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Abstract. We combine the Shan-Chen multicomponent lattice Boltzmann model and
the link-based bounce-back particle suspension model to simulate particle motion in
binary immiscible fluids. The impact of the slightly mixing nature of the Shan-Chen
model and the fluid density variations near the solid surface caused by the fluid-solid
interaction, on the particle motion in binary fluids is comprehensively studied. Our
simulations show that existing models suffer significant fluid mass drift as the parti-
cle moves across nodes, and the obtained particle trajectories deviate away from the
correct ones. A modified wetting model is then proposed to reduce the non-physical
effects, and its effectiveness is validated by comparison with existing wetting models.
Furthermore, the first-order refill method for the newly created lattice node combined
with the new wetting model significantly improves mass conservation and accuracy.

PACS: 47.11.Qr, 47.55.-t, 47.56.+r, 47.57.Gc, 47.61.Jd

Key words: Lattice Boltzmann model, particle suspension model, binary immiscible fluids.

1 Introduction

Particle suspension in multiphase or multicomponent flows has gained increasing at-
tention during the last decade [3, 4, 16, 20, 23, 24, 28, 32, 41, 42], due to the extensive use
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of particles to stablize emulsions, which has many applications in food, cosmetics and
medical industires [23], as well as the use of proppants in hydraulic fracturing for uncon-
ventional gas production [36]. Also, in many processes, such as hydrocarbon recovery,
geologic CO2 sequestration, and soil wetting and drying, understanding the emergent
patterns of the invasion of one fluid into a deformable porous medium filled with an-
other fluid is both scientifically fascinating and technologically important [21]. If the
deformable porous medium is modeled by the discrete element method [14], then it all
boils down to the problem of accurately simulating particle suspension in multiphase or
multicomponent flow.

Numerical simulation of particle suspension in multiphase or multicomponent flows
requires accurately capturing the motion of particle and the interface of the fluid, nei-
ther of which can be easily accomplished by traditional CFD method. The lattice Boltz-
mann method (LBM) has become a powerful numerical tool to model complex flow and
multi-physicochemical transport processes [1,9,43,44], and is suitable to fulfill the above
requirements, mainly due to the fact that it is based on microscopic models and meso-
scopic kinetic equations [9]. It has already been employed to simulate particle suspen-
sion in multiphase or multicomponent flows [16,23,24,28,32,41,42]. The link-based lattice
Boltzmann particle suspension model, first proposed by Ladd [26] and further developed
by Aidun et al. [2], has been widely used and the LBM simulation results are comparable
to the finite element results [11, 34]. For modeling multiphase or multicomponent flow,
the Shan-Chen pseudo-potential lattice Boltzmann model [8, 33, 37–39] has been applied
with considerable success [1]. In this paper, we combine the link-based particle suspen-
sion model and the classic Shan-Chen multicomponent model [38] to simulate particle
suspension in binary immiscible fluids.

Previous LBM approaches have reported mass non-conservation issue [23, 41] when
the fluid information inside the particle is excluded. Although retaining fluid informa-
tion inside the particle can ensure exact mass conservation in the whole computation
domain including the solid particle region [24, 28, 32], the fluid mass may not be con-
served in the fluid region outside the particle. Also, when introducing non-neutral wet-
ting, additional wetting forces will act on the solid particle, and nonphysical effects such
as density variations near solid surface affect the motion of the particle. Simulation ac-
curacy may be decreased compared with single phase flow simulations, which has not
been well studied. Therefore, in this paper, we will focus on the accuracy and mass con-
servation of the existing approaches, and propose a modified approach to reduce mass
non-conservation and to improve accuracy.

