+ ∇pT + fT = 0, (4)

where D/Dt denotes the total derivative, and fT is the resistance
force per unit volume when the thermomass gas flows through
the material porous lattices. Eqs. (3) and (4) describe the transport
of thermomass gas in continuum media with no other artificial
assumptions. Substitutions of Eqs. (1) and (2) into Eqs. (3) and (4)
yield the heat conduction equations in dielectric solids:

∂(ρC T )

∂t
+ ∇ · q = 0, (5)

∂q

∂t
− q

T

∂T

∂t
+ 1

ρC T 2
q(T ⊗ ∇q − q ⊗ ∇T )

+ 2γρC2T ∇T + fTc2 = 0. (6)

The first four terms of Eq. (6) are derived from the total deriva-
tive of velocity of the thermomass gas, which reflect the thermo-
mass inertial effects, i.e. the inertia of heat. The fifth term is from
the thermomass pressure driving effect, and the last term repre-
sents the resistance effect. Eqs. (5) and (6) govern the heat conduc-
tion process in solid. This set of partial differential equations (PDE)
can get solved by available PDE solvers or by incorporated into the
computational fluid dynamics software. The one-dimensional form
of Eq. (6) is:

∂q

∂t
− q

T

∂T

∂t
+ q

ρC T

∂q

∂x
− q2

ρC T 2

∂T

∂x

+ 2γρC2T
∂T

∂x
+ fTc2 = 0. (7)

When the velocity of thermomass gas flow is not high, the
resistance term, fT, can be determined by assuming a linear re-
lationship between resistance and velocity,

fT = 2γρC2T

c2k
q, (8)

where k is the local thermal conductivity. The one-dimensional
general heat conduction equation under the linear resistance as-
sumption is further expressed as

τT
∂q

∂t
− lρC

∂T

∂t
+ l

∂q

∂x
− bk

∂T

∂x
+ k

∂T

∂x
+ q = 0, (9)

where τT = k/2γρC2T is the characteristic time, l = qk/2γ ×
C(ρC T )2 = uTτT, is the characteristic length for heat propagation,
and b = q2/2γρ2C3T 3 is a dimensionless parameter charactering
the compressibility of thermomass flow. Eq. (9) indicates clearly
the wave nature of heat propagation even in conduction. It degen-
erates to the Fourier’s law if all the thermomass inertial effects
(the first four terms) are negligible, or to the same form as the
Cattaneo equation [31] for transient heat conductions. However
the physical significances of the characteristic time in Eq. (9) are
different from the relaxation time in the Cattaneo equation. The
characteristic time in Eq. (9) means the lagging time from the tem-
perature gradient to the corresponding heat flux, while that in the
Cattaneo equation is the relaxation time from the thermal non-
equilibrium to the equilibrium state [31].

Based on the fluid dynamics of gas flow, Eq. (8) is only valid
when the characteristic length of nanostructure, D , is much greater
than the characteristic length of heat conduction, l. If D of the nan-
otube is comparable to l, the thermomass flow resistance will be
enhanced by the gas–surface interaction. An exponential function
is therefore presented based on the Boltzmann equation to reflect
such an enhancement, similar to the high-Kn gas flows in three-
dimensional microchannels [32], by

fT = 2γρC2T

c2k

q

(1 − e−D/l)
. (10)

Eq. (10) indicates that the resistance enhancement of thermomass
by the gas–surface interaction actually leads to weakened heat flux
in nanotubes. Hence the governing equation for the steady non-
Fourier heat conduction in one-dimensional nanostructured dielec-
tric materials is(

1 − q2

2γρ2C3T 3

)
k
∂T

∂x
+ q

(1 − e−D/l)
= 0, (11)

where k is the intrinsic thermal conductivity. After solving Eq. (11)
numerically at given boundary conditions, the effective thermal
conductivity are therefore calculated by keff = qL/�T , with L rep-
resenting the length of nanotubes and �T the temperature differ-
ence between ends.

