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Abstract 

In recent years, there has been a tremendous growth of activity on multiscale modeling and computation. In particular, 
the multiscale hybrid numerical methods are those that combine multiple models defined at fundamentally different 
length and time scales within the same overall spatial and temporal domain. For examples, a framework of hybrid 
continuum and molecular dynamics multiscale method has been developed to simulate micro- and nanoscale fluid 
flows, which combines the continuum computational fluid dynamics (CFD) or the mesoscopic lattice Boltzmann 
method for the bulk flow region and the atomistic molecular dynamics for the interface region. The similar idea of 
constrained variation has also been used in developing multiscale fluid turbulent models for constrained dynamic 
subgrid-scale stress model, Reynolds stress constrained large eddy simulation (RSC-LES) for wall-bounded turbulent 
flows with massive separation and heat flux constrained large eddy simulation. For RSC-LES, our model is able to 
solve the traditional log-layer mismatch problem in RANS/LES approaches and can predict mean velocity, turbulent 
stress and skin friction coefficients more accurate than pure dynamic large eddy models and traditional detached eddy 
simulation using the same grid resolution. Our results demonstrate the capability of multiscale simulation methods for 
complex fluid systems and the necessity of physical constraints on the multiscale methods.  
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1. Introduction 

Multiscale transport phenomena are ubiquitous in fluid dynamic systems, which naturally emerge from 
the complex interactions among various scales due to the nature of nonlinearity of fluid dynamics. The 
classical fluid dynamic theories generally care about the fluid only as a continuum which can be 
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described by the Navier Stokes equations. However as the demands of people’s research interests extend, 
the continuum fluid mechanics may be not sufficient. Figure 1 summarizes theories and typical numerical 
methods for different temporal and spatial scales. When the continuum assumption breaks down, the fluid 
has to be described by atomistic point of view, such as the molecular dynamics as a microscopic method 
or statistical rules for molecular groups, i.e. kinetic theories, as the mesoscopic methods for a larger scale. 
If the characteristic length is smaller than 1 nm or the characteristic time is shorter than 1 fs, the quantum 
effect may be not negligible for the concerned system and the quantum mechanics has to be brought in to 
describe the transport as a result. In fact modeling from a smaller scale may lead to a more accurate 
description of the problem, but will bring much more computational cost as well. Therefore we may have 
to find a appropriate tradeoff for our concerned fluid behaviors in engineering. 

 
Fig. 1. Theories and methods for different temporal a nd spatial scales. 

In spite of significant developments of numerical methods for each scale in recent years, no one single 
method is capable to satisfy the tremendous demands of revealing physical mechanism and optimizing 
designs by simulation in fluid flow systems in engineering. Multiscale simulation and modeling has 
become a necessity. In fact in the past two decades there has been a tremendous growth of activity on 
multiscale modeling and computation. In particular, the multiscale hybrid numerical methods are those 
that combine multiple models defined at fundamentally different length and time scales within the same 
overall spatial and temporal domain. Finding physically consistent solutions in hybrid numerical methods 
is crucial for various modeling and simulations of fluid mechanics.  

Multiscale problems may arise from two aspects:  multiscale physical process or hierarchical structure. 
Therefore we divide the multiscale modeling methods into two categories:  the domain decomposition 
scheme and the averaged equation approach. The domain decomposition scheme corresponds to hybrid 
continuum molecular models for micro and nanoscale fluid flow, and the averaged equation approach is 
proposed for multiscale turbulence modeling and simulations. In the following parts of this presentation, 
we will introduce details of the typical algorithms of each category and demonstrate their capabilities by 
various applications.  

