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Electro-osmosis in porous media has many important applications in various areas such as oil and gas
exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newto-
nian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the
behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model
porous microstructures (granular, fibrous, and network) were created by a random generation-growth
method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved
by the lattice Poisson–Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis
of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii)
when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher
electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic perme-
ability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium struc-
ture depends significantly on the constitutive parameters: for fluids with large constitutive coefficients
strongly dependent on the power-law index, the network structure shows the highest electro-osmotic
permeability while the granular structure exhibits the lowest permeability on the entire range of power
law indices considered; when the dependence of the constitutive coefficient on the power law index is
weaker, different behaviors can be observed especially in case of strong shear thinning.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Electro-osmosis in porous media has broad applications in oil
exploration, chemical engineering and biomedical engineering
[1–4]. For instance, a better understanding of osmotic behavior of
crude oil, especially heavy oil, in geological rocks may help increas-
ing or maintaining production of oil reservoirs [5]. As it is well
known, oil cannot be simply regarded to as a Newtonian fluid
because of its shear-rate dependent viscosity [6]. As the pore size
decreases, the relative importance of surface forces increases sig-
nificantly. Since crude oils contain many ions, the electrokinetic
force is not negligible in osmotic processes. Even though it is not
yet a mature technology, electro-osmosis provides a possible
option to enhance oil recovery that may be beneficial to the oil
and gas industry, because the electrokinetic force is much higher
than the shear force in micro/nanoscale flows; in addition, the
absence of moving parts makes this technology extremely reliable.
Another important application of the electro-osmosis of non-New-
tonian fluids is in microfluidic systems [7,8], such as Lab-on-a-Chip
in biomedical applications, integrating various functions including
sample detection, separation, mixing and collection. A typical
example is electrochromatography in microchips [9]. Since the
electrokinetic force at the microscale becomes stronger than pres-
sure from classical mechanical pumps, the system is more reliable
because there are no moving parts, and easier to integrate on the
chip, this technology is a very promising option of driving and
actuating power [10]. Controlling the fluid movements on the chip
with precision requires a sound understanding of the hydrodynam-
ics of fluids containing ions under the effects of an electric field;
moreover, most of the fluids involved in these applications are
non-Newtonian [11], hence the importance of investigating the
electro-osmotic flow of non-Newtonian fluids.

There is considerable amount of literature on both theoretical
and experimental investigations of electro-osmosis of Newtonian
fluids in porous media [2,12–25]. Looker and Carnie [26] proposed
a homogenized model upscaling the electrokinetic equations
describing transport of a Newtonian solvent through porous med-
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ium. Rosanne [27] validated a simple analytic expression for the
Newtonian electro-osmosis in compact clays by comparison with
both the numerical results of Marino et al. [28] and their own
experimental data. Wang et al. developed a lattice Poisson–Boltz-
mann method (LPBM) [29–31] and investigated the effects of var-
ious structures of the porous medium (granular, fibrous, or
network) on Newtonian electro-osmotic transport using a compu-
tational approach [19,20,24,25].

All of the above mentioned studies focus on Newtonian fluids in
porous media. However, the introduction of non-Newtonian effects
is important for two main reasons: (i) in electrokinetic flow, the
interaction between the fluid and solid surfaces generates a certain
amount of net charge on solid surfaces. As a result, the ion distri-
bution across the channel becomes non-uniform, and in particular
the ion density near the solid wall is much larger than that in the
middle of the channel, so that the electric force imposed on the
fluid is non-uniform in the transversal direction. Since the tradi-
tional pressure-driven method would result in uniform force on
the liquid, some new features are expected in the case that a
non-Newtonian fluid is driven by non-uniform force compared
with the case of Newtonian fluid. (ii) Porous media naturally set
a complex boundary condition for fluid flows; these would influ-
ence the flow structure of non-Newtonian fluids significantly. Con-
sequently, investigation of electro-osmosis of non-Newtonian
fluids in porous media is of great interest both from the theoretical
and from the practical point of view. New findings about the phys-
icochemical properties of electro-osmosis of non-Newtonian fluids
in porous media would help understanding this complex transport
process further. A deeper understanding of electro-osmosis of non-
Newtonian fluids in porous media could enable us to apply theo-
retical models to practical technology.