The rest of the paper is organized as follows. Section 2 introduces the numerical meth-
ods of this paper, including the Shan-Chen multicomponent model, particle suspension
model and related modifications required in combining these two models. In Section 3,
we perform extensive numerical simulations to validate our method and compare the
results with existing methods. Section 4 concludes the paper.
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2 Numerical methods

2.1 Shan-Chen multicomponent lattice Boltzmann model

In the Shan-Chen multicomponent model [38, 39], each fluid component k is represented
by its own distribution functions, which follow the similar LBGK [7, 35] evolution equa-
tion as in single phase flow,

f k
i (x+eiδt,t+δt)= f k

i (x,t)− f k
i (x,t)− f

k(eq)
i (x,t)

τk
, (2.1)

where f k
i is the distribution function of component k associated with the ith discrete ve-

locity direction ei, f
k(eq)
i is the corresponding equilibrium distribution function, δt is the

time increment and τk is the relaxation time, which relates to the kinematic viscosity of
fluid component k. For the popular D2Q9 lattice model, the equilibrium distribution
functions are chosen as [25],
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where αk is a free parameter, which relates to the sound speed of a region of pure kth
component as (ck

s)
2= 3

5(1−αk); nk is the number density of kth component,

nk=∑
i

f k
i . (2.3)

u
eq
k is the ’equilibrium velocity’, by which the forcing term is incorporated,

ρku
eq
k =ρku′+τkFk. (2.4)

where u′ is a common velocity on top of which, an extra component-specific velocity
due to interparticle interaction is added for each component [22]. The forcing term in
Eq. (2.4) includes the fluid-fluid interactive force Ff f k between different components, the
fluid-solid interactive force Ff sk and the body force Fbk [25]. The density and velocity of
each component can be obtained by the following equations,

ρk =mknk =mk∑
i

f k
i , (2.5)

ρkuk =mknkuk =mk∑
i

f k
i ei, (2.6)

where mk is the molecular mass of k the component. The macroscopic bulk velocity u is
defined by [18, 40],

ρu=
s

∑
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ρkuk+
1

2
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ρkFk. (2.7)
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2.1.1 Fluid-fluid interactive force

In order to simulate separation between different components in multicomponent fluids,
non-local interactions between fluid particles are incorporated via the following fluid-
fluid interactive force [38],

Ff f k(x)=−ψk(x)∑
x′

s

∑
k=1

Gkk(x,x′)ψk(x′)(x′−x), (2.8)

where Ff f k(x) is the total fluid-fluid interactive force on the kth component, Gkk(x,x′) is
the interparticle potential which satisfies Gkk(x,x′)=Gkk(x,x′), and ψk(x) is the effective
number density for kth component. For simplicity, ψk is taken as nk in this study. Other
choices will give a different equation of state [22].

In the D2Q9 model, Gkk(x,x′) can be written as,

Gkk(x,x′)=











gkk, if |x,x′|=δx;

gkk/4, if |x,x′|=
√

2δx;

0, otherwise.

(2.9)

Here gkk controls the strength of interparticle potential of component k and component

k, which related to the surface tension. gkk is a positive value so that different immiscible
fluid components repel with each other. However, the Shan-Chen model is not a strictly
immiscible model, as there is always a small amount of fluid component k inside the
fluid component k region [22]. This slightly mixing feature of the Shan-Chen model may
affect the motion of the particle suspended in the multicomponent fluids, and will be
investigated numerically in Section 3.

2.1.2 Fluid-solid interactive force: Wettability

When solid phase exists in the simulation domain of multicomponent fluids, an inter-
active force between the solid and the fluid is introduced in order to control the contact
angle on the solid/fluid interface. Martys and Chen [29] proposed the following fluid-
solid interactive force, referred as the Martys model, which has been widely used with
the Shan-Chen multicomponent model,

Ff sk(x)=−nk(x)∑
i

gkws(x+ei)ei, (2.10)

where s(x)=1 represents solid node and s(x)=0 represents fluid node. gkw can be used
to control the relative wettability of different fluid components. For example, wetting
fluid has a negative gkw value while non-wetting fluid has a positive gkw value. One may
expect that fluid near the solid surface is attracted to the solid surface for wetting fluid or
repelled by the solid surface for non-wetting fluid. However, even if Ff sk(x)= 0, which
results in a 90◦ contact angle, fluid near the solid surface is still attracted to the solid
surface.
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Solid Node Fluid Node 

A 

Figure 1: A schematic illustration of fluid-solid boundary nodes in D2Q9 lattices.