2. Hybrid methods for micro- and nanoscale fluid flow 

Micro- and nanoscale fluid flow is a typical case for multiscale modeling where the continuum 
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assumption may break down somewhere in the flow region. Numerous numerical methods have been 
developed for simulating or modeling fluid behavior at micro- and nanoscale. Gas flows, for an example, 
are characterized by the Knudsen number, which is defined as the ratio of the molecular mean free path to 
a characteristic geometric length or a length over which very large variations of a macroscopic quantity 
may take place [1], Kn l , where  is the molecular mean free path and l is the characteristic length. 
Four flow regimes are classified based on the Knudsen number as:  continuum flow ( 0.001Kn ), slip 
flow ( 0.001 0.1Kn ), transition flow ( 101.0 Kn ), and free molecular flow ( 10Kn ) [2]. The 
classical computational fluid dynamics (CFD) methods are only valid for the continuum flows. For the 
slip flow regime, modified boundary conditions including velocity slip and temperature jump are still 
available to be embedded into CFD methods for engineering approximations. However when the flow 
falls into the transition flow or free molecular flow regime, the continuum based methods will break down 
totally. Atomistic simulation methods, including Monte Carlo methods and molecular dynamics (MD) 
methods, provide an effective way to model fluid flow in these regimes. MD simulations for gas flow are 
very simple, but the computational efficiency is pretty low. The direct simulation Monte Carlo (DSMC) 
method, first introduced by Bird [3] for rarefied gas flow, is a relatively more efficient molecular based 
statistical simulation method for high Kn flows, which has been used for modeling of micro gas flows 
frequently. However, Wang et al. [4] have proved recently that the gas flows in micro and nanoscale are 
conditionally similar as the rarefied gas flows based on their strict theoretical analysis. If the gas density 
at micro and nanoscale is high enough to invalidate the perfect gas assumption, DSMC is not available 
any more. Wang et al. [5] proposed a new Monte Carlo method based on the Enskog theory for dense gas 
and studied the high density high Kn gas flows in micro and nanoscale channels. It is also noticed that the 
lattice Boltzmann models for microscale gas flows, leaded by Nie et al.[6], have been developed, however 
the capability of such mesoscopic methods is still limited below the transition flow regime. Even though 
recently Li and Zhang [7] and Chen et al. [8] have developed unified gas kinetic scheme based on the 
Boltzmann equation, a full numerical solution of gas flow for the entire flow regimes still depends on 
coupled multiscale simulations. 

When the continuum assumption breaks down in liquid, the best option up to date for modeling is the 
molecular dynamics simulation. MD has a longer history compared to other atomistic methods and is very 
simple for simple fluids. The major challenges of algorithm come from the interfacial effects, long range 
forces or/and multi-field effects. For instance, the electrical or magnetic force is a long range force and 
has no cut-off unlike the Lenard Johns force. The main challenge for application lies in the low 
computational efficiency, which limit its capability to very small spatial region or very short period. 
Therefore, it has been of great interest and in urgent need to build up a framework of coupling MD at 
necessary small region with another efficient macroscopic or mesoscopic method at large bulk area 
smoothly. 

Lattice Boltzmann method (LBM) has been a very active mesoscopic numerical tool for fluid flow 
simulations since late of 1980s [9]. Recently it has been developed to complex flows, including acoustic-
fluid interaction [10], electrokinetic flows in complex geometries [11 13], red blood cells or bubble 
deformations in shear flows [14, 15] and hemodynamics in hierarch vessel systems [16, 17]. More details 
about latest progress of LBM could be found in the review papers [9, 14]. The advantages of LBM are 
high efficiency for complex geometry and parallel computing, but the disadvantage comes from its 
algorithm essence which still always leads to mathematical description consistent with continuum 
assumption. From this point, LBM is not suitable for finding new fundamental physics in fluid flow, but a 
great option to be coupled with on the bulk side once the geometry is complex or the physics is 
complicated (such as with multi-field effects). 

As we stated before, no one single method is capable to satisfy the tremendous demands of revealing 
physical mechanism and optimizing designs by simulation in micro- and nanoscale fluid flow systems. In 
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this presentation therefore, we introduce a hybrid framework coupling continuum and molecular 
dynamics methods in which the continuum Navier Stokes equation or the mesoscopic lattice Boltzmann 
method is used in the bulk region and the atomistic molecular dynamics at interfaces. We demonstrate its 
successful capabilities in various fluid problems, including micro-nano fluid flows and heat transfer, 
singularity problems in the driven cavity, moving contact lines and elcetrowetting and other 
electrokinetics phenomena. The results prove the feasibility and practicality of multiscale simulation 
methods for complex fluid systems and the necessity of physical constraints on the multiscale methods. 

