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We study the non-Fourier heat conductions in nanomaterials based on the thermomass theory. For the

transient heat conduction in a one-dimensional nanomaterial with a low-temperature step at both

ends, the temperature response predicted by the present model is consistent with those by the existing

theoretical models for small temperature steps. However, if the step is large, the unphysical temperature

distribution under zero predicted by the other models, when two low-temperature cooling waves meet,

does not appear in the predictions by the present model. The steady-state non-Fourier heat conduction

equation derived by the present model has been applied to predict the effective thermal conductivities

of nanomaterials. The temperature and size dependences of effective thermal conductivities of

nanofilms, nanotubes, and nanowires from the present predictions agree well with the available data

from experiments in the literature and our molecular dynamics simulation results, which again proves

the validity of the proposed heat conduction equations. The present analysis suggests that the inertial

effect of high-rate heat and the interactions between heat and surface in confined nanostructures

dominate the non-Fourier heat conduction in nanomaterials. VC 2011 American Institute of Physics.

[doi:10.1063/1.3634078]

I. INTRODUCTION

The famous Fourier’s law of heat conduction presents a

linear relationship between the heat flux (q) through a mate-

rial and the gradient of temperature (T),1 whose differential

form is q ¼ �krT, where k is the material thermal conduc-

tivity. The Fourier’s law is simple in mathematics and has

been widely used even though it is only an empirical rela-

tionship. In principle, however, the Fourier’s law leads to an

unphysical infinite heat propagation speed within a contin-

uum field for transient heat conduction processes because of

its parabolic characteristics, which is in contradiction with

the theory of relativity. To overcome this contradiction, a

hyperbolic model with a time (t) dependent term has been

proposed, which is named as the Cattaneo-Vernotte (CV)

model,2,3 to modify the Fourier’s law for the transient heat

conduction process, qþ sCV@q=@t ¼ �krT, where sCV

denotes the relaxation time. The introduced time-derivative

term in the CV model describes a wave nature of heat propa-

gation at a finite speed, which has been proved in both theory

and experiments.4–6 However, such Fourier-type or CV-type

models still suffer from insufficiency of physical bases7 and

possible violation of thermodynamics laws.8,9 Considering

the non-equilibrium thermodynamics and the micro-macro

interactions of heat carriers, a phenomenological hyperbolic

two-step (HTS) model5,10 and, consequently, an alternative

dual-phase-lag (DPL) model6,11–13 have been developed for

the ultrafast heating process.

In fact, the Fourier’s law has met great challenges in

heat conductions at ultra-small scales, both temporal and

spatial scales, where energy transport plays a very important

role for material designs14–17 and new power resources.18,19

Several theoretical and experimental studies have reported

that nanoscale heat conduction violates Fourier’s law20–27

and, therefore, the effective thermal properties derive signifi-

cantly from those at normal scale.23,25,28–33 The mechanisms

for such violations and deviations can be divided into three

distinguished levels: the quantum level, the particle level,

and the continuum level. The violation and reconstruction of

Fourier’s law in a quantum system have been recently stud-

ied.20,34,35 When the characteristic length of heat conduction

is comparable to the mean free path of heat carriers, the par-

ticle effect leads heat conduction to a ballistic transport. The

ballistic heat-conduction equations have been derived from

the Boltzmann equation36 and applied frequently to explain

the deviations of nanoscale energy transport from the Four-

ier’s law.28,32,37,38 Meanwhile, most theories prove Fourier’s

law valid for the diffusive heat conductions.34 However,

recent experimental and numerical studies have reported

breakdown of Fourier’s law in nanomaterials, even if the

phonon mean free path is much shorter than the characteris-

tic length.24,25 The mechanism may lie in the ultrahigh-rate

heat flux from the extremely high temperature gradient or

the super-low cross-section area. In these cases, the contin-

uum assumption may be still valid, even if the characteristic

length falls into nanoscale. Such phenomena are of great

interests because of much more potential technical and engi-

neering applications, but still lack fundamental understand-

ings. Several theories have been developed to describe

the heat transport in nanomaterials, including phonon

dynamics,36,39–41 phonon hydrodynamics,42–45 thermomass

theory,46–48 and extended nonlocal theories.49,50 Most

recently, Jou’s group even obtained predictions of effective
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thermal conductivities of nanomaterials comparable with the

experimental data based on the phonon theories.51,52

In this article, we focus on the non-Fourier heat conduc-

tion in nanomaterials based on the thermomass theory under

the continuum assumption. We aim at establishing general

equations of heat conduction in continuum media that can

fully describe the non-Fourier conduction in nanomaterials.