As shown in Fig. 1, node A is a fluid node near solid surface, so called fluid boundary
node, and is connected with solid nodes. Fluid particles on node A experience repellent
fluid-fluid interactive forces, as shown in Eq. (2.8), from other fluid components on the
nearby fluid nodes, and since some links of node A are connected with solid nodes, the
net fluid-fluid interactive force on node A is towards the solid surface. Therefore, even if
the fluid-solid interactive force is zero, fluid near the solid surface is still attracted to the
solid surface.

The lattice Boltzmann method is not a strictly incompressible model [9]. If the fluid
on the boundary nodes experiences, for example, a net interactive force towards the solid
surface, the local fluid density of the boundary nodes will be higher than nearby non-
boundary nodes, as the fluid particles are attracted to the solid surface. On the other
hand, if the net interactive force is towards the fluid domain, then the local fluid den-
sity of the boundary nodes will be lower than nearby non-boundary nodes, as the fluid
particles are pulled away from the solid surface. This density variations near the solid
surface are also observed in Ref. [23], and can affect the motion of the particle suspended
in the fluid, as we will demonstrate in Section 3. The compressible effect is one of the
drawbacks of LBM. Although several incompressible single phase LB models have been
proposed [17, 19, 49], based on our understanding, one can only reduce this effect but
cannot completely eliminate it especially in multicomponent flow simulations.

In the Martys model, the net force on the boundary nodes is the sum of Ff f k and Ff sk,
and Ff f k is usually much larger than Ff sk in practice. Thus, the density variations on the
fluid boundary nodes can be significant, especially for the wetting fluid component, as
Ff f k and Ff sk are in the same direction.

In order to overcome the above problem, Jansen and Harting [23] proposed a new
wetting model, referred as the Jansen model, which employs virtual fluid on the solid
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boundary nodes to balance the net fluid-fluid interactive force on the fluid boundary
nodes. As shown in Fig. 1, solid boundary nodes are now filled with virtual fluid of each
component. The density of the virtual fluid is the average fluid density of the surround-
ing fluid nodes,

n
avg

k(virtual)
(x,t)=

1

NNP
∑
iNP

nk(x+eiNP
,t), (2.11)

where NP refers to fluid node that directly connect to the corresponding solid boundary
node. Thus, the net interactive force on the boundary nodes becomes negligible thanks
to the counterbalance provided by the virtual fluid on the solid boundary nodes, and
the density variations vanish when the contact angle is 90◦. For contact angle not equal
to 90◦, a small amount of additional virtual fluid of the wetting component is added to
the solid boundary nodes while the density of the non-wetting component on the solid
boundary nodes remains the same as in Eq. (2.11),

nw(virtual)=n
avg

w(virtual)
+|∆s|, (2.12a)

nnw(virtual)=n
avg

nw(virtual)
, (2.12b)

where w represents wetting component and nw represents non-wetting component. In
such case, the repulsion between the increased component (wetting component) and
the unmodified one (non-wetting component) increases, making the solid surface push
away the non-wetting component and ’prefer’ the wetting component [23]. In the Jansen
model, Eq. (2.10) is no longer used, and the fluid-solid interactive forces are obtained by
calculating the fluid-fluid interactive forces between fluid boundary nodes and virtual
fluid nodes via Eq. (2.8). The density variations still exist on fluid boundary nodes as
long as the extra virtual fluid in Eq. (2.12) is added to the solid boundary nodes, which
breaks the balance of fluid-fluid interactive forces on the fluid boundary nodes. The mag-
nitude of the variations is smaller than when using the Martys model, but not negligible,
which will affect the motion of the suspended particle.

In the Jansen model, only the virtual fluid density of the wetting component is mod-
ified, which affects the interactive forces acting on the non-wetting component on the
fluid boundary nodes. The magnitude of the counterforces of the fluid-solid interactive
forces that exert on a solid particle as well as the magnitude of the density variations near
the particle surface are much larger when the particle is submerged in the non-wetting
component than those when the particle is submerged in the wetting component. As a
result, the simulated particle motion may be less accurate when the particle is submerged
in the non-wetting component.