2.1. Domain decomposition algorithm for simple fluid 

Since the continuum only breaks down in a very small region in the flow system, most current 
multiscale algorithms use the domain decomposition scheme for coupling. Figure 2 shows a general 
schematic of the geometry of a hybrid scheme. Continuum equations are solved in regions that are 
homogeneous and have small velocity gradients (shaded region). An atomistic description, for example 
MD simulation, is used at interfaces or where gradients are large (region with discrete circles). The major 
technical difficulty in constructing such methods lies in coupling these very different descriptions of 
fluids at the MD-continuum interface. The two descriptions in the overlap region are coupled and must be 
consistent, i.e. the physical quantities, including density, momentum and energy, and their fluxes, must be 
continuous. The boundary conditions needed for the continuum equations can be straightforwardly 
obtained by averaging the corresponding quantities from the particle description over the local region and 
over time. However, the reverse problem, generating microscopic particle configurations from known 
macroscopic quantities such as density, momentum and energy, is non-trivial and must necessarily be 
non-unique. The problem is magnified when there is flux of particles between continuum and discrete 
regions. In general, there is also a time coupling issue since the integration time step for the continuum 
Navier-Stokes equations is normally several orders of magnitude larger than that in the MD region [18]. 
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Fig. 2. Illustration of hybrid MD and continuum scheme. The continuum description is used in the shadowed region and the 

atomistic description is used in the dotted region. In C  P, continuum solutions provide boundary conditions for MD simulations 
and in P  C atomistic solutions provide boundary conditions for continuum simulations. 

Several coupling schemes have been developed, including the relaxation method by O'Connell and 
Thompson [19], the Maxwell Demon method by Hadjiconstantinou and Patera [20] and so on. In general, 
the information transfer from MD to continuum is easy by sample-statistics techniques. The major 
challenge comes from the other side, i.e. information transfer from continuum to MD. The solution is not 
unique definitely. Here we introduce one method that has been proved effective.  

The average continuum velocity uJ in each cell J is obtained by averaging the x-and y-velocities on the 
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bounding edges. Continuity of the mean velocity requires that the averaged particle velocity in this cell is 
equal to uJ  

                                                               
  (1) 

 
where NJ is the number of particles in cell J. Taking an Lagrangian derivative of the above equation, we 
have (1/ ) D ( ) / DJ i Ji

N x t tu . This constraint requires modification of the usual MD equations of 

motion:  /i ix F m , where ( / ) ( )LJ
i i ijj i

F x V r . A general solution of the constraint equation can be 

written as 

                                                                
   (2)

 
where i is a variable whose sum over the cell is constrained:  0ii

. To determine the optimum i we 

find the extremum of the time integral of the Lagrangian for the particles subject to the non-holonomic 
constraint of Eq. (1). Following standard derivations we obtain 

,                                                       
       (3)

 
which gives the following modified equation for the i-th particle 

                                                 (4) 

To prevent molecules from freely drifting away from the MD simulation domain, an external force is 
applied to particles between y2 and y3 (as shown in Fig. 2) 

                                                 
 (5)

 
Here p0 is the average pressure in the MD region, and  is a constant of order one. In our work we use 

y3  y2 = y and  = 1, but the hybrid solution is not sensitive to factor of 2 changes in either parameter. 
The key constraints are that Fy confine particles while minimizing density oscillations. 

After validations, the proposed multiscale method has been used to simulate a microchannel flow with 
nanoscale rough walls, which has many application backgrounds in MEMS and Lab-on-Chip devices. 
Figure 3a shows the schematic of physical model of channel flow with nanoscale roughness on bottom 
wall abstracted from engineering applications. We are caring about how the nanoscale roughness 
influences the bulk flow in channel. Figure 3b shows the streamlines around one roughness from the 
hybrid modeling compared with full MD simulations or with pure continuum simulation. The results 
indicate that the hybrid method agrees quite well with the full MD simulation but deviates clearly from 
the pure continuum modeling, which also suggests that the continuum description on this problem, 
consisting of the NS equations and non-slip boundary conditions, does not capture the relevant physics 
and the hybrid modeling is necessary indeed. Furthermore, this method has been developed for heat 
transfer problem in channel flows [21], singularity problems in upper-driven cavity flows [22], moving 
contact lines, and time multiscale coupling problems [23]. 
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Fig. 3. Multiscale modeling of channel flow with nanoscale roughness on bottom wall. (a) Physical model abstracted from 
engineering application; (b) streamlines comparisons around one roughness:  the solid lines are from the hybrid modeling, the 
dashed line on the left is from the full MD simulation and dashed line on the right is from the full continuum modeling (CFD). 