We will demonstrate predictions of non-Fourier conduction

behaviors and effective thermal conductivities of nanomate-

rials that agree well with available numerical and experimen-

tal data.

II. HEAT CONDUCTION EQUATIONS BASED ON
THERMOMASS THEORY

A. Thermomass concept

Heat has been generally regarded as a process of energy

transfer instead of substance transport, since the famous

caloric-dynamic argument in the 19th century.53 However,

theoretical and experimental studies since the early 20th cen-

tury6,54,55 have shown that heat owns “inertia”. Tolman56

first found that heat has a weight, which was consequently

supported by other researchers.57,58 Recently Guo46,59 has

proposed a thermomass concept, stating that heat owns a

mass-energy duality, exhibiting energy-like features in con-

version processes and mass-like characteristics in transfer

processes. The mass of heat is determined by the mass-

energy equivalence of Einstein,60 which therefore leads to

the “inertia” and “weight” of heat in heat transfer. Because

the mass of heat is extremely small (10–16 kg for 1 J heat), it

has been seldom measured, but may show its significance in

ultrafast heating or ultrahigh-rate heat transfer processes.

Distinguished from the traditional caloric theory, the thermo-

mass treats heat as a flux of substance with mass.

We assume that heat conductions can be treated as ther-

momass gas flows in media driven by a temperature gradient.

The thermomass gas is a gas-like collection of massive ther-

mons. Thermon is defined as a unit quasi-particle carrying

thermal energy. For fluids, the thermons are supposed to be

attached on the fundamental particles of the medium. For

solids, the thermomass gas is the phonon gas for crystals,

attached on the electron gas for pure metals, or just between

both for most other solids. In the heat conduction process in

solid, the thermomass gas flows through the vibrating lattices

or molecules, just as a real gas flows through a porous me-

dium. To concern the heat transfer behavior in medium, we

focus on the macroscopic flow characteristics of the thermo-

mass gas rather than the details of each single thermon, and

therefore, we suppose the thermomass gas as a continuum,

and its transport process can be described by the classical

Newton’s mechanics.

B. Governing equations

Similar to the real gas, the equation of state (EOS) is

rather complicated for the thermomass gas, especially for the

liquids. A general form of the EOS of the thermomass gas

can be simply written as a function of FðpT; qT; T; nÞ ¼ 0,

where pT is the thermomass pressure, qT is the density of

thermomass gas, T is the local temperature, and n denotes

the effects of interaction between thermons. When the inter-

action between thermons is negligible, the EOS may have an

explicit form. Guo has given the EOS for the thermomass

gas in the ideal gas,46 pT ¼ jqTCT, where j denotes the

ratio of specific heats of the ideal gas and C is the

specific heat of solid. Guo et al.59,61 also deduced the EOS

of phonon gas in dielectric solid based on the Debye state

equation, pT ¼ cqTCT, where c is the Grüneisen constant.

The density of thermomass gas is related to the medium

density by59,61qT ¼ qCT=c2, where c is the speed of light

(�3� 108 m/s) and q is the density of medium. It is very

interesting to find that the EOS of the phonon gas in crystal

is in a very similar form as that for the ideal gas, except for

the proportional parameter (j or c). Therefore, we propose

here a general form of EOS for the ideal thermomass gas as

pT ¼ aqTCT; (1)

with a as a proportional parameter, whose value differs for

different states of media. For metals, when the static electric

interaction effect between free electrons is negligible for the

thermon transport, the EOS of Eq. (1) is also available. Eq.

(1) indicates that a higher temperature may lead to a higher

thermomass pressure, so that the thermomass gas will be

driven to flow by a thermomass pressure difference.

To derive the governing equations of the thermomass

gas flow, we need to define the macroscopic velocity of ther-

momass gas flow first. Based on the thermomass concept, the

mass flow rate of the thermomass gas can be calculated by

_mT ¼ q=c2 ¼ qTuT , which yields the determination of the

macroscopic drift velocity as

uT ¼
q

qCT
(2)

Eq. (2) indicates that the macroscopic velocity of thermo-

mass gas is identical to the transport velocity of heat flow,

which is calculated by the heat flux divided by the thermal

energy per volume. The value of this velocity is usually very

small in our normal life.