Many researchers have recently focused on non-Newtonian
fluids flows in porous media [5,32–36]. Lopez et al. [5] used a
pore-network model to predict the apparent viscosity of power-
law fluids in a porous medium as a function of flow rate. This
simulation could reach an agreement with the results of some
experiments, but need a highly detailed description of the pores
and was limited to a simple rheological model. Boek et al. [33] pre-
sented a lattice Boltzmann study of the flow of non-Newtonian flu-
ids, using a power-law relationship between the apparent viscosity
and the local shear rate. Their results are in good agreement with
theory. However, to date, the research of the electro-osmosis of
non-Newtonian fluids in porous media is still at an early stage
[37–39]. Mondal and De [39] derived an analytical solution,
describing the flow and mass transport behavior of non-Newtonian
fluids in a porous microchannel, under the influence of electroki-
netic forces. Tang et al. [38] modeled a power-law fluid flow in a
two-dimensional porous structure in combination with the elec-
troviscous effect. Two main deficiencies exist in previous studies:
(i) for fluid flow in porous media, modeling is reliable only for
three-dimensional structures; (ii) either granular microstructures
or homogeneous models have been considered so far, however in
nature there are various types of porous media microstructures,
including granular, fibrous, and network structures [40,41]. To
our best knowledge, in the open literature one can find only contri-
butions about the electro-osmosis of non-Newtonian flows in gran-
ular porous media, while other microstructures have not been
investigated to date.

The primary objective of this work was to investigate the struc-
ture effects on electro-osmotic permeability of non-Newtonian flu-
ids through various types of porous media. This article is organized
as follows: In Section 2, a theoretical and numerical framework is
introduced, including the random generation growth method for
microstructure generation, the rheological parameters of non-
Newtonian fluids, and a lattice evolution solver for the governing
equations; in Section 3, the structure effects on electro-osmosis
of non-Newtonian fluids in porous media are analyzed; finally, a
brief summary/conclusion is presented in Section 4.
2. Theoretical and numerical framework

2.1. Generation of porous structures

In this work, the multi-parameter random generation-growth
method [40] is used to build the microporous structure using sta-
tistical information from a real porous medium. The structure gen-
erated by this stochastic algorithm features all the relevant
characteristics of real porous media. The statistical information
used to reproduce microstructures includes the shape and number
density of particles, phase volume fraction, morphology, anisot-
ropy, and so on. In general, the solid structures of porous media
can be sorted into three categories: granular, fibrous, and network
structures.

For different types of microstructures, the generation methods
follow the same approach. As an example, the generation proce-
dure of granular porous structure is presented here [19,42]: (1)
solid cores are distributed in a three-dimensional grid according
to a given core distribution probability cd. Each point of the grid
is assigned a random number between 0 and 1. If the random num-
ber is not greater than the distribution probability, the point is cho-
sen as a ‘‘seed’’ of the porous medium. (2) Each solid core is
extended toward its neighbor units according to the given direc-
tion growth probability Di (where i represents the direction). Sim-
ilarly, each direction of the solid core generated in the first step is
allocated a random number. If the random number of the i -th
direction is smaller than or equal to the direction growth probabil-
ity Di, the neighbor unit on the i-th direction becomes a solid core.
(3) Repeat the second step until the porosity of the porous struc-
ture reaches the given value, e.

For fibrous porous structures, first fibrous seeds are randomly
distributed in the grid system based on the core distribution
probability cd. For each seed, an orientation angle in the range
[�hlim, hlim] is assigned stochastically. Then, the length of each
fibrous core is extended on both sides along the direction h; the
same is done with the thickness of the fibrous core crosswise. This
process is repeated until the fibrous characteristic length meets the
given value or the porosity reaches the expected value.

