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Structure Effects on
Electro-Osmosis in
Microporous Media
The structure effects on electro-osmosis in microporous media have been studied by mod-
eling the multiphysical transport using our numerical framework. The three-dimensional
microstructures of porous media are reproduced by a random generation-growth method,
and then the nonlinear governing equations for the electrokinetic transport are solved by
a highly efficient lattice Poisson–Boltzmann method. The simulation results indicate that
the porous structure type (granular, fibrous, or network) influences the electro-osmotic
permeability significantly. At the low porosity regime (<0.4), the network structure exhib-
its the highest electro-osmotic permeability because of its highest surface–volume ratio
among the three types of structure at the same porosity. When the porosity is high (>0.5),
the granular structure leads to the highest electro-osmotic permeability due to its lower
shape resistance characteristics. The present modeling results improve our understand-
ing of hydrodynamic and electrokinetic transport in geophysical systems, and help guide
the design of porous electrodes in micro-energy systems. [DOI: 10.1115/1.4005711]
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1 Introduction

Electro-osmosis in porous media has been studied for nearly
200 years because of its importance in geophysical systems [1,2]
since the electrokinetic effects were first observed by Reuss in
1809 [3]. In recent decades, there have been considerable and
reawakening interests in the electro-osmosis in porous media
because of the conspicuous applications in biomedical analysis
[4–6], new techniques and designs for micro-energy (batteries and
fuel cells) and power (pumps) systems [7–10], and geophysical
system analysis [11,12]. Although there have been quite a few the-
oretical studies on electro-osmotic phenomena in porous media, it
is still a big challenge to accurately and efficiently predict the
multiphysical transport behaviors in porous media due to their
complicacies. There are three deficiencies in the existing theoreti-
cal models for predicting electro-osmosis in microporous media.
First, most of the models are based on vanishingly thin electric
double layers (EDL) [9,13] so that they are not suitable for dense
micro and nanoscale porous media where the length scale of the
small pores may be in the same order of the EDL thickness. Sec-
ond, the theoretical models can hardly provide sufficient details in
flow structure, which are necessary for deep understandings of the
transport mechanism of electro-osmosis in porous media. Third,
the real structures of porous media may have very different geo-
metries and may fall into quite special range of porosity for vari-
ous applications. Therefore, no general theoretical models have
been reported to have a universal capability for performance pre-
diction or mechanism analysis.

Owing to the rapid developments of computational techniques,
various numerical methods have been developed in the past dec-
ade for modeling and predicting the electro-osmotic transport in
porous media. Coelho et al. [14] developed a direct numerical so-
lution for the electro-osmosis in porous media in the linear limit
when the EDL thickness was much larger than the elementary
grid size, and the method was applied to analyze the electro-
osmotic phenomena in fractures [15] and compact clays [16,17].
Gupta et al. [18] recently extended their linear model to the

nonlinear region for high zeta potentials. Since the accuracy of
their models depends strongly on the discretization step, their
applications are limited by the computational costs. Only a few
results with relatively coarse spatial discretiztation steps have
been found to reach reasonable computation times [14,15,18–21].
Kang et al. [22] introduced the interval functions approximation
[23] into the Poisson–Boltzmann equation to simplify the solution
process and to improve the efficiency. Their method showed good
performance to analyze electro-osmotic flows in packed micro-
spheres [24,25]. Hlushkou et al. [26] proposed to combine a tradi-
tional finite-difference method for electrodynamics with a lattice
Boltzmann method for hydrodynamics, and investigated electro-
osmosis in sphere arrays. Recently, Wang et al. [27,28] developed
a lattice Poisson–Boltzmann method (LPBM) and employed it to
analyze the electrokinetic transport in regular or random porous
media [29–31]. However, most of these previous studies focused
on granular microstructures of porous media. Actually, the natural
solid structures of porous media vary significantly. A popular
classification of porous structures is to distinguish them into three
categories: granular, fibrous, and network structures. To our best
knowledge, no contributions have reported on electro-osmotic
transport in other than granular porous media, and therefore, the
structure effects on the electro-osmotic permeability through dif-
ferent porous media with complex geometries.

