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a b s t r a c t

Mixing becomes challenging in microchannels because of the low Reynolds number. This study aims to
present a mixing enhancement method for electro-osmotic flows in microchannels using vortices caused
by temperature-patterned walls. Since the fluid is non-isothermal, the conventional form of Nernst–
Planck equation is modified by adding a new migration term which is dependent on both temperature
and internal electric potential gradient. This term results in the so-called thermo-electrochemical
migration phenomenon. The coupled Navier–Stokes, Poisson, modified Nernst–Planck, energy and advec-
tion–diffusion equations are iteratively solved by multiple lattice Boltzmann methods to obtain the
velocity, internal electric potential, ion distribution, temperature and species concentration fields, respec-
tively. To enhance the mixing, three schemes of temperature-patterned walls have been considered with
symmetrical or asymmetrical arrangements of blocks with surface charge and temperature. Modeling
results show that the asymmetric arrangement scheme is the most efficient scheme and enhances the
mixing of species by 39% when the Reynolds number is on the order of 10�3. Current results may help
improve the design of micro-mixers at low Reynolds number.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In the recent decades, the rapid advancement of MEMS has
made it possible to integrate the multi-functional micro devices
on a chip (Lab-On-a-Chip) for biological and biochemical uses.
One of the most common elements used as a main part of MEMS
devices is micro-mixer. Appropriate and controllable mixing of
species in these devices is of great importance for scientific
research and applications. At small scale, the flows mostly remain
in laminar regime through micro-channels, which makes diffusion
as the main mechanism of mixing. As a result, one may have to
design long enough microchannels for appropriate mixing of spe-
cies. Therefore, control of mixing and mixing enhancement in
microchannels has been of great interest in recent years [1].

Various designs and studies are conducted to increase convec-
tion in mixing enhancement. Passive micro-mixers are designed
with specific geometry features in order to increase the chaotic
flow regime. Previous studies and schemes include three dimen-
sional serpentine mixers [2–4], zigzag or waveform mixers [5],
staggered herringbone mixers [6], micro-mixers with patterned
blocks [7], parallel lamination of micro-mixers with the basic of
T-mixer or Y-mixer [8]. However, difficulty in manufacturing
microchannels with designed specific geometric features poses
limitation on the use of passive schemes. On the other hand,
micro-mixers based on active mixing enhancement methods are
designed in such a way that the external mechanical or electrical
forces cause the chaotic flow pattern. In fact, these forces generate
transverse flows through the microchannel. The external mechan-
ical forces could be implemented, for instance, by pressure distur-
bance methods such as serial segmentation [9], pressure
disturbance along the microchannel [10] and integrated micro-
stirrer in the mixing channel [11]. For the electrical forces, they
could be implemented by electro-hydrodynamic disturbance,
dielectrophoretic disturbance and electrokinetic disturbance
methods [12]. Several studies have been conducted to reveal the
mechanism of these forces in the micro-mixers. These studies have
shown that by specifying the operating conditions, the active mix-
ing strategies yield an efficient species mixing as a result of the
repeated stretching and folding of the sample streams at the inter-
face between them [1,13].

In recent years, the electrokinetically driven flow techniques in
MEMS devices enable us to manipulate the flow regimes and as a
result, enhance the mixing of species sample. Wang et al. [14]
showed that in an electrokinetically driven flow such as electro-
osmotic flow, the mixing enhancement effect for the interlaced
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arrangement of zeta potential-patterned walls is higher than that
for symmetrical arrangement. Tang et al. [15] and Coleman and
Sinton [16] showed that through applying a periodically varying
electric field to the side channels of a T-/cross-shaped micro-mixer,
the species could be injected alternately into the main microchan-
nel. The time-dependent external electric field and the effects of
this scheme on the mixing enhancement have been the research
subject of some literatures [17,18]. They have demonstrated that,
for instance, with sinusoidally alternating external electric fields,
the flow field could emerge as a wavy-flow pattern.

Electrokinetic flows have significant parameters such as tem-
perature gradient which could be used as a key resource for active
control of mixing in these type flows. Alizadeh et al. [19] showed
that by applying a temperature difference between inlet flow and
walls of a microchannel, one can control vortex scales formed in
the flow field. It was shown that the temperature gradient changed
the ion distribution. Consequently, the net electric charge density
and as a result the electrical body force are redistributed in such
a way according to the ion distribution [20].

As mentioned above, mixing enhancement of species in micro-
mixers has emerged as one of the challenging subjects in MEMS.
In the present study, the temperature field is used as an external-
like source to change the ion distribution and electrical body force
[19]. Compared with our previous work [19], this work will present
a modified Nernst–Planck equation which could properly model the
ions species electrodynamic transport in non-isothermal fluids.
This modification allows us to investigate the impacts of tempera-
ture gradient in both transverse and longitudinal direction of
micro-channel. The problem is formulated by solving the Poisson
equation for internal electric potential field, modified Nernst–
Planck equation for ion distribution, Navier–Stokes equation for
flow field, advection–diffusion equation for species concentration
and energy equation for temperature distribution. Since the gov-
erning equations are coupled together, they are solved by an itera-
tive process. In this work, the coupled lattice Boltzmann methods
are used to solve the governing equations numerically. The
Navier–Stokes, Poisson–Nernst–Planck equations for ions species
distribution and the advection–diffusion equation for species con-
centration are solved using the multiple lattice Boltzmann methods
[21] and the energy equation is solved using a model for thermal
evolution equation with generalized heat source term [22].
2. Problem definition

Fig. 1 shows three schematic designs of micro-mixers with pat-
terned temperature and zeta potential walls. In Fig. 1, red, blue and
red–blue blocks represent parts of the microchannel walls with dif-
ferent amounts of T and w. Micro-mixer schemes A and B consist of
two types of blocks (redblock � T ¼ Twall;w ¼ fwall;

blueblock � T ¼ Tin;w ¼ 0) while micro-mixer scheme C, in addi-
tion to red and blue blocks, has a third type block, red–blue block
(red� blueblock � T ¼ Tin;w ¼ fwall). Meanwhile, in micro-mixer
schemes B and C, the red blocks are placed in a symmetric arrange-
ment while in scheme A they are placed in an asymmetric arrange-
ment. In order to study the distribution of ions species and
electrical body force along the width of the micro-mixers, we
defined two planes named plane A and B which are placed in x/
H = 2.0 and x/H = 2.2, respectively (Fig. 1). The EOF studied in this
paper is an electrolyte flow through a two dimensional microchan-
nel with length L and width H. The inlet electrolyte is kept at con-
stant temperature Tin while Tin < Twall. The fluid motion is caused by
both external electric field with strength Ex applied by use of an
Anode and a Cathode placed at the two ends of the microchannel
and pressure gradient. The ratio of length to width of this micro-
channel (L/H) is equal to 5 and the electrolyte considered here is
symmetric and has a 1:1 ionic ratio (|Z+| = |Z�| = Z = 1). In this
study, it is assumed that the microchannel is made of PDMS, and
the electrolyte is a dilute solution of NaCl.