As for to network porous structures, similar to the processes
described above seeds are randomly allocated in the grid system
according to a given value of core distribution probability, cd. For
each node, a number Nn of neighbor units around the node are ran-
domly chosen as connecting nodes. Here, the value of N depends on
certain properties of the expected porous structure, obtained from
different generation and search algorithms [43]. Fig. 1(a)–(c) dis-
plays the 3D view of sample granular, fibrous and network porous
structures generated by the above generation and growth methods,
respectively.

2.2. Rheological parameters

In this work, time-independent model non-Newtonian fluids
with a shear-rate-dependent viscosity are considered. Such fluids
can be described by various constitutive equations, including the
power-law (Ostwald–DeWaele) model as well as other complex
models (Casson, Herschel-Bulkley, Steiger-Ory, Bingham, Ellis and
Eyring) [44]. The power law constitutive equation, can be written
as

g ¼ K _cn�1 ð1Þ

where g is the apparent shear viscosity, K is the consistency coeffi-
cient, _c is the shear rate, and n the power-law index; for n < 1, the



Fig. 1. Porous structures: (a) granular, (b) fibrous and (c) network.
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model describes shear-tinning fluids, whereas for n > 1 it describes
shear-thickening fluids. So far, this model has been the most popu-
lar because of its simplicity and ease to use. Thus, the power-law
constitutive equation was used in this work to investigate the char-
acteristic behaviors of typical shear-thinning and shear-thickening
fluids.

Rheological measurements on real fluids show that when the
power-law model is fitted to experimental data, the consistency
coefficient and the power-law index are not independent, but are
often related by an exponential function as [32,45]:

K ¼ A expð�B� nÞ ð2Þ

Fig. 2 shows examples of such fitting curves based on literature
data [32,45].

2.3. Governing equations

Consider a dilute non-Newtonian electrolyte solution flowing
through a three-dimensional solid porous structure. Although the
pore scale may be of tens of nanometers, the non-Newtonian elec-
trolyte can be treated as a continuum fluid since the size is still
about one order of magnitude greater than the molecular diame-
ters of the liquid solvent [46].

The mathematical model of electrokinetic transport is based on
following assumptions: (i) The system is in a chemical and
dynamic equilibrium state; (ii) The transport process is steady;
(iii) The characteristic size of pores is much larger than the size
of liquid molecules; (iv) The ions in the Stern layer are absorbed
to the solid surface rigidly and there is no contribution to bulk
ion movement; (v) The flow is slow enough to neglect the effects
Fig. 2. Examples of fitting curve of rheological parameters power law fluids according to
[45]; (b) A = 3 � 106 and B = 13.59 for foam oil [32].
of ion convection; (vi) The bulk ion concentration is neither very
high (<1 mol/L) nor extremely low (the Debye length is one order
of magnitude smaller than the channel width) so that the Pois-
son–Boltzmann (PB) model is still applicable [46]; (vii) On the solid
surface the only chemical processes are chemical adsorption and
dissociation; and (viii) difference in dielectric constants between
solid frame and liquid solution is negligible. Based on the
assumptions of negligible convection effects and moderate ion
concentration, the ion transport process could be described by a
weak-coupling Poisson–Boltzmann model instead of the strong-
coupling Poisson–Nernst–Plank model [7]. The governing equa-
tions of electrokinetic transport for a univalent electrolyte solution
can be expressed as [7,47]:

r2w ¼ 2en1
ere0

sinh
ew
kT

� �
ð3Þ

qe ¼ �2en1 sinh
ew
kT

� �
ð4Þ

r � u ¼ 0 ð5Þ

qu � ru ¼ �rpþ lr2uþ qeE ð6Þ

where w denotes the electrostatic potential, e is the absolute value
of the proton charge, ere0 is the permittivity of the solution, n1 is
the bulk ion concentration, k is Boltzmann’s constant, T is the abso-
lute temperature, u is the fluid velocity, q is the fluid density, p is
the pressure, l is the dynamic viscosity, qe is the charge density,
and E is the electric field strength. Among the above four equations,
Eq. (2): (a) A = 111.35 and B = 2.5 for human blood through a capillary viscometer
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Eqs. (3) and (4) are the governing equations for the electric poten-
tial, while Eqs. (5) and (6) are the evolution equations for
hydrodynamics.