2.2. Hybrid algorithm for electrokinetic fluid 

In micro- and nanoscale fluid flow, the surface forces play more important roles than body forces. 
Especially, the electrical force is very popular in liquid flows for polar-molecule liquid, such as water. 
Even though without any extra ions, the solid surface will also be charged by chemical adsorption or 
dissociation of solid molecular groups at the solid-liquid interface [24, 25]. Therefore to reveal transport 
mechanisms of electrokinetic fluid at micro- and nanoscale is of great interests and in urgent demand. The 
major challenge of MD simulations for electrokinetic fluid comes from the long-range Coulomb force. 
Since there is no cut-off like the LJ potential, a full MD modeling of electrokinetic fluid with direct 
summation of electrical force between each ion will cost extremely high computational resources. A 
few methods have been proposed, such as particle-mesh-Ewald (PME) [26], and fast-multipole method 
(FMM) [27]. Here we introduce a hybrid algorithm, particle-particle particle-mesh method (P3M), 
inspired by the many-body treatments in the astrophysical field, which really embody the idea of 
multiscale solution [28]. 

A two-dimensional schematic of the P3M is displayed in Fig. 4. In this method, we divide the total 
force of the concerned particle into two parts:  short-range force within a distance, such as in the cycle in 
Fig. 4, and long-range force outside the distance. The short-range interactions from both Coulomb and 
van der Waals forces are treated precisely with the Particle-Particle (PP) method by direct summation; 
while the long-range interactions are calculated with the Particle-Mesh (PM) method by solving a Poisson 
equation for electrical potential on a mesh. Both the advantages of the accuracy of the PP method and the 
efficiency of the PM method can be achieved through this approach. The details about this hybrid 
algorithm can be found in our recent paper [29]. We used a high-efficiency multi-grid method to solve the 
Poisson equation in each time step so as to lower its computational cost scale as O(NG). 
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Fig. 4. A two-dimensional schematic of the P3M algorithm. The simulations are actually three-dimensional. Lines indicate the mesh 
which has spacing hx and hy along horizontal and vertical directions. Short-range contributions (P P) are obtained by direct 

summation over nearby particles with a radius rc (dashed circle). Long range contributions (P M) are obtained from the particle-
mesh method. 

Using this hybrid method, we studied electroosmotic flow in nanochannels with regular or random 
roughness on the walls. The results show that roughness reduces the electroosmotic flow rate dramatically 
even though the roughness is very small compared to the channel width. Systematic investigation of the 
effect of surface charge density and random roughness will help to better understand the mechanism of 
electrokinetic transport in rough nanochannels and to design and optimize nanofluidic devices. 

Another important and interesting application of this hybrid modeling method is to reveal mechanism 
of electrowetting. As well known electrowetting has numerous applications in Lab-on-a-chip, microlenses, 
display control and soft printing etc. The contact angle variation with the applied electric voltage can be 
described by the Young Lippmann’s equation (YLE). Experiments have observed electrowetting with a 
wide range of fluids and substrates. In all cases, results follow the YLE at small V but saturate before 
perfect wetting is achieved. A variety of mechanisms have been proposed, but no consensus has emerged 
for its origin yet. Therefore we tried to reveal its inherent mechanism by simulations because simulations 
can provide some essential details which are not measurable by experiments.  

Figure 5a 5c graphically demonstrates how  varies with V and how  is measured. Figure 5d shows 
(V) for a wide range of parameters. In each case, the results follow YLE at low V and then saturate. 

These results provide strong evidence that the YLE remains valid down to nanometer scales. Figure 5e 
shows the peak electric force on molecules at the interface for a range of systems. The linear rise depends 
on the factors that determine (V) but is independent of chain length. In the simulations, saturation occurs 
when ions are pulled from the drop by large local fields. Saturation can be controlled by changing 
temperature, screening, or the energy binding ions to the fluid. We show a local force balance equation 
for  remains valid even after saturation and that the interface approaches the equilibrium contact angle 
within a few nanometers of the solid [30]. 
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(d)                                                                   (e) 

Fig. 5. (a)–(c) As the dimensionless voltage V ' V(c/ )0.5 between a cylindrical drop and electrode (thick line) increases, the drop 
(shaded area) spreads along a dielectric of thickness D = 4.86 . Solid lines show cylindrical fits to the drop surface for y >  6 . 

(d) Change in contact angle  with dimensionless voltage and prediction by Young Lippmann equation; (e) Variation of the electric 
force at the interface, eEx; i, with V for 0 = 138º. Squares and triangles are for chains with 8 and 4 beads, respectively. 