We notice that the virtual fluid is only used in Eq. (2.8) to control the nonlocal inter-
active forces on the fluid boundary nodes, and will not enter the fluid domain to take
part in the standard LBM streaming-collision procedure. In other words, the density of
the virtual fluid can be regarded as merely a parameter to control the wettability of the
corresponding fluid component. Therefore, a negative value for the virtual fluid density
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is acceptable. We propose the following modified wetting model,

nnew
k(virtual)=n

avg

k(virtual)
+∆sk. (2.13)

Here ∆sk can be any value, and we choose to let ∆swetting=−∆snon−wetting=∆s in current
study, where ∆s is a positive value. In such case, the solid particle experience similar
fluid-solid interactive forces either when it is submerged in wetting component or when
it is submerged in non-wetting component. Also, the density variations on the fluid
boundary nodes in either fluid component are in the same level. Thus, the simulation
results of the particle submerged in different components should be more consistent.

2.2 Particle suspended in multicomponent fluids

In the Shan-Chen multicomponent lattice Boltzmann model, different component is rep-
resented by its own distribution functions [38]. Particle suspended in multicomponent
fluids can be treated similarly as in single phase fluid for each individual fluid compo-
nent, except that additional fluid-solid interactive force is applied to the particle.

2.2.1 Interior fluid

There are two types of particle suspension models depending on whether fluid informa-
tion inside the particle is excluded or not. For particle suspension model with interior
fluid, the fluid information is stored on all the lattice nodes including those in the solid
region. Thus, for a single component fluid, when the particle moves across lattice nodes,
the total mass of the fluid is strictly conserved. However, when the particle is suspended
in multicomponent fluids, how to define the composition of the fluid components inside
the particle becomes a problem, because when the particle is penetrating the interface
of two fluid components, some fluid components will enter the particle while some will
leak out of the particle. Although the total fluid mass of each component is strictly con-
served, the mass of each fluid component in the fluid region is not conserved, and the
components composition in the fluid region drifts. We demonstrated in Section 3.3 that
using the particle suspension model with interior fluid results in significant fluid compo-
nents composition drift outside the particle, as shown in Fig. 8. Thus, in this study, we
choose to exclude the interior fluid. Readers shall keep in mind that the virtual fluid in
the wetting model is not considered as interior fluid, because the virtual fluid does not
enter the fluid domain to take part in the standard LBM streaming-collision procedure.

2.2.2 Non-slip boundary condition

In this paper, we mainly focus on the link-based non-slip boundary conditions, which are
widely used in LB simulations of particle-fluid interactions [2, 26, 31]. Fig. 2 shows the
typical link-based boundary model. In link-based boundary models, fluid interacts with
solid through boundary links, such as link AC in Fig. 2 which connects a fluid node A
and a solid node C.
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C (xb)D
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E  
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Figure 2: A schematic illustration of link-based lattice Boltzmann boundary model.

Classic particle suspension models employ the midway bounce-back boundary con-
dition [26],

fᾱ(x f ,t+∆t)= f̃α(x f ,t)−2ωαρ
eα ·uw

c2
s

, (2.14)

where x f is the location of the fluid boundary node, eα is the lattice direction from fluid

node to solid node, eᾱ is the opposite direction, f̃ is the post collision distribution function
and uw is the wall velocity evaluated on the mid-point of the boundary link. For particle
suspended in multi-component fluids, each fluid component collide with the solid wall
under the same bounce-back rule as in Eq. (2.14).

The drawback of the midway bounce-back boundary condition is that the resulting
non-slip boundary is a zigzag type boundary as shown in Fig. 2, and is only first-order
accurate for arbitrary surface. Higher-order interpolation based curved boundary condi-
tions have been proposed to improve the accuracy [5,12,15,27,30,47,48], which utilize the
exact wall position (point W in Fig. 2), and interpolate required information from nearby
fluid nodes. However, even if a curved boundary condition is applied, existing wetting
models do not account for the exact wall position which will degrade the accuracy of the
curved boundary conditions. Also, our simulation results of particle sedimentation [11]
show that the mid-way bounce-back boundary condition is able to produce simulation re-
sults with acceptable accuracy as long as the grid resolution of the particle is fine enough.
Therefore, only the mid-way bounce-back boundary condition is used in this work.
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2.2.3 Particle dynamics

Particle suspended in multicomponent fluids not only experiences the hydrodynamic
forces from the surrounding fluids, but also experiences the counterforces of the fluid-
solid interactive forces acting on the fluid boundary nodes. Readers shall keep in mind
that the absolute value of the fluid-solid interactive forces has no physical meaning, but
the relative value of the fluid-solid interactive force keeps the particle suspended on the
interface with desired contact angle.