2.4. Lattice Poisson–Boltzmann method (LPBM)

After generating the porous medium structure, the lattice Pois-
son–Boltzmann method (LPBM) was used to solve the coupling
governing equations of electric potential and hydrodynamics in
electrokinetic transport with bounce-back boundary conditions
[29]. This method combines the solution of nonlinear Poisson
equations through evolving electric potential on a discrete grid
(lattice Poisson method) [48] with the method which solves Boltz-
mann–BGK equations by evolving density on the same discrete
grid (lattice Boltzmann method) [29]. Because previous research
indicated that the three-dimension fifteen-speed (D3Q15) scheme
in numerical simulation of electro-osmosis in porous media [19] is
unstable in cases of high f potential and low porosity [49], a more
stable three-dimension nineteen-speed (D3Q19) scheme was used
to replace the D3Q15 scheme [49].

The discrete evolution equations that solve the governing equa-
tions for hydrodynamics (Eqs. (5) and (6)) can be written as [50]

f aðrþ eadt ; t þ dtÞ � f aðr; tÞ ¼ �
1
sm
½ f aðr; tÞ � f eq

a ðr; tÞ� þ dtFa ð7Þ

where dt is the time step and ea is the discrete velocity for the
D3Q19 system, which is shown in Fig. 3. The three-dimensional dis-
crete velocities for the D3Q19 system are

ea ¼
ð0;0;0Þ a ¼ 0
ð�1;0;0Þc; ð0;�1;0Þc; ð0;0;�1Þc a ¼ 1 to 6
ð�1;�1;0Þc; ð�1;0;�1Þc; ð0;�1;�1Þc a ¼ 7 to 18

8><
>: ð8Þ

In Eq. (7), sm is the dimensionless relaxation time, which
depends on the fluid kinematic viscosity, m:

sm ¼ 0:5þ 3m=dxc ð9Þ

where c = dx/dt is the lattice speed, an adjustable parameter, which
controls accuracy and efficiency, and dx is the lattice constant (grid
size). In previous simulations of electro-osmosis of Newtonian flu-
ids, sm was regarded to as a constant. However, in this study sm is
a shear-rate dependent variable at each node, since the viscosities
of non-Newtonian fluids vary with the shear rate. For power-law
fluids, the correlation between kinematic viscosity and shear strain
tensor can be expressed as

m ¼ K _cn�1=q ¼ KðSijSijÞðn�1Þ=2
=q ð10Þ
Fig. 3. Lattice direction system in the D3Q19 model.
where K is the consistency (Pa sn), _c is the shear rate (s�1), Sij is the
strain rate tensor, and q is the fluid density.

Artoli [51] derived the formula for calculating the shear strain
tensor using non-equilibrium distribution function

Sij ¼ �
3

2qc2sm

X
a

f ð1Þa caicaj ð11Þ

where f ð1Þa is the first order term of the non-equilibrium distribution
function. Since high order (P2) terms are infinitesimals compared
to the first order term, we approximately regard the whole non-
equilibrium distribution function as the first order non-equilibrium
distribution function

f ð1Þa � f neq
a ¼ f a � f eq

a ð12Þ

Combining Eqs. (9)–(12), one can derive a shear-dependent
relaxation time sm with density distribution functions at each node.
The above procedure allows one to incorporate the power-law con-
stitutive model into the LPBM.

The density equilibrium function f eq
a in the D3Q19 model can be

calculated as

f eq
a ¼ xaq 1þ 3

ea � u
c2 þ 9

ðea � uÞ2

2c2 � 3u2

2c2

" #
ð13Þ

with

xa ¼
1=3 a ¼ 0
1=18 a ¼ 1 to 6
1=36 a ¼ 7 to 18

8><
>: ð14Þ

The external force in Eq. (7) is [52]