In order to characterize the relative size of the thickness of elec-
tric double layer (EDL), the dimensionless parameter j is defined
as j ¼ KH ¼ H=k with H representing the channel width and k
the Debye length calculated by:

k ¼ K�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0erKBTwall

2Z2e2ni1

s
ð1Þ

where Twall, as mentioned in Fig. 1, is the red block temperature
used as the reference temperature. Here, by selecting the value of
j and H, the value of ion concentration, ni1, is determined. Some-
times, instead of ni1 the amount of molar concentration, c, is also
determined. In such cases, the molar concentration in K mol/m3 is
calculated as c = ni1/(1000NA), where NA is the Avogadro constant.
Other physical parameters such as l, er and k are only functions
of temperature and assumed constant for a given temperature.
The values of these quantities for T = 19.85 �C (=293 K) are pre-
sented in Table 1.

To study the effects of temperature gradients on the flow field
and as a result mixing enhancement of species, we used two set
amount of temperatures on the blocks as Twall = 87.5 �C,
Tin = 12.5 �C and Twall = 31.25 �C, Tin = 25 �C. Moreover, the amount
of zeta potential on the red and blue blocks was kept constant as
f = �50 mv and f = 0 mv, respectively. Considering species concen-
tration, it is assumed that at the inlet of micro-mixers we imple-
mented species boundary condition as y/H P 0.5 ? Cs = 1 and y/
H < 0.5 ? Cs = 0.

3. Mathematical models

3.1. Navier–Stokes equations

For a Newtonian fluid at microscale without any mass source
and in laminar flow regime, the conventional continuity and
Navier–Stokes equations are still valid as [23]:

ðaÞ @q
@t þr � ðquÞ ¼ 0

ðbÞ @ðquÞ
@t þ u � rðquÞ ¼ �rpþr � mrðquÞ½ � þ F

ð2Þ

where q (kg/m3) is the density of the electrolyte, u (m/s) is the flow
velocity vector, t (s) time, p (Pa) fluid pressure, m (m2/s) the kinetic
viscosity and F (N/m3) is the body force density which may include
all the implemented body forces such as electrical body force or
pressure gradient. In cases that the fluid is incompressible, the pres-
sure gradient could be included in F. As a result, while in this study
the pressure gradient is considered in some case of micro-mixer
types, so one can define the body force as:

F ¼ Fe þ Fp ¼ �qe ruþrwð Þ þ rP ð3Þ

where ru is the external electric potential field and in this study
we have �ðruÞx ¼ Ex; ðruÞy ¼ 0, rw is the internal electric poten-
tial field which we ignored the impact of (rw)y due to the low ion
concentration dissolved in electrolyte [19].

Boundary conditions governing Navier–Stokes equations for
three micro-mixer schemes are as follows:

for red; blue and red� blue blocks :

y ¼ 0 ! u ¼ v ¼ 0; y ¼ H ! u ¼ v ¼ 0
for inlet andoutlet :

x ¼ 0 ! @u
@x
¼ @v
@x
¼ 0;p ¼ Patm

x ¼ l ! @u
@x
¼ @v
@x
¼ 0; p ¼ Patm

ð4Þ



Fig. 1. Three scheme of micro-mixers with temperature and zeta potential patterned blocks in symmetric and asymmetric arrangement.
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3.2. Modified Nernst–Planck equation

The mass conservation equation for ith ion species in an electro-
lyte could be written in general form as [24]:
@Ci

@t
þr � J i þ kiCi ¼ Ri ð5Þ
where Ci demonstrates the ith ionic concentration, Ji denotes the
species flux, ki a radioactive decay constant and Ri presents the rate
at which the ith ions is produced or consumed by chemical reac-
tions. In the present study, the terms of radioactive decay constant
and the rate of producing or consuming of ions are neglected. How-
ever, Ji the flux of ith ions consists of advection, diffusion and



Table 1
Properties and parameters at T = 19.85 �C (=293 K).

Variable Value (unit)

H 6 � 10�6 m
e 1.602 � 10�19 c
KB 1.381 � 10�23 j/k
ni1 6.022 � 1020 ion/m3

er 80
e0 8.854 � 10�12 C/(V �m)
q 1000 kg/m3

l 1 � 10�3 Pa � s
cp 4180 j/(kg � K)
k 0.613 W/(m � K)
DNaþ ¼ DCl� 10�9 m2/s
Ds 10�10 m2/s
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dispersion terms. Neglecting the dispersion, one can denote the flux
of ions in the form of [24]:

J i ¼ �
eZiDi

KT

� �
Cirw� DiðrCiÞ þ Ciu ð6Þ

where the first term on the right hand side denotes the electro-
chemical migration, the second term to ions diffusion and the last
term to advective transport. This is the famous Nernst–Planck equa-
tion. In the ions flux equation, e, Zi, Di, K and T are denoted as the
absolute charge of electron, valance number for ith ion, diffusion
coefficient for ith ion, Boltzmann constant and the absolute temper-
ature, respectively. Wang and Kang [21] presented the electrody-
namic transport process equation for ions in electrokinetic flows
for isothermal incompressible uniform fluids with no polarization,
radiation or chemical reactions. Introducing Eq. (6) into Eq. (5) leads
to the ions electrodynamic transport equation:

@Ci

@t
þ u � rCi ¼ Dir2Ci þ

eZiDi

KT
r � ðCirwÞ ð7Þ

Eq. (7) is no longer valid for fluids with non-zero temperature
gradient. Introducing Eq. (6) into Eq. (5) and considering the fact
that temperature is no longer constant in electrolyte, one can dem-
onstrate the modified form of Nernst–Planck equation for fluids
with non-zero temperature gradient as:

@Ci

@t
þ u � rCi ¼ Dir2Ci þ

eZiDi

K
rw � r Ci

T

� �
þ Ci

T
r2w

� �
ð8Þ

Rewriting Eq. (8) based on the conventional form of Nernst–Planck
equation (Eq. (7)), eventually one can obtain the modified form of
the Nernst–Planck equation as:

@Ci

@t
þ u � rCi ¼ Dir2Ci þ

eZiDi

KT
r � ðCirwÞ � eZiDiCi

KT2 rT � rw ð9Þ

where the third term in the right hand side of the equation repre-
sents the thermo-electrochemical migration term.