The purpose of this work is to investigate the structure (granu-
lar, fibrous, or network) effects on electro-osmotic transport of
electrolyte solutions through various porous media by our theoret-
ical and numerical framework. The rest of this paper is arranged
as follows. In Sec. 2, we introduce our mathematical framework,
including a comprehensive algorithm for microstructure reproduc-
tion and a high-efficiency lattice evolution solver for a set of gov-
erning equations for the multiphysical transport processes. We
present out simulation results and discussion in Sec. 3, where the
structure effects on electro-osmotic transport in porous media are
analyzed. Finally, we draw some conclusions from this study in
Sec. 4.

2 Mathematical Framework

2.1 Structure Generation. Here we use the random
generation-growth method to reproduce the random

1Corresponding author.
Contributed by the Heat Transfer Division of ASME for publication in the

JOURNAL OF HEAT TRANSFER. Manuscript received July 30, 2010; final manuscript
received July 2, 2011; published online April 11, 2012. Assoc. Editor: Ping Cheng.

Journal of Heat Transfer MAY 2012, Vol. 134 / 051020-1Copyright VC 2012 by ASME

Downloaded 09 May 2012 to 166.111.62.77. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



microstructure of multiphase materials [32]. The strategy of our
method is illustrated in Fig. 1. We are not to photomap the actual
porous structures but to generate the equivalent ones that reflect
all the dominant factors of the structures necessary for the macro-
scopic properties. To achieve these, we first obtain the statistical
information of the structures through measurements and then feed
the information to the random generation-growth method for
structure reproductions. The dominating statistical information of
microstructures include shape and number density of particles,
volume fractions of phases, morphology, anisotropy, and so on.
Generally, the solid structures of porous media can be divided
into three categories: granular, fibrous, and network structures.
The generation methods for these three types are actually based
on the same principle with corresponding differences in details.

For the granular solid structures, we first randomly locate the
seeds of the solid particles in a grid system based on a distribution
probability, sd. Each cell will be assigned a random number by a
uniform distribution function within (0, 1), whose random number
is no greater than sd will be chosen as a seed. Then, every element
of the growing phase is expanded to its neighboring cells in all
directions based on each given directional growth probability, Di,
where i represents the direction. Again for each growing element,
new random numbers will be assigned to its neighboring cells.
The neighboring cell in direction i will become part of the grow-
ing phase if its random number is no greater than Di. Repeat the
growing process until the volume fraction of the solid phase
reaches its given value Vs [33].

For the fibrous solid structure, we randomly locate the fiber
seeds based on a core distribution probability, sd. For each
fiber seed, we randomly assign an orientation angle h within
[�hlim, hlim]. Then we grow fibers from each core along both direc-
tions of the orientation h for fiber length and crosswise for fiber
thickness. We finalize the growth once fiber dimensions reach the
specified values or the porosity attains the given level [34].

For the network structure, we again stochastically distribute the
cores as the net nodes on a lattice system based on a given proba-
bility sd, similar to the other generation processes. For each net
node, we search outward to the neighboring nodes and randomly
select Nn of them as the link nodes; here N is determined based on
the features of specific porous media. Genetic algorithms or other
searching algorithms could be used for this process. We then grow
link lines from a net node to each of its N link nodes. The porosity
is controlled by the density of seeds [35].

Comparing the real porous structures on the left-hand side in
Fig. 1 and the generated equivalent structures on the right-hand
side tells that the artificial structures show random natures as
strong as the real ones. Meanwhile since the statistical information
has been embedded within the generation process, the equivalent
structures will reflect same macroscopic properties as the real

ones, which has been proved in static properties other than with
flows [32].

2.2 Governing Equations. Consider a dilute electrolyte so-
lution (<1� 10�3 mol/l) flowing through a three-dimensional
solid porous structure. Although the pore scale may be of tens of
nanometers, the electrolyte can be treated as a continuum Newto-
nian fluid since the size is still much (ten-times) greater than the
molecular diameters of a liquid solvent [36].

The mathematical models for electrokinetic transport are gener-
ally under the following conditions or assumptions: (i) the system
is in chemical and dynamic equilibrium; (ii) the transport process
is in steady state; (iii) the pore size is much larger than the liquid
solvent molecular size; (iv) the ions in the Stern layer are rigidly
attached to the surfaces and have no contribution to the bulk ionic
current; (v) the flow is slow enough so that the ion convection
effect is negligible; (vi) the bulk ionic concentration is not too
high (<1 mol/l) or not too low (the Debye length is smaller than
ten times the channel width) so that the Poisson–Boltzmann (PB)
model is still applicable [36]; (vii) no other chemical reactions
occur at surfaces except for chemical adsorption and dissociation.
Under the conditions of negligible convection effect and moderate
ionic concentration, the ion transport can be described by the
weakly coupled Poisson–Boltzmann model instead of the highly
coupled Poisson–Nernst–Plank model [37]. The governing equa-
tions for the electrokinetic transport for a monovalent electrolyte
solution are as follows [37,38]:

r2w ¼ 2en1
ere0

sinh
ew
kT

� �
(1)

qe ¼ �2en1 sinh
ew
kT

� �
(2)

r � u ¼ 0; (3)

qu � ru ¼ �rpþ lr2uþ qeE; (4)

where w denotes the static electric potential, e the absolute value
of proton charge, ere0 the permittivity of the solution, n1 the bulk
ionic concentration, k the Boltzmann’s constant, T the tempera-
ture, u the fluid velocity, q the fluid density, p the pressure, l the
viscosity, qe the charge density, and E the electric field strength.

The nonslip model is used for the hydrodynamic boundary con-
dition on solid surfaces. Although the slip boundary conditions
have been adopted in recent studies, a careful molecular study
showed that the hydrodynamic boundary condition, slip or not,
depends on the molecular interactions between fluid and solid and
on the channel size [39–41]. For dilute solutions, the nonslip
boundary condition was shown to be valid.

2.3 Lattice Poisson–Boltzmann Method. After the porous
structure has been generated, the set of coupled hydrodynamic
and electrodynamic governing equations for the electrokinetic
flows subject to the appropriate boundary conditions are solved by
our LPBM [27]. This method combines an electric potential evo-
lution method on discrete lattices to solve the nonlinear Poisson
equation (i.e., the lattice Poisson method) [42] with a density evo-
lution method on the same set of discrete lattices to solve the
Boltzmann–BGK equation (i.e., the lattice Boltzmann method)
[27]. The equations are only solved in the liquid phase. More
details about the lattice Poisson-Boltzmann (LPB) algorithm can
be found in our previous work [28,30,31]. The three-dimensional
15-speed (D3Q15) scheme used in our previous work for three-
dimensional electro-osmosis in porous media [31] was shown to
be unstable at high zeta potentials and low porosities [43]. There-
fore, we use a stable three-dimensional 19-speed (D3Q19) scheme
to replace the D3Q15 scheme [43].

The discrete evolution equation to solve the fluid dynamics
(Eqs. (3) and (4)) can be written as [44]

Fig. 1 Microstructure generation strategy
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faðrþ eadt; tþ dtÞ � faðr; tÞ ¼ �
1

sv
faðr; tÞ � f eq

a ðr; tÞ
� �

þ dtFa

(5)

where dt is the time step and ea denotes the discrete velocities for
a D3Q19 system shown in Fig. 2

ea ¼
ð0; 0; 0Þ a ¼ 0

ð61; 0; 0Þc; ð0;61; 0Þc; ð0; 0;61Þc a ¼ 1 to 6

ð61;61; 0Þc; ð61; 0;61Þc; ð0;61;61Þc a ¼ 7 to 18

8<
:

(6)

and s� is the dimensionless relaxation time which is a function of
the fluid viscosity, s� ¼ 0:5þ 3�=dxc, with � representing the
kinetic viscosity, c the lattice speed, and dx the lattice constant
(grid size). The lattice speed (c ¼ dx=dt) is an adjustable parame-
ter to reach an easy balance between accuracy and efficiency [45].
A large value of c (c� 1) yields a condition that approaches the
limit of an incompressible fluid. An appropriate value of c should
ensure s� within (0.5, 2) [42].

For the D3Q19 model, the density equilibrium distribution f eq
a

takes the following form:

f eq
a ¼ xaq 1þ 3

ea � u
c2
þ 9
ðea � uÞ2

2c2
� 3u2

2c2

" #
(7)

with

xa ¼
1=2 a ¼ 0

1=18 a ¼ 1 to 6

1=36 a ¼ 7 to 18

8<
: (8)

The external force in the discrete evolution equation is [46]

Fa ¼
3qeE � ðea � uÞ

qc2
f eq
a (9)

The macroscopic density and velocity can be calculated by the
same way in the D3Q15 scheme [31]. Similarly, the discrete evo-
lution equation for electric potential distribution can be written as
[27,42]

gaðrþ Dr; tþ dt;gÞ � gaðr; tÞ ¼ �
1

sg
½gaðr; tÞ � geq

a ðr; tÞ�

þ 1� 0:5

sg

� �
dt;gxags (10)

where the equilibrium distribution of the electric potential evolu-
tion variable g in the D3Q19 scheme is

geq
a ¼

0 a ¼ 0

w=18 a ¼ 1 to 6

w=18 a ¼ 7 to 18

8<
: (11)