Fa ¼
3qeE � ðea � uÞ

qc2 f eq
a ð15Þ

The macro fluid density and velocity can be calculated by
[19,41]

q ¼
X

a
f a ð16Þ

qu ¼
X

a
ea f a ð17Þ

Similarly, the discrete evolution equation for electric potential
distribution takes the form [29,48]

gaðrþDr;tþdt;gÞ�gaðr;tÞ¼�
1
sg
½gaðr;tÞ�geq

a ðr;tÞ�þ 1�0:5
sg

� �
dt;gxags

ð18Þ
where the equilibrium distribution function of the electric potential
evolution variable g in the D3Q19 model is

geq
a ¼

0 a ¼ 0
w=18 a ¼ 1 to 6
w=18 a ¼ 7 to 18

8><
>: ð19Þ

The time step for electric potential evolution is dt,g = dx/cg, where
cg is the lattice speed for electric potential propagation [48]. The
dimensionless relaxation time can be obtained through a multi-
scale analysis of the discrete Boltzmann evolution equations. For
the D3Q19 model [49,53], it can be expressed as

sg ¼
9v

5dxcg
þ 0:5 ð20Þ

where v is defined as the electric potential diffusivity and is set
to unity in these simulations. The variable cg is also an adjustable
parameter that forces the value of sg to be within the range
between 0.5 and 2 [48,54]. The macro electric potential can be cal-
culated by



Fig. 4. Electric potential contours on the mid-plane (x direction) of granular porous structures at porosities e = 0.45, e = 0.63, and e = 0.73 respectively.
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w ¼
X

a
ðga þ 0:5dt;ggsxaÞ ð21Þ

As for the boundary conditions for the lattice Boltzmann equa-
tions, the non-equilibrium bounce-back rule [55] was applied to
both hydrodynamic and electrodynamic boundaries. For the
hydrodynamic boundaries, it can be written as: f neq

a ¼ f neq
b , where

the subscripts a and b represent the opposite directions. For the
electric potential at solid surfaces, the non-equilibrium ‘‘bounce-
back’’ rule is derived as gneq

a ¼ �gneq
b . These current boundary con-

ditions have approximately second-order accuracy [53,55].

3. Simulation results and discussion

In order to study the structure effect of electro-osmosis in por-
ous media, first a given type of microporous structure (granular,
fibrous, or network) is generated, then the governing equations
for electrokinetic transport are solved by the lattice Poisson–Boltz-
mann method. Once the whole velocity field has been obtained, the
electro-osmotic permeability is defined as je ¼ �u=E [56], where �u is
the average fluid velocity in the direction of external electric field
E.

In these numerical simulations, the computational domain is
represented by a micro cube with a side length of 1 � 10�6 m,
which is divided into a 60 � 60 � 60 uniform grid. The fluid prop-
erties are the fluid density q = 1 � 103 kg/m3, and the dielectric
constant ere0 = 6.95 � 10�10 C2/J m [29]. The values of the consis-
tency coefficient K and the flow behavior index n are adjusted to
obtain shear-thinning and shear-thickening behaviors, as
discussed in Section 2.2. Unless otherwise specified, the other
parameters are the absolute temperature, T = 293 K, the zeta
potential, f = �50 mV, the bulk ion concentration, n1 = 1 � 10�5

mol/L, and the external electric field strength, E = 1 � 108 V/m.
Figs. 4(a)–(c) displays the electric potential contours in the mid-

plane (x direction) of granular porous structures with porosities
0.45, 0.63, and 0.73 respectively. Since the boundary condition
on the solid nodes is set to zeta potential f = �0.05 V, the darkest
color (blue)1, i.e. where the absolute value of the electric potential
is highest, corresponds to the solid phase. These three figures use
the same color-map in order to visualize the differences among
the development of surface electric potential at different porosities.