Boundary conditions for the Nernst–Planck equation is defined
based on the Poisson–Boltzmann ion distribution equation (Ci = ni1
exp(�Ziew(x, y)/(KBTmean(x)))) which is still valid near the walls of a
microchannel due to the equilibrium state available in these
regions. As a result, one can denote the ith ion concentration
boundary conditions for micro-mixers as follows:

for red; blueand; red� blueblocks :

y ¼ 0 and y ¼ H ! Ci ¼ ni1 exp � Ziew
KBT

� �
for inlet andoutlet :

x ¼ 0 ! Ci ¼ ni1

x ¼ l ! @Ci

@x
¼ 0

ð10Þ
3.3. Poisson equation for internal electric potential field

The local internal electric potential field, w, which is caused by
the ionic distribution and is governed by the Poisson equation, is as
follows [25]:

@w
@t
¼ v r2wþ qe

ere0

� �
ð11Þ

where e0 is the permittivity of vacuum, er is the local amount of
electrolyte permittivity to vacuum permittivity and qe denotes
the local net electric charge density. v is the electric potential
diffusivity coefficient which is equal to unity in this simulation.
Considering the definition of qe as

P
i eZiCi, the electrical body force

is calculated by using Eq. (3) as Fe = �qe(ru +rw).
Boundary conditions governing Eq. (11) for micro-mixer

schemes is as:

for redandred� blueblocks :

w ¼ fwall

for blueblocks :

w ¼ 0
for inlet andoutlet :

x ¼ 0 ! w ¼ 0

x ¼ l ! @w
@x
¼ 0

ð12Þ
3.4. Species concentration equation

The governing equation on species concentration could be
considered as Eq. (9) with assuming the electrochemical and
thermo-electrochemical migrations equal to zero. So, the species
concentration equation is denoted as [14]:

@Cs

@t
þ u � rCs ¼ Dsr2Cs ð13Þ

where Cs and Ds denote the species concentration and species
diffusivity coefficient, respectively.

Boundary condition governing Eq. (13) is as follows:

for red; blueandred� blueblocks :

y ¼ 0 and y ¼ H ! @Cs

@y
¼ 0

for inlet andoutlet :

x ¼ 0 ! y
H
� 0:5 ! Cs ¼ 1

x ¼ 0 ! y
H
< 0:5 ! Cs ¼ 0

x ¼ l ! @Cs

@x
¼ 0

ð14Þ
3.5. Energy equation

In the present work, heat source terms such as Joule heating or
any external heat sources are assumed negligible, and therefore
the energy equation, the governing equation on temperature field,
could be described as [19]:

@T
@t
þ u � rTð Þ ¼ k

qcp
r2T ð15Þ

where cp and k denote the specific heat capacity and thermal con-
ductivity of the electrolyte, respectively. The boundary conditions
for the energy equation are as:
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for redblocks :

T ¼ Twall

for blueandred� blueblocks :

T ¼ Tin

for inlet andoutlet :

x ¼ 0 ! T ¼ Tin

x ¼ l ! @T
@x
¼ 0

ð16Þ
4. Numerical methods

The governing equations in the present work are solved by the
coupled lattice Boltzmann methods. In this rather new numerical
method for each of the governing equations, one evolution
equation is defined as the equivalent governing equation in meso-
scopic space. In this section, the evolution equation for each of the
governing equations mentioned in Section 3 will be presented. It is
noteworthy that in the present study, we consider the D2Q9 lattice
for discretizing the velocities. The direction system for D2Q9
system is shown in Fig. 2.

4.1. Evolution equations

4.1.1. For hydrodynamics (Navier–Stokes equations)
The discrete Boltzmann density distribution equation for solv-

ing the Navier–Stokes equations in the presence of external forces
is indicated as follows [26]:

fiðX þ eidt ; t þ dtÞ � fiðX; tÞ ¼ �
1
sv

fiðX; tÞ � f eq
i ðX; tÞ

� �
þ dtFi ð17Þ

where index i is assigned values from 0 to 8 in the standard D2Q9
lattice. fi is the density distribution function at place X and time t.
m is the kinematic viscosity which is related to the relaxation time
sv as m ¼ ðsv � 0:5ÞC2

s dt . Cs is the speed of sound in the fluid having
relation with the speed of particles in the lattice c = dx/dt as Cs = c/p

3. Fi is the external force distribution function at the same time
and place and defined as follows:

Fi ¼
ð�rpþ qeE � qerwÞ � ðei � uÞ

qc2 f eq
i ð18Þ

The Maxwell–Boltzmann equilibrium distribution function for
Eqs. (17) and (18) is [27]:

f eq
i ¼ xiq 1þ 3ðei � uÞ

c2 þ 9ðei � uÞ2

2c4 � 3
2
ðu � uÞ

c2

" #
ð19Þ
Fig. 2. D2Q9 discrete velocities.
where u is the macroscopic velocity vector and q is the density of
the fluid. xi represents the weighting factors for D2Q9 lattice as
follows:

xi ¼
4
9

i ¼ 0

xi ¼
1
9

i ¼ 1;2;3;4

xi ¼
1

36
i ¼ 5;6;7;8

ð20Þ

After evolution, the macroscopic values of the density, velocity
and pressure are calculated as follows:

q ¼
X8

i¼0
fi; qu ¼

X8

i¼0
fiei; p ¼ C2

s q ¼
q
3

ð21Þ
4.1.2. For electrodynamics (Poisson equation)
The evolution equation for internal electrical potential in a 2D

discrete lattice according to the Wang’s model is written as follows
[20]:

hiðX þ eidt;g ; t þ dt;gÞ � hiðX; tÞ ¼ �
1
sh

� �
hiðX; tÞ � heq

i ðX; tÞ
� �

þ dt;hxi 1� 0:5
sh

� �
qe

ere0

� �
ð22Þ

where hi is the electric potential distribution function, X is the place
vector, ei is the microscopic velocity vector of the particles in D2Q9
model, dt,h is the time step and here is equal to 1. sh is the dimen-
sionless relaxation time which is defined as:

sh ¼
3vdt;h

2d2
x

þ 0:5 ð23Þ

where dx is the lattice constant and v is the electric potential
diffusivity coefficient which is equal to unity in this simulation.
heq

i is the Maxwell–Boltzmann equilibrium distribution function
for electric potential. The Maxwell–Boltzmann distribution function
for Poisson–Boltzmann equation is:

heq
i ðX; tÞ ¼ -iw ð24Þ

where -i is the weight factor:

-i ¼
0 i ¼ 0
1
6 i ¼ 1;2;3;4
1

12 i ¼ 5;6;7;8

8><
>:

9>=
>; ð25Þ

Finally, the macroscopic amount of the electric potential is
calculated as:

w ¼
X8

i¼0
hi þ

0:5dt;hxiqe

ere0

� �
ð26Þ
4.1.3. For heat transfer (energy equation)
According to assumptions mentioned in Section 3.5, in the

present study internal heat sources such as Joule heating and vis-
cous dissipation are negligible ( _Q ¼ 0). Therefore, whatever we
have liquid or solid, the evolution equation can be generally given
as [28]:

hiðX þ eidt ; t þ dtÞ � hiðX; tÞ ¼ �
1
sh

� �
½hiðX; tÞ � heq

i ðX; tÞ�

þxidt;h 1� 0:5
sh

� � _Q
qcp

 !
ð27Þ

where hi is the internal energy distribution function and sh is the

dimensionless relaxation time as sh ¼ 3
2

� �
ð a

c2dt;h
Þ þ 0:5. Clearly, _Q is
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the heat source term. The Maxwell–Boltzmann equilibrium func-
tion for Eq. (27) is as follows [28]:

heq
i ¼ � �#iT

u � u
C2 i ¼ 0

heq
i ¼ �#iT

3
2
þ 3ei � u

2c2 þ
9ðei � uÞ2

2c2 � 3u � u
2c2

" #
i ¼ 1;2;3;4

heq
i ¼ �#iT 3þ ei � u

c2 þ
9ðei � uÞ2

2c2 � 3u � u
2c2

" #
i ¼ 5;6;7;8

ð28Þ

with

�#i ¼
� 2

3 i ¼ 0
1
9 i ¼ 1;2;3;4
1

36 i ¼ 5;6;7;8

8><
>:

9>=
>; ð29Þ

where T is the temperature of the fluid. The macroscopic value of
the temperature is calculated as follows:

T ¼
Xi¼8

i¼0
hi þ

dt;h

2

� � _Q
qcp

 !
ð30Þ
4.1.4. For ion transport (modified Nernst–Planck equation)
Wang and Kang [21] presented the evolution equation to solve

the ions transport in an isothermal electrolyte. In fact, the Nernst–
Planck equation is an advection–diffusion equation with a source
term for electrochemical migration of ions due to the internal elec-
tric potential field effects. Based on what mentioned in Section 3.2,
the modified evolution equation for ions transport is presented as:

gaðX þ eadt;Di
; t þ dt;Di

Þ � gaðX; tÞ ¼ �
1
sDi

½gaðX; tÞ � geq
a ðX; tÞ�

þxadt;Di
1� 0:5

sDi

� �
eZiDi

KT
r � ðCirwÞ � eZiDiCi

KT2 rT � rw

� �
ð31Þ

where sDi
is the dimensionless relaxation time for the ith ion trans-

port related to the diffusion coefficient Di, and time step dt;Di
.

The dimensionless relaxation time is calculated as:

sDi
¼ 3Di

2CDi
dx
þ 0:5 ð32Þ

The equilibrium distribution function for a D2Q9 lattice system
is denoted as:

geq
a¼0 ¼

�2Ci

3
u � u
C2

Di

geq
a¼1;2;3;4 ¼

Ci

9
3
2
þ 3ei � u

2C2
Di

þ 9ðei � uÞ2

2C2
Di

� 3u � u
2C2

Di

" #

geq
a¼5;6;7;8 ¼

Ci

36
3þ 3ei � u

C2
Di

þ 9ðei � uÞ2

2C2
Di

� 3u � u
2C2

Di

" #
ð33Þ

where CDi
denotes the lattice speed for ith ion separately and

defined as:

CDi
¼ dx

dt;Di

ð34Þ

It is worth mentioning that the diffusion lattice speed for ions
transport, CDi

; could be independent of diffusion lattice speed c
in other evolution equations and assigned any positive amount
while one can obtain the amount of sDi

in the range of
0:5 < sDi

< 2 [29].
Finally, the macroscopic amounts of ions are calculated by:

Ci ¼
X

ga þ
dt;Di

2
eZiDi

KT
r � ðCirwÞ � eZiDiCi

KT2 rT � rw

� �
ð35Þ
4.1.5. For species concentration (advection–diffusion equation)
Comparing modified Nernst–Planck equation (Eq. (9)) with the

species concentration equation (Eq. (13)), it is concluded that the
governing equation on species concentration is, in fact, the modi-
fied Nernst–Planck equation with zero valance number. Therefore,
the evolution equation for species concentration could be consid-
ered as Eq. (31) with Zi = 0. The dimensionless relaxation time
and the equilibrium distribution function are obtained as the same
as modified Nernst–Planck evolution equation by Eq. (32) and Eq.
(33), respectively. It is worth mentioning that the macroscopic
amount of species concentration is obtained by Eq. (35) while
Zi = 0.

4.2. Boundary treatment methods for lattice Boltzmann models

One of the challengeable subjects of study for the lattice Boltz-
mann methods is to present an approach in order to obtain the
non-streamed distribution functions which are in fact the
unknown distribution functions in boundaries. Since in this study
we are solving the evolution equations for governing equations
in coupled iterative methods, the consistency of boundary treat-
ment methods is of great importance. In this section, we will intro-
duce the second-order accuracy boundary treatment methods
which were used in solving the governing evolution equations.

For hydrodynamics boundary conditions, we used the counter-
slip method in order to obtain the unknown distribution functions
in walls, inlet and outlet of micro-mixers [30]. For energy equation,
we implemented the correcting coefficient method [31].