The hydrodynamic force of each component acting on the solid surface can be ob-
tained by the classic momentum exchange method,

δFk
w(xw,eα)=−

[

f k
ᾱ(x f ,t)eᾱ− f̃ k

α (x f ,t)eα

]

. (2.15)

When the mid-way bounce-back boundary condition is applied, Eq. (2.15) can be written
as,

δFk
w(xw,eα)=

[

2 f̃ k
α (x f ,t)−2ωαρk

eα ·uw

c2
s

]

eα. (2.16)

As pointed out in Ref. [11], the classic momentum exchange method does not account
for the initial momentum of the net mass transfer term −2ωαρk

eα·uw

c2
s

in Eq. (2.14), and an

impulse correction has to be applied to the particle whenever the particle moves to cover
or uncover a fluid lattice nodes as the momentum of the fluid on these nodes is gained or
lost by the particle [2], respectively,

Fc(xcover)=
s

∑
k=1

8

∑
i=1

f k
i (xcover)ei, (2.17)

Fu(xuncover)=
s

∑
k=1

8

∑
i=1

f k
i (xuncover)ei. (2.18)

Although several corrected momentum exchange methods [6, 11, 13, 45] have been pro-
posed to correct the classic momentum exchange method directly in Eq. (2.15), without
the need of the impulse force correction which results in a fluctuating force, our early
test results show that none of the corrected momentum exchange methods works well
when the contact angle is not equal to 90◦. The reason may be that the alteration of dis-
tribution functions on the fluid boundary nodes due to the non-zero interactive force in
Eq. (2.4) renders some assumptions in the development of the corrected momentum ex-
change methods invalid, while the impulse correction ignores the complex interactions
between fluid and solid during the process of particle covering/uncovering fluid nodes,
and only the final momentum of the fluid on these nodes is accounted for.

The counterforce of the fluid-solid interactive force, denoted as Fs f k(xb), is acting on
the corresponding solid boundary node xb. This interactive force described above is con-
sidered as an artificial model to simulate desired contact angle and can not be directly
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related to the physical interaction between solid and fluid. When a solid particle is sub-
merged entirely in one fluid component, the integration of Fs f k(xb) on the particle surface
should be zero. However, due to the discrete lattice structure and the density variations
caused by the compressible effect of the LBM, the particle will experience a small net
force formed from the fluid-solid interactive forces, which will affect the particle motion.
One of the main reasons of the new wetting model proposed in Section 2.1.2 is to reduce
the impact of the above artificial net force as well as the density variations on the particle
motion.

Once the total force and torque on the particle is obtained, the position and velocity
of the rigid particle can be updated according to Newton’s law.

2.2.4 Refill procedure

When the particle moves across lattice nodes, some lattice nodes originally inside the
particle will enter the fluid domain. Because the interior fluid is excluded, fluid informa-
tion is unknown in those newly created fluid nodes, and therefore a refill procedure is
required. There are several refill methods, such as using the average surrounding fluid
density and the rigid body velocity for the new node and replacing the distribution func-
tions with the equilibrium distribution functions [2], or one can just directly use the aver-
aged extrapolation values of the distribution functions from nearby fluid nodes [10, 46].

We find that the difference between using the extrapolation of macroscopic density
and using the direct extrapolation of the distribution functions is negligible. In this work,
we choose to use the direct extrapolation of the distribution functions for the new lattice
nodes, unless stated otherwise.

The extrapolation scheme can either be a zero-order scheme or a first-order scheme.
Although the difference between the zero-order refill and the first-order refill is very
small in single phase simulations as the gradient of the fluid density near the solid sur-
face is small, this may not be true in the multiphase/multicomponent simulations. As
shown in Section 2.1.2 and Section 3.2, there are density variations near the solid surface
caused by the wetting models. The reconstruction of the newly created lattice nodes must
consider the effects of the density variations which alter the gradient of the fluid density
near the solid surface.