3. Multiscale modeling in turbulence simulation:  constrained large-eddy simulation 

As is already known to the community, turbulence is a complex flow which consists of a continuous 
spectrum of scales, both spatial and temporal, ranging from the largest to the smallest. In industrial 
applications, including the stalled wing, fuselages at high incidence, turbine blades and vehicle bodies, 
the flows are always turbulence with massive separations. For these kinds of complex turbulent flows, it 
is very important to accurately predict the separation and reattachment characteristics. In general, there 
are three types of turbulence simulation methods, including direct numerical simulation (DNS), large 
eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). DNS solves the Navier Stokes 
equations directly with certain boundary and initial conditions, resolving all the scales of motions. It is the 
simplest approaches conceptually. However, it is limited by the numerical requirements and 
computational cost, and not applicable for industry flows. RANS is the mostly used engineering method 
in current days. It solves the mean velocity equations with RANS models. It works pretty well in most 
attached turbulent flows. However, it usually cannot accurately predict non-equilibrium and unsteady 
flows with separations. In LES, the larger scale turbulent motions are directly solved, whereas the effects 
of the smaller-scale motions are modeled. It can be used to simulate the unsteady flows. In general, its 
computational cost is much less than DNS. However, when it is used in wall-bounded turbulent flows, the 
cost increases a lot which impedes the applications of LES in industry flows.  

3.1. Hybrid RANS-LES method 

Among all, hybrid RANS-LES method, including the detached eddy simulation method (DES), is the 
most popular approach for complex wall-bounded turbulent flows at high Reynolds numbers. In hybrid 
method, RANS is used in the near wall region to avoid huge grid resolution demand for LES, while LES 
is used for the outer region. The two solutions are matched with each other at certain locations. The 
hybrid RANS-LES method has achieved great success in engineering applications [31 33]. However, it 
suffers from the discrepancy of the log-law intercepts between numerical results and experiments in 



108   Shiyi Chen et al.  /  Procedia IUTAM   10  ( 2014 )  100 – 114 

simple turbulent channel flows (the so-called log-layer mismatch, LLM) [31 34]. This defect casts doubts 
on the results obtained by such approaches, especially for the problems where the near-wall flow plays an 
important role. Please see the review papers by Fr hlich and von Terzi [33] and Spalart [32] for more 
details on hybrid RANS-LES method. 

The physical origin of LLM in hybrid RANS-LES method stems from the methodology itself. In the 
RANS region, especially in the attached ones, the flow is smooth with laminar-like long unphysical 
streaks. In this region, the flow is diffusion dominated. On the other hand, the flow is turbulent with 
abundant fluctuations in the LES region, which is convection dominated. When the two results are 
matched together, the lack of small scale fluctuations in the RANS area becomes the mains shortcoming, 
resulting in the underestimated Reynolds stresses in the transition region and then LLM. To find a natural 
solution to the RANS-LES transition problem is an important step toward the overall success of the 
hybrid RANS-LES methods. 

3.2. Constrained large eddy simulation for isotropic turbulence flows 

In LES, the most critical issue is the subgrid-scale model rising from the nonlinear term in the Navier-
Stokes equations. Since the constrained decimation theory first proposed by Kraichnan [35], researchers 
have tried to apply physical constraints on the SGS turbulence model. In constrained decimation theory, 
Kraichnan separated the Fourier modes into inner modes (retained scales, large scales) and outer modes 
(residual scale, subgrid scales, SGS). He solved mode-reduced retained motions, while the effect of the 
residual scales on the retained scales is modelled by a stochastic forcing. In order to correctly calculate 
the mean energy flux, the forcing term is constrained to satisfy certain constraint equations deduced from 
underlying physics, such as symmetry and conservation. Kraichnan and Chen [36] extended the 
decimation idea to study intermittent phenomena in fluid turbulence by enforcing more constraints on 
high order statistics. A recent success in isotropic turbulence is the constrained dynamics SGS (C-SGS) 
model proposed by Shi et al. [37]. In their model, they implemented an energy dissipation constraint on 
the traditional dynamic SGS model as follows 

mod mod
ij ijij ij ijT S L S  .                                                         (6) 

Here, a tilde denotes filter at grid scale , an overbar represents a test filter at scale 2 . mod
ij and 

mod
ijT are the modelled SGS stress at scale  and 2 , ij i j i jL u u u u is the resolved stress tensor, ijS  is the 

strain rate tensor at scale 2 .  
They verified the C-SGS model in statistically steady and freely decaying isotropic turbulence flows. 