Several attempts have been performed in order to present con-
sistent boundary condition method for advection–diffusion equa-
tions. In this study, we present a new approach for general types
of boundary conditions for advection–diffusion equations with
source terms. This method could be implemented easily to any
kind of walls such as corners or even curved boundaries. It is note-
worthy that this method and the D’Orazio’s method [32], predict
same unknown amounts of distribution functions on the stationary
walls. This method is based on partitioning the distribution func-
tions to known and unknown parts and then by introducing a cor-
rection factor (a), one can obtain an equilibrium amount (r0) based
on known part of distribution functions and the correction factor.
Eventually, with multiplying the related weighting factor in the
unknown direction by the r0, the unknown distribution functions
are obtained.

For instance, the upper wall unknown distribution functions are
e4, e7, e8 which e could be each of the modified Nernst–Planck, Pois-
son or advection–diffusion distribution functions. Considering the
general form for obtaining the macro amounts as:

r ¼
X
�i þ g ð36Þ

where g is the source term, one can partitioning it to two parts of
known and unknown distribution functions as follows:

�4 þ �7 þ �8 ¼ rX � rk � g ð37Þ

where rX is the macro amount of related variable at the boundary
and rk is the sum of known amounts of distribution functions as:

rk ¼ �0 þ �1 þ �2 þ �3 þ �5 þ �6 ð38Þ

Considering the sum of related weighting factor in the unknown
distribution function directions for each evolution method, one can
obtain the correcting factor as:

a ¼ x4 þx7 þx8 ð39Þ

As a result, considering Eq. (37), r0 is obtained as follows:

r0 ¼
1
a

� �
ð�4 þ �7 þ �8Þ ¼

1
a

� �
ðrX � rk � gÞ ð40Þ
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Finally, the unknown distribution functions are obtained as:

�4 ¼ x4r0

�7 ¼ x7r0

�8 ¼ x8r0

ð41Þ

Considering Eqs. (36)–(40), one can present a relation for r0 in
general form for each type of boundary condition such as straight
walls, curved boundaries or corners as follows:

r0 ¼
1P
xi

� �
½rX � rk � g� ð42Þ

where
P

xi denotes the sum of related weighting factors in the
direction of unknown distribution functions. Eventually, the
unknown distribution functions are obtained as:

�i ¼ xir0 ð43Þ
Fig. 3. Flow chart of iteration procedure for coupled lattice Boltzmann methods.
4.3. Iterative scheme and convergence criteria

Based on what we mentioned in Section 1, the governing
equations are coupled together and they should be solved in an
iterative process. Fig. 3 shows the flow chart diagram of the itera-
tion scheme which we used in this study. For each iteration, the
distribution of internal electric potential field is solved until steady
state based on the evolution equation which was mentioned in
Section 4. Then, ion distribution is solved through the modified
Nernst–Planck evolution equation (Eq. (31)). The net electric
charge density is obtained from the ions distribution of the current
iteration. The Navier–Stokes equation is solved in which the elec-
trical body force is obtained from the results of Nernst–Planck as
the previous equation in current iteration. Using the results of
velocity field, one can solve the energy equation as the next equa-
tion. Finally, the species concentration is solved based on what has
been obtained for velocity field in current iteration.

In order to achieve an accurate solution for this iterative pro-
cess, we define four convergence criteria for internal electric
potential field, velocity field, species concentration and energy
equation as follows:

ed¼w;U;Cs ;T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
r

dnðrÞ � dn�1ðrÞ
dnðrÞ

 !2
vuut ð44Þ

where n denotes the iteration number and r the location vector. The
iteration will be stopped and the solution assumed to be as steady
state when the amounts of e are typically less than given error
which is often equal to 1 � 10�6.

5. Results and discussion

In this section, first, we validate the results of our coupled lat-
tice Boltzmann methods for PNP and NS equations with available
analytical solutions. For this purpose, the results of u, w and con-
centrations of Na+ and Cl� in cross section of the microchannel
are presented. Second, the result of our code for solving a simple
convection heat transfer is validated by the available analytical
solution. Finally, the results of the micro-mixer schemes are
studied.

5.1. Benchmarks

If we assume an isothermal EOF scenario in the microchannel
which is fully developed in hydrodynamics and electrokinetics
with constant amount of zeta potential on the walls, since the rela-
tion |(Zief)/(KBT)| 6 1 is valid, the Debye–Huckel approximation
can be used and as a result an analytical solution for velocity,
internal electric potential and ions species concentrations can be
obtained as follows [33]:

ðaÞ w
f ¼

cos h jy�jH
2ð Þ

cos h jH
2ð Þ

ðbÞ 1� u
Uref

h i
¼ cos h jy�jH

2ð Þ
cos h jH

2ð Þ
ðcÞ Ci ¼ ni1 exp � Ziew

KBT

	 
 ð45Þ

A lattice of 251 � 51 node is constructed in order to solve the
coupled PNP and NS lattice Boltzmann methods. The dimensionless
parameter of Debye length is j ¼ H=k ¼ 5:93 where H = 6 � 10�6

and the external electric field strength is Ex = 1000 V/m. The con-
stant zeta potential on the walls of the microchannel is selected
as f =�25 mv. The diffusion coefficient of ion species is Di = 10�8 m2/s
and the ionic density is ni1 = 6.022 � 1019 ion/m3. It is worth men-
tioning that we chose ni1 in such a way to have higher amount of
Debye length in order to valid our code for solving the PNP + NS
when the Debye length is considerable compared with the
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microchannel width. Fig. 4 shows a good agreement between
analytical and lattice Boltzmann coupled methods results. Conse-
quently, the capability of our code to solve the coupled PNP and
NS equations is validated. The code for solving the energy equation
is as the same as the validated structure code which we presented
in our previous work [19].