3.1. External electric field strength effect

Fig. 5 displays the electro-osmotic permeability, je, as a func-
tion of the external electric field strength, Ex, for three kinds of
1 For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.
power law fluids with different rheological properties (respectively
shear-thinning, n = 0.8, Newtonian, n = 1.0, and shear thickening,
n = 1.2). The microstructure of the porous medium is granular, with
a porosity e = 0.18. From Fig. 5, one can notice that for Newtonian
fluids the electro-osmotic permeability remains constant with the
increase of the external electric field. In other words, the average
fluid velocity along the direction of the external electric field is a
linear function of the external electric field strength. This result
is in agreement with the expression of the H–S (Helmholtz–Smolu-
chowski) velocity for Newtonian fluids

uslip ¼ �
e0erfE

l ð22Þ

As shown in Fig. 5, the electro-osmotic permeability is almost
linear with respect to the external electric field for both shear-thin-
ning and shear-thickening fluids. The slope for shear-thinning flu-
ids is positive while the slope for shear-thickening is negative. For
a low external electric field, the shear-thickening fluid exhibits the
highest electro-osmotic permeability while the shear-thinning
fluid results in the lowest electro-osmotic permeability, and vice-
versa for high electric fields. In fact, the relationship between the
average fluid velocity in the direction of the external electric field
and external electric field strength, illustrated in figure, is consis-
tent with the formula to calculate the H–S velocity of non-Newto-
nian fluids obtained by Zhao et al. [57]

us ¼ nj1�n
n � ere0fEx

K

� �1
n

ð23Þ

Eq. (23) can be rewritten as

us

Ex
¼ nj1�n

n � ere0f
K

� �1
n

E
1
n�1
x ð24Þ

According to Eq. (24), when the flow behavior index n is equal
to 1 (Newtonian fluid), the ratio us/Ex (electro-osmotic permeabil-
ity) does not change with the external electric field strength Ex. In
case of n < 1 (shear-thinning fluid), us/Ex increases linearly with Ex,
while in the case of n > 1 (shear-thickening fluid), us/Ex decreases
linearly with Ex.

3.2. Zeta potential effect

Fig. 6 shows the electro-osmotic permeability je as a function of
the zeta potential, f, for three power law fluids (shear-thinning
n = 0.8, Newtonian n = 1, and shear thickening n = 1.2) in a granular
porous medium with porosity e = 0.18 and external electric field
Ex = 1 � 108 V/m. Logarithmic coordinates were used for the y-axis
since the electro-osmotic permeability increases by several orders



Fig. 5. Electro-osmotic permeability as a function of external electric field strength
for three power law fluids (shear-thinning, n = 0.8; Newtonian, n = 1.0; shear
thickening, n = 1.2).

Fig. 6. Electro-osmotic permeability as a function of zeta potential for three power
law fluids (shear-thinning, n = 0.8; Newtonian, n = 1.0; shear thickening, n = 1.2).

Fig. 7. Electro-osmotic permeability as a function of the bulk ion concentration for
three power law fluids (shear-thinning, n = 0.8; Newtonian, n = 1.0; shear thicken-
ing, n = 1.2).
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of magnitude. Fig. 6 suggests that the logarithm of the electro-
osmotic permeability is approximately a linear function of the zeta
potential for shear-thinning, Newtonian, and shear thickening flu-
ids. In the case of low zeta potential, the shear-thickening fluid
exhibits the highest electro-osmotic permeability, while the
shear-thinning fluid has the lowest electro-osmotic permeability.
However, in case of high zeta potential, the situation is just the
opposite (highest electro-osmotic permeability: shear-thinning
fluid; lowest electro-osmotic permeability: shear-thickening fluid).
This is similar to the behavior of the electro-osmotic permeability
with respect to the external electric field (Fig. 5).
3.3. Bulk ion concentration effect

Fig. 7 shows the electro-osmotic permeability je as a function of
the bulk ion concentration nb for three power law fluids (shear-
thinning n = 0.8, Newtonian n = 1, and shear thickening n = 1.2) in
a granular porous medium with porosity e = 0.18 and external elec-
tric field Ex = 1 � 108 V/m. According to Fig. 7, the logarithm of the
electro-osmotic permeability is almost linear with respect to the
logarithm of the bulk ion concentration for all of the fluids consid-
ered, and the overall trends of permeability are qualitatively simi-
lar to the previous cases. In fact, shear thickening fluids exhibit the
highest permeability at low bulk ion concentrations, and the low-
est at high bulk ion concentrations; vice-versa, shear thinning flu-
ids exhibit the lowest permeability at low bulk ion concentrations,
and the highest at high bulk ion concentrations.