For the newly created lattice nodes near the triple contact line, first-order extrapolated
fluid distribution functions can be extremely large or be negative due to the large density
variations across the fluid interface, which results in nonphysical phase separation near
the solid surface or unstable simulations. The problem can be solved, by simply employ-
ing a criterion in the extrapolations. If the first-order extrapolated fluid density is smaller
than zero, or the magnitude of the nearby density variation is larger than certain crite-
rion, such as 0.1 in lattice unit based on the parameters in the Shan-Chen model, then the
zero-order extrapolation scheme kicks in to replace the first-order extrapolation scheme.
We will investigate both the zero-order refill and the first-order refill in Section 3.4.
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3 Numerical validation

Our code for the LB simulation of particle suspension in a single phase fluid was vali-
dated in [11], by comparison with the finite element method. For the numerical simula-
tion of particle suspension in multicomponent flows, it is difficult to quantitatively com-
pare the simulation results with experiment results, due to complex interactions between
different fluid components as well as interactions between solid particle and multiple
fluid components. However, for a numerical model to be valid, at least the following
requirements should be met:

(1) When a particle is completely submerged in one of the fluid components, particle
trajectory obtained by the multicomponent code should be close to the one obtained
by the single phase code, as long as the particle is far away from fluid interface;

(2) When a particle is suspended on the interface of two fluid components, the final
static contact angles determined by the stable position of the particle, under the
condition of zero gravity, should be consistent with the contact angles formed by a
flat solid surface in contact with these two fluid components, as shown in Fig. 3;

(3) The mass composition of the multicomponent fluid should remain constant if no
chemical reaction occurs.

In the following sections, we first obtained the parameters of different wetting models
to form an identical contact angle for valid comparison between these models. Then the
density variations near solid surface caused by the wetting models were investigated. In
order to validate objective (1), we simulated the sedimentation of an elliptical particle
using our multicomponent LB code and took account of the non-physical effects of the
wetting models and the non-strictly immiscible nature of the Shan-Chen model, while as-
suming the fluid interface is infinitely far away. Finally, three dimensional simulations of
particle suspended on the fluid interface were performed to examine whether the forces
exerted on the solid particle correctly reproduce desired contact angle.

3.1 Determining the parameters of different wetting models

Three wetting models, the Martys model, the Jansen model and the present model, are
introduced in Section 2.1.2. The contact angle cannot be determined prior to numerical
simulation for these wetting models. In order to perform valid comparison between these
wetting models, we adjust the parameters in the wetting models and perform simulations
to form an identical contact angle.

The 2D simulation domain is a 301×201 closed cavity, with non-slip bounce-back
boundary condition applied to the domain boundaries. For simplicity, two immiscible
fluid components, fluid R and fluid B, with identical viscosity and density are studied.
We let τR =τB =1, mR=mB =1 and the interparticle potential coefficient gRB =0.2.
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Figure 3: A schematic illustration of calculating contact angle.

A fluid B drop is attached to one of the flat walls, as shown in Fig. 3. The contact angle
can be calculated by the following equations [25],

R=
a0

2
+

b2
0

8a0
, (3.1)

tan(θB)=
b0

2(R−a0)
, (3.2)

where R is the radius of curvature of the drop.

In this case, we adjusted the parameters in the wetting models to form an identical
contact angle, θB=119◦. Table 1 shows the obtained parameters for each wetting models,
which will be used in the following comparisons.

Table 1: Parameters.

Models Martys et al. [29] Jansen et al. [23] present model

Parameters gRw=−0.022 ∆sR =0.225 ∆sR =0.104

gBw=0.022 ∆sB =0 ∆sB =−0.104

Contact Angle (Fluid R) 61◦ 61◦ 61◦

Contact Angle (Fluid B) 119◦ 119◦ 119◦

3.2 Density variations caused by the wetting models

When the contact angle is not equal to 90◦, the fluid boundary nodes experience non-
zero net interactive forces from surrounding solid nodes and fluid nodes, which causes
density variations on these fluid boundary nodes. Here we investigate density variations
on stationary walls. As shown in Fig. 4, the simulation domain is a 201×101 cavity,
with non-slip bounce-back boundary condition applied to the domain boundaries. The
cavity is filled with two immiscible fluids, fluid R and fluid B, each occupying half of
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Figure 4: The simulation domain for the study of the density variations near stationary walls. Fluid interface is
in the middle of the cavity.

the domain. The parameters of the fluids are identical to the ones used in Section 3.1. In
Section 2.1, we have pointed out that the Shan-Chen model is not a strictly immiscible
model [22]. Thus, in fluid R region, the dominant fluid component is fluid R, while there
also exists a small amount of fluid B in fluid R region, the so called residual component.
In fluid B region, the dominant component is fluid B, and the residual component is fluid
R.