5.2. Mixing enhancement and micro-mixer schemes

In this section, the quantitative results and discussion of mixing
enhancement of species, ions species concentration distribution,
flow field and electrical body force are presented for micro-mixers
which were mentioned in Section 2. For each micro-mixer scheme,
we consider two set of temperature differences and two Reynolds
numbers. For all micro-mixer schemes, the amount of j is equal to
18.7. The electrolyte motion could be caused by both electrical
body force (due to external electric field and net electric charge
density) and pressure gradient. The upper and lower walls of these
microchannels could be kept at various heterogeneous models of
charge and temperature amount. It is worth mentioning that the
inlet electrolyte is kept at Tin for all micro-mixer schemes. Due to
the presence of two kinds of body force (electrical body force
and pressure gradient), we would be able to define two reference
velocities as:

Uref ;electric ¼ � e0er Exf
l

Uref ;pressure ¼ �rP�H2

12�qm

ð46Þ

Fig. 5 shows streamline patterns and contour of species for
micro-mixer scheme A in which E denotes the strength of external
electric field, rP the pressure gradient and DT = (Twall � Tin)/Tin the
non-dimensional definition for temperature difference between
red and blue blocks of the microchannel. Obviously, this scheme
is designed based on an asymmetric arrangement of blocks (red
blocks) with f = fwall = �50 mv and T = Twall all the while the rest
of walls (blue blocks) have f = 0 and T = Tin. From now on, the red
and red–blue blocks which have constant non-zero charges are
called activator blocks, while the neutral blocks assigned to those
blue blocks with zero amount of charge. Considering the definition
of reference velocities for both electrical body force and pressure
gradient (Eq. (46)), we could define the Reynolds number as:

Re ¼ ðUref ;electric þ Uref ;pressureÞH
m

ð47Þ

As a result, the Reynolds number for Fig. 5a and b is
Re = 1.08 � 10�3 and Fig. 5c and d is Re = 1.0642 � 10�2.

Fig. 5a shows the micro-mixer scheme A with implementing
both electrical and pressure gradient body forces to the electrolyte
due to external electric field E = 5 � 103 V/m and pressure gradient
rP = 103 N/m3. It is shown that in the boundary region of red and
blue blocks, four vortices form near the microchannel walls. In
other word, the streamline pattern indicates that a y-directional
force drives the flow to the walls near red block region and as a
result a chaotic-like flow pattern is generated.

Fig. 5b shows the micro-mixer in Fig. 5a when DT increases.
Comparing Fig. 5a with 5b, it is found that the generality of the
flow pattern of micro-mixer Fig. 5a is still preserved while the vor-
tices scale becomes larger and as a result the flow regime emerges
as a powerful chaotic pattern flow. Consequently, one can expect
that the mixing of species would be enhanced when the amount
of DT increases.

In order to study the effects of other parameters such as
strength of external electric field, we consider two more types in
which the amount of E is increased compared with micro-mixer
types in Fig. 5a and b. Fig. 5c shows the effect of increasing the
amount of E on the flow pattern for micro-mixer in Fig. 5a.
Obviously, the vortices formed near the walls of the micro-channel
are disappeared. It is noteworthy that a weak chaotic flow pattern
still remains despite vortices are eliminated due to increasing the
amount of E. Fig. 5d shows the flow pattern when the amounts
of both E and DT are increased. Surprisingly, a comparison between
Fig. 5c and d shows that increase of DT does not strengthen the
chaotic flow pattern while chaotic characteristic of flow field
increases with DT for micro-mixers in Fig. 5a and b.

Based on what we presented for the modified Nernst–Planck
equation (Eq. (9)), it seems that the temperature gradient could
act as a source term similar to internal electric potential gradient
for ion migration. Fig. 6 shows the non-dimensional ion species
concentration distribution for micro-mixers of Fig. 5 at two planes
A and B (Fig. 1). Considering the design of micro-mixer scheme A
(Fig. 1), it can be found that the upper and lower edge of both
planes A and B are placed on the red and blue blocks, respectively.
For both planes, the CNaþ=ni1 and CCl�=ni1 are approximately equal
to unity for 0 < y/H < 0.6. The main reason in favor of this fact is
that since the lower microchannel wall in these two planes is blue
block (w = 0.0 and T = Tin) and the flow regime has low amount of
Reynolds number, one cannot mention an effective factor such as
migration or advection which could disturb the initial equilibrium
state of ions species concentration in this region (0 < y/H < 0.6). On
the other hand, Fig. 6a and b shows that closing to the upper wall
microchannel would disturb the equilibrium state of initial ion
concentration due to the presence of red block (w = fwall and
T = Twall). As a result, for 0.6 < y/H < 1, one can find that
CNaþ=ni1 � 1 and CCl�=ni1 � 1.

Considering temperature effects on the distribution of ion spe-
cies concentration, Fig. 6a and b shows that for both planes A and B
near the red block, increase of DT has contrary effect on distribu-
tion of Na+ and Cl�. As a matter of fact, if DT increases, the amount
of CNaþ=ni1 decreases considerably while the amount of CCl�=ni1
increases for plane A. On the contrary, as Fig. 6a and b shows, for
plane B, if DT increases, the amount of CNaþ=ni1 increases and
CCl�=ni1 decreases. This interesting effect of temperature gradient
could be a balancing factor for the ion concentration ratio in EDL
for both planes. It is worth mentioning that due to the presence
of negative charges on the red block surface, the repulsion-attrac-
tion theory predicts higher concentration for counter-ions when
temperature gradient is negligible. When DT increases, it seems
that a secondary effective factor in addition to internal electric
potential field causes ion species migration. From now on, we call
this migration phenomenon as thermo-electrochemical migration.
This term has appeared in the modified Nernst–Planck equation
(Eq. (9)) as (�eZiDiCi/KT2)rT � rw.

Fig. 7 shows the schematic illustration of thermo-electrochem-
ical migration phenomenon. It is shown that since the heaters
placed on the red blocks are switched off (dashed line blue blocks),
the counter-ions accumulate near the dashed line blue blocks
while the accumulation of co-ions and counter-ions near the solid
line blue blocks are equal due to the zero charge of them. However,
when the heaters are switched on, the thermo-electrochemical
migration phenomenon causes the migration of counter-ions from
higher to lower temperature area while co-ions migrate from
lower to higher temperature area.

Considering what we have mentioned above, one can conclude
that thermo-electrochemical migration phenomenon causes the
migration of counter-ions in opposite direction of $T while co-ions
migrate in direction of $T. As a main result for this phenomenon, it
is anticipated that in regions which are affected by both red and
blue blocks, due to higher amount of $T and $w, we have powerful
thermo-electrochemical migration near the blocks and as a result
in red block region a balance of ions species is generated. Obvi-
ously, this phenomenon is indicated in Fig. 6a and b in which by
increasing DT, the CNaþ=ni1 increases at plane B while at plane A,
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Fig. 5. Micro-mixer scheme A. Species contour and streamlines of velocity field. DT ¼ Twall�Tin
Tin
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the CNaþ=ni1 decreases. It should be noted that Fig. 6 presents the
ion concentration distribution for four types of micro-mixer
scheme A (Fig. 5).