Consider a heat conduction process under a temperature

difference in a continuum material without internal heat

sources. The physical picture in the thermomass theory is

that the thermomass gas flows, driven by a thermomass pres-

sure difference in a porous medium. The governing equa-

tions for the thermomass gas transport can be derived very

similarly as the classical fluid mechanics if the local equilib-

rium and continuity are assumed. The continuity equation is

@qT

@t
þr � qTuTð Þ ¼ 0: (3)

The momentum equation is

qT

DuT

Dt
þrpT þ fT ¼ 0; (4)

where D=Dt denotes the total derivative and fT is the effec-

tive resistance force per unit volume. Here, we introduce an

effective resistance term (fT) instead of the viscous term
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(lTr2uT) to avoid two troubles: (i) viscosity (lT) determina-

tion for complex materials; (ii) interaction effects between

the thermomass gas and the lattice/solid molecules. There-

fore, we only concern the overall velocity of the thermomass

gas instead of the flow details inside, such as how the ther-

momass gas passes by the lattice/solid molecules.

C. General heat conduction equations in continuum

Equations (3) and (4) describe the transport of thermo-

mass gas in continuum materials with no other artificial

assumptions. Substitutions of Eqs. (1) and (2) into (3) and

(4) yield a set of heat conduction equations:

@ qCTð Þ
@t

þr � q ¼ 0; (5)

@q

@t
� q

T

@T

@t
þ 1

qCT2
q T �rq� q�rTð Þ

þ 2aqC2TrT þ fTc2 ¼ 0: (6)

The first four terms of Eq. (6) are derived from the total de-

rivative of velocity of the thermomass gas, which reflects the

inertial effects. The fifth term is from the thermomass pres-

sure driving effect, and the last term represents the resistance

effect. Each parameter of the equations has a clear physical

meaning and can be determined by measurement or analysis.

Such governing equations of heat conduction can also be

derived from the phonon-Boltzmann equation, which will

appear in our coming publications.

Comparing the present heat conduction equations with

Fourier’s law and assuming Eq. (6) is consistent with the

Fourier’s law once the inertial terms are negligible, one can

determine the resistant force in the Fourier’s law by

fT ¼
2aqC2T

c2k
q: (7)

This process indicates that the new equations of heat conduc-

tion will degrade to the Fourier’s law when all of the inertial

effects are negligible or fall to a form similar to but not

exactly the same as the CV model if only the special inertial

effects are negligible. The Fourier’s law essentially means

the balance between the driving force and the resistant force

in the thermomass fluid dynamics.

III. ONE-DIMENSIONAL HEAT CONDUCTION
EQUATIONS IN NANOMATERIALS

The one-dimensional form of the present heat conduc-

tion equation, Eq. (6), is

@q

@t
� q

T

@T

@t
þ q

qCT

@q

@x
� q2

qCT2

@T

@x
þ 2aqC2T

@T

@x
þ fTc2 ¼ 0:

(8)

Therefore, the one-dimensional general heat conduction

equation under the linear resistance assumption is

sT

@q

@t
� lqC

@T

@t
þ l

@q

@x
� bk

@T

@x
þ k

@T

@x
þ q ¼ 0; (9)

where

sT ¼
k

2aqC2T
(10)

is a characteristic time,

l ¼ qk

2aC qCTð Þ2
¼ uTsT (11)

is a characteristic length for non-Fourier heat conduction,

which differs from the thermon mean free path and charac-

terizes the strength of non-Fourier effect, and

b ¼ q2

2aq2C3T3
(12)

is a dimensionless parameter. The non-Fourier effects must

be considered when the time scale is comparable to the char-

acteristic time (sT) or the spatial scale is comparable to the

characteristic length (l).
It is noticed that Eq. (9) has an analogous form to the

phonon gas hydrodynamics equation,62 except for the resist-

ance term. We use an effective resistance force instead of the

viscous term in the phonon hydrodynamics equation. This

simplification treatment avoids troubles from thermomass

gas viscosity determination for complex materials and from

exact description of interaction effects between the thermo-

mass gas and the lattice/solid molecules of materials. There-

fore, simple models can be incorporated to reflect geometric

effects on the resistance of thermomass gas flows. For bulk

materials or where the characteristic length (D) of nanostruc-

ture vertical to the heat flux direction is much greater than

the characteristic length of heat conduction (l), Eq. (7)