To understand why the behavior of permeability with respect to
the three parameters considered above (external electric field
strength, zeta potential, and bulk ion concentration) is qualita-
tively similar for all cases, one should recognize that all of these
parameters can be regarded to as driving factors in the electroki-
netic transport. Since the porous structures of the flow field are
the same, a large average fluid velocity yields large shear rates _c.
According to the power law model (Eq. (1)), the apparent viscosity
of power-law fluids depends on the competition between two
quantities: the consistency coefficient, K, and the term _cn�1, which
can be regarded to as a non-linear shear rate depending on the
power law index, n. The consistency coefficient K of shear-thinning
fluid is relatively higher than that of shear-thickening fluids, as
shown by Eq. (2) and Fig. 2; thus, a very large value of _cn�1, driven
by the average fluid velocity, would reduce the apparent viscosity
significantly because n < 1. As a result, shear-thinning fluids exhi-
bit higher electro-osmotic permeability when the driving factors
are relatively strong. In the case of weak driving factors, the aver-
age fluid velocity is low therefore the term _cn�1 is small, therefore
the apparent viscosity of shear-thinning fluid is high. The picture is
very different for shear-thickening fluids, because their consis-
tency coefficient is considerably smaller than that of shear-thin-
ning fluids, and so is the apparent viscosity. As a consequence,
shear-thickening fluids exhibit higher electro-osmotic permeabil-
ity when the driving factors are relatively weaker.

3.4. Porosity effect

Figs. 8 and 9 display the electro-osmotic permeability, je, as a
function of porosity e for the three power-law fluids considered,
in a porous medium with granular structure. The magnitudes of
the external electric field are Ex = 1 � 108 V/m (Fig. 8) and Ex = 1
� 107 V/m (Fig. 9). In general, the electro-osmosis grows monoton-
ically with increasing porosity; in the case of high external electric
potential (Ex = 1 � 108 V/m), shear-thinning fluids exhibit the high-
est electro-osmotic permeability for any value of porosity, while
the opposite situation occurs with a comparatively lower electric
potential (Ex = 1 � 107 V/m), as shown in Fig. 9. This conclusion is
consistent with the common features of electro-osmotic perme-
ability trends with respect to different parameters described
above.

3.5. Effect of structure morphology

Figs. 10 and 11 show the effect of the porous medium structure
(granular, fibrous, and network) with identical porosity, e = 0.18,
on the electro-osmotic permeability, je, plotted as a function of
the flow behavior index, n, respectively for two power law fluids
with different constitutive parameters, subject to an electric field



Fig. 8. Electro-osmotic permeability as a function of porosity for three power law
fluids (external electric field: Ex = 1 � 108 V/m).

Fig. 9. Electro-osmotic permeability as a function of porosity for three power law
fluids (external electric field Ex = 1 � 107 V/m).

Fig. 11. Electro-osmotic permeability as a function of the flow behavior index for a
power law fluid with K = 111.35 exp(�2.5 � n), for three different porous structures
(granular, fibrous, and network).
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with magnitude Ex = 1 � 108 V/m. In particular, Fig. 10 shows the
behavior of a fluid with constitutive parameters related by the fol-
lowing equation:

K ¼ 3� 106 expð�13:56� nÞ ð25Þ

whereas Fig. 11 is relative to a fluid with

K ¼ 111:35 expð�2:5� nÞ ð26Þ

In both cases, the electro-osmotic permeability reduces mono-
tonically when the flow behavior index in all cases. For a fluid with
a constitutive coefficient described by Eq. (25) (Fig. 10), the
Fig. 10. Electro-osmotic permeability as a function of the flow behavior index for a
power law fluid with K = 3 � 106 exp(�13.59 � n), for three different porous
structures (granular, fibrous, and network).
network porous structure exhibits the highest electro-osmotic per-
meability, while the granular porous structure has the lowest per-
meability at any value of flow behavior index. This is mainly due to
the low porosity of porous structures chosen in the simulations. At
low porosities, the network structure has the highest surface–vol-
ume ratio therefore the area of Electric Double Layers (EDLs) driv-
ing the fluid per unit volume is largest. Thus, the network porous
structure exhibits the highest electro-osmotic permeability,
because it can provide the largest electrokinetic force per volume
unit. On the contrary, the granular porous structure exhibits the
lowest electro-osmotic permeability since its surface–volume ratio
is the lowest. The change of viscosity with the power law index is
not significant, because it is compensated by a strong reduction of
the consistency coefficient (Eq. (25)).

Fig. 11 shows that for a different choice of the power law
parameters (Eq. (26)) the granular porous structure exhibits the
highest electro-osmotic permeability when the flow behavior
index is below 0.6. The physical reasons for this are to be found
in the weaker dependence of the consistency coefficient K on the
power law index n, so that there is a strong reduction of the appar-
ent viscosity at low values of n. The region of fully-developed slip
velocity (H–S velocity) in the granular porous structure is larger
than that in the other two porous structures due a lowest shape
resistance. As a result, the granular porous structure exhibits the
highest electro-osmotic permeability at low values of the power
law index. However, when the flow behavior index exceeds 0.7,
the effect of the porous medium structure on electro-osmosis of
this fluid becomes consistent with that of the fluid considered pre-
viously (i.e. highest electro-osmotic permeability for the network
structure, and lowest electro-osmotic permeability for the granular
structure). This happens because the electrokinetic transport
enhancement caused by the high surface–volume ratio outweighs
the expansion of the slip-velocity region resulting from the granu-
lar structure due to a weak shear-thinning effect.

4. Conclusions

The electro-osmosis of power-law non-Newtonian fluids in por-
ous media was investigated numerically using a lattice Poisson–
Boltzmann approach, for different microstructures of the porous
medium (granular, fibrous, or network). The electro-osmotic char-
acteristics of non-Newtonian flows in porous media were analyzed
for both shear-thinning and shear-thickening fluids, for different
values of the power-law parameters. The correlations between
microstructure and electro-osmotic permeability, affected by the
fluid properties, are mainly concerned. From these results, one
can conclude that:
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(1) The electro-osmotic permeability of Newtonian fluid does
not vary with the increase of the external electric field mag-
nitude. However, when the external electric field magnitude
is increased the electro-osmotic permeability of shear-thin-
ning fluid grows, while that of shear-thickening fluids
decreases. In case of low external electric field, the shear-
thickening fluid exhibits the highest electro-osmotic perme-
ability, whereas the shear-thinning fluid has the highest
electro-osmotic permeability at high values of the electric
field.

(2) For a low bulk ion concentration, or zeta potential, the shear-
thickening fluid exhibits the highest electro-osmotic perme-
ability, while for a high bulk ion concentration or zeta poten-
tial the shear-thinning fluid has the highest electro-osmotic
permeability.

(3) The electro-osmotic permeability grows monotonically with
the increase of porosity. In case of strong driving factors
(external electric field strength, bulk ion concentration, or
zeta potential), the shear-thinning fluid exhibits the highest
electro-osmotic permeability at all values of porosities.
However, in case of weak driving factors, the shear-thicken-
ing fluid exhibits the highest electro-osmotic permeability
independently of the value of porosity.

(4) For fluids with large consistency coefficients strongly depen-
dent on the power law index, the network and the granular
structures exhibit the highest and the lowest electro-osmo-
tic permeability, respectively, on the whole range of power
law indices. However, if the fluid consistency coefficient
has a weaker dependence on the power laws index, different
behaviors can be observed, especially for low values of the
power law index.

Since electro-osmosis of non-Newtonian fluid in porous media
has so many important applications in energy and environmental
fields, this study may improve understanding of mechanism of
such a complicated transport process. A few promising future work
include extensions to other non-Newtonian fluid than the power-
law fluids, such as the Bingham fluid, and to multiphase flow con-
sidering liquid–liquid interfaces and displacements.
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