Based on the electrical body force definition Fe ¼ qe E� @w
@x

� �
, one

can conclude that both net electric charge density and gradient of
internal electric potential field may have their own specific effects
on velocity field. It should be noted that temperature gradient has
primary effects on distribution of ions (Eq. (9)) and consequently,
the distribution of w and qe would be dependent on the distribu-
tion of temperature. Fig. 8 shows the electrical body force for four
types of micro-mixer scheme A. Based on what we have described
Fig. 7. Schematic illustration of the thermo-electrochemical migration
phenomenon.
for Fig. 6, due to the equal amount of Na+ and Cl� for the range of
0 < y/H < 0.6, the net electric charge density and thus the electrical
body force would be approximately equal to zero. On the other
hand, based on what we have mentioned for the thermo-electro-
chemical migration phenomenon, Fig. 8a and b shows that the
electrical body force decreases at plane A when DT increases. It
should be noted that the electrical body force is positive in regions
which are affected by the red blocks. On the contrary, in regions
which are affected by the blue blocks, we have negative body
forces. In fact, the positive or negative electrical body force can
be explained based on the sign of both net electric charge density
and �ow/ox. As Fig. 6 shows, for the regions affected by red block,
we have higher amount of CNaþ than CCl� due to the presence of
negative charges on the block surface. So, qe would be positive.
In addition, E � ow/ox is positive due to the high amount of exter-
nal electric field. Therefore, it is concluded that the electrical body
force in these regions would be positive. For the regions affected by
blue blocks, as Fig. 6 shows, the net electric charge density is still
positive. However, due to the zero zeta potential of the blue blocks,
we have high amount of internal electric potential gradient (ow/ox)
in a boundary region between red and blue blocks. As a result, the
amounts of both E � ow/ox and electrical body force would be
negative (Fig. 8).

Considering our discussions for both Figs. 6 and 8, the main rea-
son of why vortices form in boundary region of red and blue blocks
has been uncovered. For this purpose, let us to assume a particle of
fluid which is currently placed at plane A near the red block. A
positive amount of electrical body force is exerted on this particle
and the particle starts moving to the right side. On the other hand,
in plane B, the negative amount of body force impels the particle in
this region to move to the left side. When the assumed particle
reaches this region (region with negative body force), naturally it
would tend toward the central line of microchannel. This positive
and negative amount of electrical body force in boundary region
of red and blue blocks, respectively, would be the main reason of
vortices formation. As Figs. 6c, d and 8b show, increasing the
amount of E would diminish vortices due to the increase of the
positive electrical body force in regions affected by red block and
decrease of the negative amount of electrical body force of regions
affected by the blue blocks.

Fig. 9 shows the species contour and streamlines of micro-
mixer scheme B which is based on the symmetrical arrangement
of red blocks (Fig. 1). Similar to those mentioned for Fig. 5, we have
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Fig. 8. Electrical body force distribution of micro-mixer scheme A for two planes A and B. (a) Electrical body force for micro-mixer scheme A with E = 5 � 103 V/m. (b)
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Fig. 9. Micro-mixer scheme B. Species contour and streamlines of velocity field.
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Fig. 10. Ions concentration distribution of micro-mixer scheme B for two planes A and B and two external electric field strength E = 5 � 103 V/m and E = 5 � 104 V/m.

60 A. Alizadeh et al. / Journal of Colloid and Interface Science 431 (2014) 50–63



Y
/H

-10 -5 0

0

0.2

0.4

0.6

0.8

1

ΔT= 0.25, Plane A
ΔT= 6.0, Plane A
ΔT= 0.25, Plane B
ΔT= 6.0, Plane B

Fe=ρe×(E-∇Ψ)

(a)

Y
/H

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0

0.2

0.4

0.6

0.8

1

ΔT= 0.25, Plane A
ΔT= 6.0, Plane A
ΔT= 0.25, Plane B
ΔT= 6.0, Plane B

Fe=ρe×(E-∇Ψ)

(b)

Fig. 11. Electrical body force distribution of micro-mixer scheme B for planes A and B. (a) Electrical body force for micro-mixer scheme B with E = 5 � 103 V/m. (b) Electrical
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two amounts of Reynolds number as Re = 1.08 � 10�3 (for Fig. 9a
and b) and Re = 1.0642 � 10�2 (for Fig. 9c and d). Comparing
Fig. 5a and b with Fig. 9a and b, one can conclude that the asym-
metrical design of red blocks could cause larger scale of vortices
near microchannel walls. It is noteworthy that similar to those
mentioned for micro-mixer scheme A (Fig. 5), for micro-mixer
scheme B with increasing the amount of DT the power of chaotic
flow regime increases due to formation of larger scale of vortices.
Later, it will be indicated that mixing of species would be enhanced
with increasing the temperature difference, DT (Fig. 14).

One significant difference between micro-mixer scheme A and
scheme B is that for Re = 1.08 � 10�3 (Fig. 9a and b), twin central
vortices created at the sections of red blocks. Same as those men-
tioned for Fig. 5, increase of the strength of external electric field E
would make the vortices disappear (Fig. 9c and d).

Fig. 9 shows that the y-directional force which drives the flow
field to the red block regions in micro-mixer scheme A (Fig. 5)
emerges in micro-mixer scheme B. Fig. 9a and b shows that by
increasing the amount of DT, both the scale of vortices and the cha-
otic flow regime are increased.

Fig. 10 shows the ion species concentration distribution for
plane A and B. It should be noted that for micro-mixer scheme B,
with increasing the external electric field strength, there is not
Fig. 12. Micro-mixer scheme C. Species con
any significant change in ion species concentration distribution.
Since the upper and lower edges of two cross sections of
micro-mixer scheme B (Fig. 1) are placed on red blocks, the surface
charge is w = fwall and based on the repulsion-attraction theory, the
concentration of Na+ is higher than that for Cl� (Fig. 10a and b).