stands, which means the resistance is not relevant to the ge-

ometry of materials. However, when D of nanomaterials is

comparable to l, the thermomass flow resistance is enhanced

by interactions between thermomass gas and confined surfa-

ces. Similar to the rarefied gas flow in microchannels,63 an

exponential function has been proposed based on the Boltz-

mann equation to reflect such an enhancement64 by

fT ¼
2aqC2T

c2k 1� e�D=lð Þq; (13)

where D could be the diameter or relevant length of the

nanowires or nanotubes. Hence, the governing equations for

the heat conduction in one-dimensional materials are

@q

@x
¼ 0; (14)

q

qCT

@q

@x
� q2

qCT2

@T

@x
þ 2aqC2T

@T

@x
þ 2aqC2T

k 1� e�D=lð Þq ¼ 0;

(15)

which lead to

1� q2

2aq2C3T3

� �
k
@T

@x
þ q

1� e�D=lð Þ ¼ 0: (16)
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Eq. (16) governs the steady non-Fourier heat conduction,

with k representing the intrinsic thermal conductivity. The

apparent thermal conductivity is calculated by

keff ¼
qL

DT
; (17)

where L is the length/thickness of the material and DT is the

temperature difference.

IV. NON-FOURIER HEAT CONDUCTIONS AND
DISCUSSION

The present heat conduction equations have been

applied to model non-Fourier conductions in one-

dimensional nanomaterials. The one-dimensional form of the

general heat conduction equations can be found in the

Appendix. For the transient cases, we compare the present

predictions with the CV model. For the steady-state non-

Fourier heat conductions, we predict effective thermal con-

ductivities of various nanomaterials by solving the equations

and compare with the available data from experiments and

molecular simulations.

A. Transient non-Fourier heat conductions

The ultrafast heating process has many important appli-

cations and has been studied by various models, as men-

tioned in the Introduction. The present heat conduction

equation, Eq. (6) or its one-dimensional form Eq. (9),

degrades to the very similar form as the CV model when the

spatial inertial effects of heat are negligible. However, the

physical significances of the characteristic times are differ-

ent. The characteristic time in the CV model represents the

relaxation time for approaching the thermodynamic equilib-

rium, while that in the thermomass model describes the lag-

ging response from temperature gradient to heat flux. Their

values may be very close for high conductivity media, such

as metals, or deviate significantly (orders of magnitudes) for

dielectrics. Thanks to their quite different physical signifi-

cances, the two models have different predictions for the

transient heat conduction behavior in nanomaterials.

Consider the heat conduction response to a temperature

step at both ends for a one-dimensional metal material. The

schematic diagram is shown in Fig. 1(a). The material is L in

length and at an initial temperature, T0. When time starts

(t> 0), the temperature at the two ends switches to Tw¼T1

and then keeps constant. We solve the present general heat

conduction equation, Eq. (9), and compare the results with

the existing popular theoretical models, including the CV

model,2,3 the HTS model,5,10 and the DPL model.6,11–13 The

equations can be consistently non-dimensionalized when

L¼ k=qC
ffiffiffiffiffiffiffiffiffi
2CT
p

. Figures 1(b)–1(e) compares the tempera-

ture distributions at different time points (t*¼ t/s¼ 0.3 or

0.9) for different boundary conditions (T1
*¼T1/T0¼ 0.9 or

0.3). Figures 1(b) and 1(c) show the results when the bound-

ary temperature step is small (DT*¼ 1�T1
*¼ 0.1), and

Figs. 1(d) and 1(e) show the comparisons for a high one

(DT*¼ 0.7). The results indicate that, when the DT* is small,

the temperature distributions from the present model agree

well with those from the other models, except for the fluctu-

ating temperature distribution from the present model; other-

wise, when the DT* is high, the results from the present

model deviate significantly from the other models. Espe-

cially, Fig. 1(e) shows that, when the two thermal waves

from the boundaries meet, the previous models lead to an

unphysical temperature distribution under zero, similarly

reported in Refs. 9 and 65, whereas the present model results

in a reasonable temperature distribution with the inertial

effects of heat considered.