Fig. 5 shows the density profile of the corresponding dominant component near the
left and right wall along the line y= 50, respectively. Fig. 6 shows the density profile of
the corresponding residual component near the left and right wall along the line y=50,
respectively. We can see obvious density variations near the wall caused by the wetting
models.

In the Martys model, the fluid-fluid interactive force is not balanced on the bound-
ary nodes, thus the density variation of the non-wetting fluid near the wall is very large,
as shown in Fig. 5b. In Fig. 5a, the density of the second node (x = 1.5) is smaller than
the first node (x = 0.5) and the third node (x = 2.5). The reason is that, in the Martys
model, the net interactive force on the residual component on the fluid boundary nodes
is always towards the wall even when the residual component is the non-wetting compo-
nent, because the net force of the fluid-fluid interactive forces from the surrounding fluid
nodes is towards the solid surface and usually larger than the net force of the fluid-solid
interactive forces in Eq. (2.10). The density of the residual component on the boundary
nodes is therefore always higher than the fluid nodes further away from the wall. As
shown in Fig. 6a, the residual component (fluid B, non-wetting component) density on
the first node is relatively high, and push away the dominant fluid R on the second node,
resulting in slightly lower density of fluid R on the second node, as shown in Fig. 5a.

The patterns of the density profiles of the Jansen model and the present model are
similar and less complex, as both models employ the virtual fluid to balance the fluid-
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Figure 5: (Color online) The density profile of the dominant fluid component near the wall along y=50. (a) The
density profile of fluid R near the left wall. In this region, the wetting fluid R is the dominant component while
the non-wetting fluid B is the residual component. (b) The density profile of fluid B near the right wall. In this
region, the non-wetting fluid B is the dominant component while the wetting fluid R is the residual component.
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Figure 6: (Color online) The density profile of the residual fluid component near the wall along y=50. (a) The
density profile of fluid B near the left wall. In this region, the wetting fluid R is the dominant component while
the non-wetting fluid B is the residual component. (b) The density profile of fluid R near the right wall. In this
region, the non-wetting fluid B is the dominant component while the wetting fluid R is the residual component.

fluid interactive forces acting on the fluid boundary nodes from surrounding fluid nodes.
The Jansen model only adds the extra virtual fluid of the wetting component to the solid
boundary nodes and keep the non-wetting component unchanged, while in the present
model the extra virtual fluid is added to or subtracted from the wetting component or the
non-wetting component on the solid boundary nodes at the same time, respectively, as
shown in Eq. (2.12) and Eq. (2.13). As a result, the density variation in the Jansen model
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mainly appears on the non-wetting fluid (fluid B) region, while in the present model, the
density variations evenly appears on the wetting fluid region and the non-wetting fluid
region, as shown in Fig. 5 and Fig. 6. Although the density variations of the Jansen model
in the wetting fluid region are smaller than the present model, the density variations
of the Jansen model in the non-wetting fluid region are much larger than the present
model. Therefore, the maximum non-physical effect caused by the density variations in
the Jansen model should be larger than in the present model. Further comparisons will
be presented in Section 3.4.

3.3 Problem with the particle suspension model with interior fluid

In this subsection, we will demonstrate numerically that the particle suspension model
with interior fluid is not able to maintain mass conservation when the particle is pene-
trating the fluid interface, as we point out in Section 2.2.1.