According to what we have introduced as thermo-electrochem-
ical migration phenomenon (Fig. 6), Fig. 10 shows that this phe-
nomenon is governed wherever we have rT – 0.0 and rw – 0.0
independently from micro-mixer scheme. As the same as those
we mentioned for micro-mixer scheme A, for plane A, when tem-
perature difference increases, the amount of CNaþ=ni1 decreases
while the amount of CCl�=ni1 increases all the while for plane B
the amount of CNaþ=ni1 increased and CCl�=ni1 decreased.
Fig. 10a and b shows that the presence of red blocks at the top
and bottom edge of two mentioned planes causes wider area of
microchannel deviate from the equilibrium state of ion species.

Fig. 11 shows the electrical body force distribution against
microchannel width for two planes of micro-mixer scheme B.
The reason for vortices formation in micro-mixer scheme A
(Fig. 8) can be properly applied to in micro-mixer scheme B
(Fig. 11).

Fig. 12 shows the species contour and streamlines of micro-
mixer scheme C. According to what we have presented (Fig. 1),
tour and streamlines of velocity field.
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the main difference between micro-mixer scheme C with other
micro-mixers is that we have activator blocks (red–blue blocks,
blocks with w = fwall) between red blocks. Two amounts of
Reynolds number are Re = 1.062 � 10�3 (Fig. 12a and b) and
Re = 1.062 � 10�2 (Fig. 12c and d). A comparison between
Fig. 12a and b shows that similar to micro-mixers scheme A and
B, with increasing the amount of temperature difference D T, one
can anticipate that the power of chaotic flow pattern is increased.
Fig. 12c and d shows that with increasing the amount of external
electric field strength E, the power of chaotic flow pattern
decreased. Considering previous results of micro-mixer schemes
A and B, this is an expected phenomenon which is occurred for
micro-mixer scheme C.

Fig. 13 shows the ion species concentration distribution of
micro-mixer scheme C for two mentioned planes against the width
of microchannel. It is noteworthy that the thermo-electrochemical
migration phenomenon would act as an effective role in migration
of ions species when we have higher amount of internal electric
potential field gradient, rw, which could be reached due to tem-
perature gradient or zeta potential-patterned walls. Fig. 13a and
b shows that for plane A due to the higher amount ofrT and being
near neutral block (blue block), we would expect to have higher
amount of rw. As a result, it could be found that the thermo-
electrochemical migration phenomenon decreases CNaþ=ni1 and
increases CCl�=ni1. On the other hand, Fig. 13a and b shows that
for plane B, there is not a powerful thermo-electrochemical migra-
tion phenomenon. One main reason in favor of this fact is that in
this region the effect of zero zeta potential wall (blue blocks) is
negligible. As a result, the amount of rw is small and thermo-
electrochemical migration phenomenon which is related to
rT � rw would be negligible.

Fig. 14 shows mixing length versus Reynolds number for micro-
mixer schemes A, B and C. Mixing length is introduced as a factor
for quantifying the mixing enhancement and defined as a length of
microchannel before fully mixing of species. For this means, the
relative concentration difference between upper and lower walls
of the microchannel is defined as [34]:

nðxÞ ¼ CDðxÞ � C 0DðxÞ
CDðxÞ

ð48Þ

where CDðxÞ ¼
R H

H�d
CsðxÞdyR H

H�d
dy

and C0DðxÞ ¼
R d

0
CsðxÞdyR d

0
dy

. d denotes a small dis-

tance from both upper and lower walls. In this study, mixing length
is defined as the length when n(x) < 0.03. Fig. 14 shows that for all
schemes of micro-mixers, the amount of mixing length increases
significantly with Reynolds number. When the velocity is
increased due to the increase of electrical body force, the species
advection would be the dominant transport phenomena. Conse-
quently, the mixing enhancement (lower amount of mixing length)
would be highly dependent on the flow pattern. As a result, it
seems that micro-mixers with larger size of vortices in higher
amounts of Reynolds number could be treated as more efficient
schemes.

Comparing micro-mixers scheme A, B and C, one can conclude
that micro-mixer scheme A in DT = 6 has the best mixing enhance-
ment for both Re = 1.08 � 10�3 and Re = 1.06 � 10�2. It should be
noted that in higher amount of Reynolds number, micro-mixer
scheme C in DT = 0.25 treats as the most inefficient micro-mixer
among other schemes (Lmix/H = 5.0). Generally, considering
micro-mixers scheme A, B and C, one can simply find that mixing
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of species is enhanced by increasing DT from 0.25 to 6.0. It should
be noted that micro-mixer scheme A is the most effective scheme
which enhances the species mixing about 39.8% when temperature
difference increases from 0.25 to 6 At Re = 1.08 � 10�3 while
micro-mixer scheme B and C enhances mixing of species by
17.6% and 5%, respectively. For Re = 1.06 � 10�2, increasing
DT = 0.25 to DT = 6 enhances the mixing species of micro-mixer
scheme A, B and C by 10.24, 10.78 and 2.8%, respectively. This
could be a noticeable result for a micro-mixer which enhances
the species mixing for Reynolds number on the order of 10�3. As
a ranking for the ability of mixing enhancement of micro-mixer
schemes, Fig. 14 shows that micro-mixer scheme A performs as
the most effective micro-mixer while micro-mixer scheme B and
scheme C perform as the second and third effective micro-mixer,
respectively.
6. Conclusions

This contribution has studied the mixing enhancement of
low-Reynolds electro-osmotic flows in micro-mixers by tempera-
ture-patterned walls. The designed micro-mixers are based on
symmetric and asymmetric arrangement of blocks with surface
charges and higher temperature compared with inlet fluid. Since
the fluid is non-isothermal, the conventional form of Nernst–
Planck equation is not valid. As a result, it could be modified by
adding a new migration term which is dependent on both temper-
ature and internal electric potential gradient. This term causes the
so-called thermo-electrochemical migration phenomenon. The
Navier–Stokes, modified Nernst–Planck, Poisson, energy and
advection–diffusion equations are solved numerically using an
iterative process based on coupled lattice Boltzmann methods.
Modeling results show that temperature gradient could emerge
as a factor which controls the vortices scale and consequently
the chaotic flow regime and as a main result the mixing enhance-
ment of species. It is shown that the scheme with asymmetrical
arrangement of blocks with non-zero charge and higher tempera-
ture has the most effective mixing enhancement when tempera-
ture difference increases specifically for low amounts of Reynolds
number (order of 10�3). The present results may help design of
micro-mixers with improved ability of mixing species in
microchannels.
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