The time step for the electric potential evolution is dt;g ¼ dx=cg,
where cg is the lattice speed for the electric potential propagation
[42]. The dimensionless relaxation time can be determined by a
multiscale analysis of the discrete Boltzmann evolution equations.
For the D3Q19 model [43,47], it is calculated by

sg ¼ 9v
5dxcg

þ 0:5 (12)

where v is defined as potential diffusivity and set to unity in our
simulations, cg is also adjustable just to ensure the value of sg is
within 0.5 and 2 [42,45]. After evolving on the discrete lattices,
the macroscopic electric potential can be calculated using

w ¼
X

a

ðga þ 0:5dt;ggsxaÞ (13)

The evolution equation for electric potential distribution, Eq. (10),
is valid for slow flows so that the electromagnetic susceptibility
effect can be neglected. Although the lattice evolution method for
the nonlinear Poisson equation is not as efficient as the multigrid
solutions for simple geometries due to its long-wavelength limit,
it is more suitable for geometrical complexity and parallel com-
puting [43].

The hydrodynamic boundary conditions for the lattice Boltzmann
method (LBM) have been studied extensively [28,48–52]. The con-
ventional bounce-back rule is the most commonly used method;
however, the nonslip boundary implemented by the conventional
bounce-back rule is not exactly located at the boundary nodes,
which will lead to inconsistencies when the LBM is coupled with
other partial differential equation (PDE) solvers on the same grid
set [30,49]. To overcome the inconsistencies between the LBM and
other PDE solvers on the same grid set, one can replace the bounce-
back rule with another “nonslip” boundary treatment, with the cost
of losing easy implementation for complicated geometries. An al-
ternative solution is to modify the boundary condition treatments of
the PDE solver for the electric potential distribution to be consistent
with the LBM with the conventional bounce-back rule. In this
study, the nonequilibrium bounce-back rule [48] has been extended
for both hydrodynamic and electrodynamic boundary treatments.
Note that the bounce-back rule leads to a half-grid invasion of solid
surface boundary into the liquid [30,50] so that the solid volume
fraction needs to be recalculated. For the hydrodynamic boundaries,
the following condition holds: f neq

a ¼ f neq
b , where the subscripts a

and b represent the opposite directions. Analogously, the nonequili-
brium “bounce-back” rule for the electric potential distribution at
the wall surfaces is suggested as gneq

a ¼ �gneq
b . These boundary

treatments are easy to implement for complicated geometries and
have approximately second-order accuracy [48,49].

3 Results and Discussion

To study the structure effects on electro-osmosis in porous
media, we first generate three-dimensional microstructures at dif-
ferent porosities for each type (granular, fibrous, or network), and
then solve the governing equations for the multiphysical transport

Fig. 2 The lattice direction system (a) for the three-
dimensional 19-speed (D3Q19) model
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by our high-efficiency lattice Poisson–Boltzmann method. After
the velocity field is solved out, the electro-osmotic permeability
is calculated by je ¼ �u=E [53], where �u is the averaged velocity
of electro-osmosis along the direction of the driving electrical
field E.

In the following simulations, we focus on a micron cubic
system which is divided into a 60� 60� 60 uniform grid. Since
stochastic factors have been introduced into the microstructure
generation process, even simulations with the same parameters
seldom produce exactly the same results. Like we did before, we
run 3-5 trials for each case and use the averaged transport proper-
ties as the final result. For the current grid system, the fluctuation
error is normally within 5% [31].

The fluid properties are the density q¼ 103 kg/m3, the dielectric
constant ere0¼ 6.95� 10�10 C2/J m, and the dynamic viscosity
l¼ 0.889� 10�3 Pa s [27]. The other modeling parameters
are the temperature T¼ 293 K, the surface zeta potential

f¼�50 mV, the bulk ionic concentration n1¼ 1� 10�5 mol/l,
and the external electrical field strength E¼ 1� 106 V/m. For the
cases considered in this work, the CPU time per simulation is less
than 50 min for a relative error tolerance 10�6 every 100 time
steps for both the electric potential and the flow velocity.