The results were compared with those obtained from the non-constrained mixed SGS model and DNS, 
showing that the constrained SGS (C-SGS) model not only predicts the turbulent dissipation accurately, 
but also shows a strong correlation with the real stresses from a priori test. As the physical space 
decimation constraint, the C-SGS models improve other features of the dynamic mixed model, including 
ability to predict the probability density distribution of the SGS stress and the energy backscatter (see 
Fig. 6).  

3.3. Constrained large eddy simulation for wall-bounded turbulence flows 

Encouraged by the above successes of the physical constraint idea in turbulence modeling, Chen et al. [38] 
proposed a new methodology, called constrained large eddy simulations (CLES), for simulating high 
Reynolds number wall-bounded turbulent flows, both attached and detached. Different from hybrid 
RANS-LES methods, large eddy simulation is carried out across the whole domain in CLES method, 
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while enforcing a Reynolds-stress constraint on the SGS model in the inner layer region to ensure that a 
prescribed Reynolds-stress condition is satisfied. The underlying physics of constraining the Reynolds 
stresses is based on the belief that the Reynolds stresses are the most important quantities that control the 
mean flow dynamics for the LES of wall-bounded turbulent flows.  

        

Fig. 6. (a) Comparison of energy spectrum of steady isotropic turbulence for a posteriori. Red solid line:  DNS; green solid line:  
Dynamic Smagorinsky model, DSM; blue solid line:  Dynamic mixed similarity model, DMM; black dashed line:  constrained 

dynamic mixed model, CDMM. (b) Comparison of probability density functions for the energy flux at grid scales for a posteriori. 
Bold solid line:  true flux from DNS; line with squares:  DMM; line with circles:  CDMM; dashed line:  DSM [37]. 

Considering LES of incompressible turbulence flows, the following low-pass filtered Navier Stokes 
equations for large scales are solved 

0,i

i

u
x

                                                               (7) 

2

.i j iji i

j i j j j

u uu up
t x x x x x

                              (8) 

Here, a tilde denotes low-pass filtering, iu is the large-scale velocity, p is the filtered pressure, is the 
kinetic viscosity and ij  is the SGS stresses 

 .                                                         (9) 

When we perform the ensemble average operator  on Eq. (8), we obtained the following equation 
for the mean large scale velocity 

2 LES
iji j iji i

j i j j j j

u u Ru p u
t x x x x x x

 .                (10) 

Here,  

LES
ij i j i jR u u u u  .                                             (11) 

is called the resolved Reynolds stress. If one compares Eq. (10) with the Reynolds-averaged 
Navier Stokes equations [39] and assumes that the flow is ergodic, the following expression for Reynolds 
stress LES

ij i j i jR u u u u holds 



110   Shiyi Chen et al.  /  Procedia IUTAM   10  ( 2014 )  100 – 114 

RANS LES
ij ij ijR R .                                                            (12) 

From the above equation, we can easy obtain the mean of ij as follows, so long as RANS
ijR is known or 

estimated by some RANS model 

  SGS RANS LES
ij ij ijR R .                                                           (13) 

So we can estimate the ij  in the inner layer from two parts 
SGS SGS
ij ij ij  .                                                               (14) 

The first part is the mean part, which is constrained by the Eq. (13); the second part is the fluctuating 
part. They proposed a very simple form based on the Smagorinsky model to model this part 

2 2
2ij S ij ijC S S S S  ,                                      (15) 

where the coefficient SC can be estimated using the standard dynamic procedure. So the final constrained 
SGS model in the inner layer is as follows 

2 2SGS RANS LES 2ij ij ij S ij ijR R C S S S S ,                  (16) 

Jiang et al. [40] followed the physical constraint idea and extended it to compressible wall-bounded 
turbulent flows. As there is one more governing equation for the energy, they introduced three more 
constraints for the subgrid-scale heat fluxes, besides the Reynolds stress constraints for the momentum 
equations. The constrained subgrid scale model for the SGS stresses and heat fluxes are  

SGS RANS

2 21 1       2 ,
3 3

ij ij i j i j

s ij kk ij ij kk ij

R u u u u

C S S S S S S
                           (17) 

SGS LES

RANS RANS 2 2

( )

.

j j j j

s
j ij i p p

T j j

Q u e p J e p u

C T Tq R u C S C S
Pr' x x

          (18) 

Here, SC and PrT  are the constants in the compressible model. They verified the compressible CLES 
model in compressible turbulent channel flows, and the results are also very encouraging. 