B. Steady-state non-Fourier conductions and effective
thermal conductivity

The present heat conduction equation, Eq. (6), indicates

that the inertial effect of heat is not negligible, even for

steady-state cases when the heat flux is extremely

high. Experiments and atomistic simulations have reported

anomalous size (thickness30 or length25,32) or tempera-

ture16,28,29,31,33 dependence of effective thermal conductivity

of nanomaterials, including nanofilms,30,33 nanotubes,17,29,31

and nanowires,25,28 even if the characteristic size of the

nanomaterial is larger than the mean free path of heat-carrier

particles. The mechanism in such anomalous heat conduc-

tions has never been revealed, due to insufficiency of corre-

sponding continuum theories. The present heat conduction

equations provide a way to model the steady-state non-Fou-

rier conduction behavior in nanomaterials and to predict the

effective thermal conductivities. For heat conductions in

one-dimensional nanomaterials, the governing equation, Eq.

(16), suggests that the non-Fourier effect in steady-state heat

conductions mainly results from the inertial effect of high-

rate heat and the heat-surface interactions in nanostructures.

Figure 2 shows the predicted effective thermal conduc-

tivities of nanomaterials, including nanofilms, nanotubes,

and nanowires, compared with the available data from

experiments and molecular simulations. The predicted ther-

mal conductivities of a gold thin film varying with tempera-

ture are compared with the experimental data by Zink

et al.33 in Fig. 2(a). The thickness of the film is 16.3 nm,33

and the other properties of gold are from Refs. 66 and 67.

We only compare data when the temperature is above the

Debye temperature of gold, because the electrical interaction

between electrons may not be negligible below the Debye

temperature for metals that influence the equation of state of

thermomass gas. The present predictions agree well with the

experimental data. Figure 2(b) demonstrates the temperature

dependences of effective thermal conductivities for two car-

bon nanotubes. For nanotubes, the wall thickness is used as

the characteristic size calculated by D¼ (do – di)/2, with do

representing the outer diameter and di the inner diameter.

The two carbon nanotubes have the same intrusive material

properties (q¼ 2000 kg/m3, C¼ 600 J/kg K, k¼ 2000 W/m

K, and a¼ 166), but different lengths and diameters, which

are L¼ 3.02 lm and D¼ 1.65 nm for case 1 and L¼ 1.95

lm and D¼ 1.55 nm for case 2.17 The experimental data is

from Ref. 17, which suggests DT at around 20 K. The predic-

tions from the new heat conduction equation basically agree

with the measurements, which again proves the validity of
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our model. Since the length dependence of effective thermal

conductivities of nanowires has never been measured by

experiments, we compare our predictions with the available

data from molecular dynamics (MD) simulations in the

literature. Figure 2(c) shows the effective thermal conductiv-

ity as a function of length for a nanowire with a characteris-

tic width of D¼ 1.22 nm of the cross section, where the

symbols are from the MD simulations by Yang et al.25 The

silicon properties used in the present model are q¼ 2330 kg/

m3, k¼ 163 W/m K, C¼ 700 J/kg K, and a¼ 1.66 The pres-

ent predictions agree very well with the MD simulations

when the aspect ratio (L/D) is high. For a low aspect ratio,

the heat resistance may be enhanced, due to the end effect,

and the predicted effective thermal conductivity should be

reduced as a result. The relevant work will be studied in the

future, which may lead to a better agreement in the entire

range of aspect ratios.

V. CONCLUSIONS

The non-Fourier heat conductions in nanomaterials have

been studied using the proposed heat conduction equations

based on the thermomass theory. We establish the general

heat conduction equations, which treat heat as a substance

with mass that can flow in materials driven by a temperature

difference. The governing equations of thermomass gas flow

therefore lead to a new relationship between heat flux and

temperature field. The present heat conduction equation

degrades to the Fourier’s law, in case all the inertial effects

of heat are negligible, and is compatible with the previous

laws of thermodynamics. For the transient heat conduction

in a one-dimensional nanomaterial with a step temperature at

both ends, the temperature responses predicted by the present

model are compared with those by popular existing theoreti-

cal models. Especially, the unphysical temperature

FIG. 1. Thermal wave propagation behavior for different boundary conditions. The non-dimensional parameters are defined as x*¼ x/L, T*¼T/T0, and t*¼ t/s.