To validate the present heat conduction equations, we first ap-
plied Eq. (11) to predict the temperature dependences of effective
thermal conductivity for two types of nanotubes, carbon nanotubes
(CNTs) and boron nitride nanotubes (BNNTs), and compared the
predictions with the experimental data. For simplification, we use
constants for the intrusive properties of materials which are from
the database elsewhere [33]. The wall thickness is used as the
characteristic size calculated by D = (do − di)/2 with do represent-
ing the outer diameter and di the inner diameter of the nanotubes.
Fig. 1a shows the effective thermal conductivities for two CNTs,
with same material properties but different lengths and diame-
ters, L = 3.02 μm and D = 1.65 nm for case 1, and L = 1.95 μm
and D = 1.55 nm for case 2 [12]. The experimental data is from
Ref. [12], which suggests �T at around 20 K. Fig. 1b compares the
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Fig. 1. Temperature dependences of effective thermal conductivities predicted by Eq. (11) compared with the experimental data. (a) Carbon nanotubes with L = 3.02 μm and
D = 1.65 nm for case 1, and L = 1.95 μm and D = 1.55 nm for case 2 [12]. The intrinsic properties of carbon are ρ = 2000 kg/m3, C = 600 J/kg K, k = 2000 W/m K, and
γ = 1 [33]. (b) Boron nitride nanotubes with estimated L = 5 μm and D = 10 nm for both cases [10]. The properties of natural-abundance boron nitride are k = 600 J/kg K
and ρ = 2100 kg/m3, and those for isotopically pure boron nitride are k = 740 W/m K and ρ = 3450 kg/m3 [33]. The other properties are C = 108 J/kg and γ = 2 [33].

thermal conductivities of two BNNTs, with same sizes (L = 5 μm
and D = 10 nm) but different material properties. We employed
the properties of cubic boron nitride (c-BN), k = 740 W/m K and
ρ = 3450 kg/m3, for case 1, and those of hexagonal boron nitride
(h-BN), k = 600 W/m K and ρ = 2100 kg/m3, for case 2 [33]. The
experimental set suggests the BNNT testing length about 5 μm and
�T around 2 K [10]. Both figures in Fig. 1 illustrate good agree-
ments between the predictions and the experimental data. The
results also indicate that the effective thermal conductivity of nan-
otubes is much smaller than the bulk property and decreases with
decreasing temperature significantly. It needs to be mentioned that
we use constant intrinsic properties, including density and ther-
mal conductivities, etc., of bulk materials in this work. The present
theoretical model reveals that the inertial effect of heat and the
confined heat flux by nanostructured surfaces are two key mech-
anisms dominating the non-Fourier conduction and the effective
thermal conductivity of nanotubes at low and moderate tempera-
ture. At high temperature, the temperature dependence of intrinsic
thermal conductivity of bulk material may play an important role,
which will be studied in our future work.

There are basically two viewpoints of size effects on the ef-
fective thermal conductivity of nanotubes. One is the effective
thermal conductivity may increase infinitely with length for ideal
one-dimensional nanomaterials [15], and the other one is it will
converge to the bulk property as the length is large enough [5].
In our theory, Eq. (11) suggests that the thermomass inertial ef-
fect depends on L and the resistance enhancement effect is mainly
related to D . Therefore we can study the size dependence of ef-
fective thermal conductivity of nanotubes by solving this equation.
Fig. 2 shows the results for carbon nanotubes at T = 300 K and
�T = 10 K. Both L and D of CNT influence the effective ther-
mal conductivity (keff) significantly. For a given D , a smaller L
leads to high heat flux and thermomass inertial effect, and as a
result keff decreases with a decreasing L. When the nanotube is
long enough, the keff will approach to the intrinsic thermal con-
ductivity (k). The effective thermal conductivity keff also decreases
significantly as D gets smaller when L is fixed. However, keff may
not approach to k despite a very large D if L is very small. For the
current modeling parameters, the effective thermal conductivity of
the nanotube is only 0.06 of the intrusive one when L = 1 μm and
D = 1 nm.

In summary, we have established a new set of heat conduc-
tion equations by introducing the concept of thermomass. Heat is

Fig. 2. Size dependence (D and L) of effective thermal conductivity of carbon nan-
otubes at T = 300 K and �T = 10 K.

treated as flow of substance with mass, named as thermomass,
when conducting in solid. We therefore can describe the heat con-
duction behavior by a set of PDEs through similar methodologies
as the classical fluid mechanics. The simplified one-dimensional
formula of these equations is a much better alternative to pre-
dict the effective thermal conductivity of nanomaterials. Computa-
tional results show good agreements with experimental data, and
therefore suggest that the inertial effect of heat and the confined
heat flux by nanostructured surfaces are two of dominant mech-
anisms to the anomalous temperature and size dependences of
effective thermal conductivity of nanotubes. The present governing
equations for heat conduction are readily incorporated into avail-
able PDE solvers and engineering software to deal with ultrafast
or ultrahigh-rate heat conduction processes in complicated nanos-
tructures.
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