Figure 3 shows the electro-osmotic permeability as a function
of porosity of porous microstructures for the three types of struc-
tures. We distinguish the porosity into two regimes because of not
only their quite different features but also their audience of best
interests. In the low porosity regime from 0 to 0.38 as shown in
Fig. 3(a), which is of interest in many geophysical applications,
the electro-osmotic permeability varies significantly with the
porosity, nearly two orders of magnitude over this very narrow
porosity range. In this porosity regime, the network structure
shows the highest electro-osmotic permeability. The granular
structure with a porosity lower than 0.15 or the fibrous structure
with that higher than 0.2 leads to the lowest electro-osmotic

Fig. 3 The electro-osmotic permeability as functions of porosity at different porosity ranges (a)
for the low porosity regime (0, 0.38) and (b) for the high porosity regime (0.5, 0.9)

Fig. 4 Velocity fields for three types of structures for different porosities. The porosity of structures for a1, b1, and c1 is 0.1
and that for a2, b2, and c2 equals 0.73. The vectors denote the three-dimensional velocity field. The contours shows the values
of velocity in x-direction at mid-plane (y 5 0.5). The scales for vector and contour are same for the three structures, respec-
tively. For the contour maps, the solid parts are blocked for clear show.
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permeability. Especially when the porosity is quite low, for exam-
ple, lower than 0.1, the structure effect on permeability is
enhanced by a lower porosity. At the porosity around 0.1, the
electro-osmotic permeability for the fibrous structure is nearly
50% higher than that for the granular structure, but 50% lower
than that for the network structure. In the other porosity regime
from 0.5 to 0.9, which may be of interest in energy or power sys-
tems, the granular structure exhibits a consistent advantage in
electro-osmotic permeability over the other two types of struc-
tures. The fibrous structure leads to the lowest electro-osmotic
permeability in the entire high porosity regime, which is nearly
half of that for granular structures at the same porosity. The results
in Fig. 3 will help to design or optimize microstructures when
electro-osmosis in porous media is applied in environmental and
energy systems.

The reason why the structure effects on electro-osmotic perme-
ability in porous media exhibit so different characteristics in low
and high porosity regimes could be explained from the details of
flow structures. Figure 4 shows the flow fields for the three types
of structures at a low porosity 0.1 (a1, b1, c1) and a high porosity
0.73 (a2, b2, c2). The vectors denote the three-dimensional veloc-
ity field. The contours show the values of velocity in x-direction at
mid-plane (y¼ 0.5). The scales for vector and contour are same
for the three structures, respectively. For the contour maps, the
solid parts are blocked for clear show. The results indicate that the
structure effect on electro-osmotic permeability is actually a com-
prehensive result from two competing factors: the surface–volume
ratio whose higher value will enhance the permeability and the
shape resistance which weakens the flow velocity. For the low
porosity regime, as shown in Fig. 4 (a1, b1, c1), the surface–
volume ratio differs significantly between the three types of struc-
tures, which affects the electro-osmotic driving force. The
network structure has the highest surface–volume ratio while the
granular owns the lowest one. As a result, the network structure
exhibits the highest electro-osmotic permeability and the granular
the lowest when the porosity is very low, just as shown in
Fig. 3(a). When the porosity is high (>0.5), the electric double
layer will be fully developed despite the structure types and the
shape resistance to the flow will play a more important role. The
granular structure owns the lowest shape resistance and leads to
the highest electro-osmotic permeability as the result.

4 Conclusions

We present a numerical framework in this contribution for the
multiphysical transport in electro-osmosis through microporous
media with granular random structures. The framework
includes random generation-growth method to reproduce the
three-dimensional microstructures of porous media and a high-
efficiency lattice Poisson–Boltzmann algorithm to solve the non-
linear governing equations for the electrokinetic transport. The
structure effects on electro-osmosis in porous media have been,
therefore, studied by modeling the multiphysical transport using
our numerical framework. The simulation results indicate that the
porous structure type (granular, fibrous, or network) influences the
electro-osmotic permeability significantly. At the low porosity re-
gime (<0.4), the network structure exhibits the highest electro-
osmotic permeability because of its highest surface–volume ratio
among the three types of structure. When the porosity is high
(>0.5) the granular structure leads to the highest electro-osmotic
permeability due to its lower shape resistance characteristics. The
present modeling results may improve our understanding of
hydrodynamic and electrokinetic transport in geophysical sys-
tems, and help guide the design of porous electrodes in micro-
energy systems.
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