(a) Schematic of temperature response to two-side temperature step; (b) Tw
*¼ 0.9, t*¼ 0.3; (c) Tw

*¼ 0.9, t*¼ 0.9; (d) Tw
*¼ 0.3, t*¼ 0.3; (e) Tw

*¼ 0.3, t*¼ 0.9.
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distribution under zero predicted by the other models, when

two low-temperature cooling waves meet, does not appear in

the predictions by the present model. The steady-state non-

Fourier heat conduction has been modeled by the present

general heat conduction equations, which have never been

studied elsewhere, and the effective thermal conductivities

of nanomaterials have therefore been predicted. The temper-

ature and length dependences of effective thermal conductiv-

ities of nanofilms, nanotubes, and nanowires that resulted

from the present predictions agree well with the available

data from experiments in the literature and our MD simula-

tion results, which prove the validity of the proposed heat

conduction equations. The present analysis suggests that the

inertial effect of high-rate heat and the heat-surface interac-

tions in confined nanostructures dominate the non-Fourier

heat conduction in nanomaterials.
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APPENDIX: COMPATIBILITY WITH PREVIOUS LAWS
OF THERMODYNAMICS

The new heat conduction equations have to be compati-

ble with the previous laws of thermodynamics. There are four

well-recognized principles of thermodynamics up to now in

the world. As follows, we will show that the present heat con-

duction equations based on the thermomass concept have

good compatibility with the four laws of thermodynamics.

The zeroth law of thermodynamics states that, if two

thermodynamic systems are each in thermal equilibrium

with a third, then they are in thermal equilibrium with each

other. In the thermomass gas model, the thermomass gas is

driven by the thermomass pressure, as shown in Eq. (1),

which is proportional to the square of temperature. Based on

the fluid mechanics, if two gases can be statically equilib-

rium with a third, their pressure should be equilibrium. This

means that their temperature should be identical for thermo-

mass gases.

The first law of thermodynamics can be written as

qC
@T

@t
þr �~q ¼ 0; (A1)

which is exactly consistent with the continuity equation of

the thermomass gas if each term is divided byc2.

The second law of thermodynamics has a mathematical

form as68

r � ~q

T

� �
þ q

@s

@t
¼ r; (A2)

where s is the specific entropy and r denotes the entropy pro-

duction. Alternatively, it can be written as69

FIG. 2. The effective thermal conductivities of nanomaterials. (a) Tempera-

ture dependence of thermal conductivity for gold thin film. The thickness of

film L¼ 16.3 nm [Ref. 33], the given temperature difference DT¼ 50 K, and

the properties of gold are: q¼ 19.3� 103 kg/m3, k¼ 138 W/m K, C¼ 128 J/

K [Ref. 66], c¼ 2.8 [Ref. 67]. The symbols are the experimental data from

Zink et al. [Ref. 33]. (b) Temperature dependence of thermal conductivity

for carbon nanotubes with L¼ 3.02 lm and D¼ 1.65 nm for case 1 and

L¼ 1.95 lm and D¼ 1.55 nm for case 2 [Ref. 17]. The intrinsic properties

of carbon are q¼ 2000 kg/m3, C¼ 600 J/kg K, k¼ 2000 W/m K, and c¼ 1

[Ref. 66]. The symbols are experimental data from Pettes and Shi [Ref. 17].

(c) Length dependence of thermal conductivity for silicon nanowires. The

nanowires have a square cross-section of 1.22� 1.22 nm2. The given tem-

peratures at the two ends are 330 K and 270 K. The symbols are data from

MD simulations by Yang et al. [Ref. 25]. The material properties used in the

present predictions are q¼ 2330 kg/m3, k¼ 163 W/m K, C¼ 700 J/kg K,

and a¼ 1 [Ref. 66].
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r ¼ � 1

T2
� rT; (A3)

which needs to be proved always positive for isolated sys-

tems required by the second law. For the thermomass gas

model, Eq. (A3) can be rewritten as

r ¼ c4

2aqC2T3
ðqT~uTÞ � ð�rpTÞ: (A4)

For an isolated system, the thermomass gas can only be

driven by the thermomass pressure gradient so that the mo-

mentum and the pressure gradient of fluid are always in op-

posite directions. Therefore, the entropy production in

thermomass gas flow is always positive, which is consistent

with the second law of thermodynamics.

An alternative statement of the third law of thermody-
namics is that the absolute zero temperature can never be

reached. Based on the special relativity, the speed of light

can never be reached, i.e.,

uT < c: (A5)

Substitution of Eq. (2) into Eq. (A5) yields

T >
q

qCc
� 0; (A6)

which proves the thermomass gas model compatible to the

third law of thermodynamics.
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