In principle, any RANS model, including algebraic model, SA model, k-  model, k-  model and SST 
model can be used to estimate the RANS

ijR  in Eqs. (16) (18). To a certain extent, the results obtained from 

CLES depend on the accuracy of the estimation on RANS
ijR . In turbulent channel flow, it was reported that 

the results obtained from CLES with algebraic model and SA model agreed extremely well with each 
other [38].  

From Eq. (16), we can clearly see that the new model can generate small-scale fluctuations in the inner 
layer, which is typically deficient in the RANS region for hybrid RANS-LES methods. In their paper [38], 
Chen et al. validated CLES method by simulating incompressible turbulent channel flow at various 
Reynolds numbers and the flow past a circular cylinder at Re = 3 900 and 3 106.  
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Shown in Fig. 7a are the mean velocity profiles from LES with dynamics Smagorinsky model (LES-
DSM), DES and CLES in incompressible turbulent channel flows at friction Reynolds number 2 000. The 
results are compared with the classical log-law profiles and the DNS results available. It is clearly seen 
that the mean velocity profile from CLES matches the DNS results and the log-law theory very well, 
while the mean profile of LES-DSM has an obvious shift-up and that of DES has the LLM defect.  

CLES can also considerably reduce the prediction error of the skin-friction coefficient as shown in Fig. 
7b, where the skin-friction coefficients from LES-DSM, DES and CLES are compared with the available 
DNS results and the Dean’s estimations. It is clearly seen that the prediction error of CLES are much 
smaller than those from LES-DSM and DES. 

Shown in Fig. 8 are the time-averaged pressure coefficients on the cylinder surface at (a) Re = 3 900 
and (b) Re = 3×106. The CLES results are compared with those obtained from DES, coarse-grid DNS 
(CDNS, if available) and experimental measurements. The results show that the performance of CLES is 
comparable to, if not better than, that of DES at both Reynolds numbers for these turbulent flows with 
massive separations.  

 

 

Fig. 7. (a) Mean velocity profiles from LES-DSM, DES and CLES at friction Reynolds number 2 000. The DNS results by Hoyas 
and Jiménez [41] is used as the reference. (b) The skin-friction coefficients predicted by LES-DSM, DES and CLES in terms of the 

friction Reynolds numbers. The available DNS calculated values and Dean’s estimation [42] are also plotted for comparison. 

 

Fig. 8. Time-averaged pressure coefficient on the cylinder surface at (a) Re = 3 900 and (b) Re = 3×106. The front stagnation point is 
located at 0 [38]. 
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Using the compressible CLES model, the students and collaborators in our group have simulated other 
flow problems, including transonic flow past a circular cylinder at Mach number 0.75 (see Fig. 9 left), 
flow past a deltawing with 50 degrees sweep-angle at 15 degrees angle of attack (see Fig. 9 right), flow 
past tandem cylinders (see Fig. 10 left) and flow past a commercial aircraft at 14 degrees angle of attack [43] 
(see Fig. 10 right).  

 

Fig. 9. Left:  3D shock waves, vortex structures and streamlines in flow past a circular cylinder at M = 0.75, Re = 2×105; Right:  
vortex structures of flow past a deltawing with 50 degrees sweep-angle at 15 degrees angle of attack. 

 

Fig. 10. Left:  vortex structures of flow past tandem cylinders; Right:  vortex structures of flow past a commercial aircraft at 14 
degrees angle of attack. 

4. Concluding remarks 

Multiscale fluid phenomenon is ubiquitous in the nature. Multiscale modeling of fluid mechanics will 
play an important role in discovering new flow physics and modeling fluid engineering problems. Using 
physical constraints, we have developed new modeling methodologies, including hybrid molecular 
dynamics-continuum method for micro- and nanoscale fluid flows and constrained large eddy simulation 
for simulating realistic engineering turbulence. Our results demonstrate the capability of multiscale 
simulation methods for complex fluid systems and the necessity of physical constraints on the multiscale 
modeling.  
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