The simulation domain is a 301×101 closed channel, with non-slip bounce-back bound-
ary condition applied to the domain boundaries. The parameters of the fluid components
are identical to the ones used in Section 3.1, except that the contact angle is set to be 90◦.
Thus, the effect of wetting models is minimized in this case, and we focus on the inte-
rior fluid of the particle model. As shown in Fig. 7, fluid B occupies the top half of the
channel and fluid R occupies the bottom half of the channel. A round particle (r=15), is
initially placed at (50,50) inside the fluid B region, and the interior of the particle is filled
with fluid B. The interior fluid will enter the LBM streaming-collision cycle, and the same
bounce-back boundary condition applied to the interior fluid [26]. We move the particle
with constant vertical velocity, v=0.005, towards the bottom of the channel, and monitor
the total mass change of each fluid components outside the solid particle.

Fig. 7 shows significant shift of the fluid component composition inside the particle,
despite that the particle is initially filled with pure fluid B. Although the total mass of
each component in the whole domain, including the solid region, is strictly conserved for
particle model with interior fluid, the fluid outside the solid region is not conserved and
changes rapidly when the particle penetrates the fluid-fluid interface and enter fluid R
region, as shown in Fig. 8. Meanwhile, when using particle model without interior fluid
and using the virtual fluid method introduced in Section 2.1.2 to balance the interactive
force on the fluid boundary nodes, the mass of each fluid component outside the particle
is approximately conserved with some slight fluctuations when the particle is penetrating
the fluid-fluid interface. Therefore, interior fluid is excluded in the rest of simulations in
this paper.

3.4 Sedimentation of an elliptical particle

The impact of non-strictly immiscible nature of the Shan-Chen model and the non-physical
effects caused by the wetting models on the particle motion should be investigated. How-
ever, once the fluid interface is involved, it is difficult to compare the multicomponent
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Figure 7: Contours of fluid R at different time (in lattice unit). After the particle penetrates the interface, some
amount of fluid R enters the solid particle while some amount of fluid B leaks out of the particle and forms a
small drop on the back of the particle.
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Figure 8: Total mass change of each fluid component outside the particle with time. The particle model with
interior fluid cannot maintain mass conservation for fluid outside the particle, while the particle model excluding
interior fluid can greatly reduce the mass nonconservation.

flow result with the well studied single phase flow result. When a particle is completely
submerged in one fluid component, the particle motion should behave the same way as
it is in the single phase fluid, as long as the particle is far away from the fluid interface.
Therefore, we propose the following numerical simulations.
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Figure 9: The geometry of the particle sedimentation benchmark case. a and b is the length of semi-major
axis and semi-minor axis, respectively. L is the width of the channel. Gravity is along the x axis in the positive
direction. θ represents the orientation of the particle.

The simulation domain is a 601×81 cavity, with non-slip bounce-back boundary con-
dition applied on the domain boundaries. An elliptical particle is initially placed at
(60,40), as shown in Fig. 9. a and b is the length of semi-major axis and semi-minor
axis, respectively. L is the width of the channel. Gravity is along the x axis in the positive
direction. θ represents the orientation of the particle, and the initial value of θ is 135◦. In
lattice unit, a=16, b=10, and gravity is set to be 0.0001. Once released, the particle will
sink under gravity. Except for some special cases (e.g., θ = 0◦ or θ = 90◦, and particle is
initially located at the center of the channel), the particle will turn while sinking, leading
to horizontal movement. The fluid parameters are the same with the ones used in Sec-
tion 3.1. The density of the solid particle is 2.3, and the maximum Reynolds number is
about 1.5.

3.4.1 Sedimentation in single phase fluid

First, we simulate the particle sedimentation in pure single phase fluid using our single
phase code without introducing the Shan-Chen model. Fig. 10 shows the trajectory of
the particle. There is negligible difference between the zeroth-order refill method and the
first-order refill method in the single phase case, therefore only the single phase result
with the first-order refill method will be used for comparison in the rest of the paper. In
Ref. [11], we have validated our single phase code by comparing with the finite element
method. Thus, result in Fig. 10 is reliable.

3.4.2 Sedimentation in multicomponent fluid

Second, we simulate the same sedimentation case above while this time we introduce the
Shan-Chen model and the wetting models. In order to perform valid comparison with
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Figure 10: Trajectories of the particle, obtained by single phase code with first-order refill method, single phase
code with first-order refill method and multicomponent code with neutral wetting and first-order refill method,
respectively. The trajectories are almost identical for all three cases.

the result in Fig. 10, there should be no fluid-fluid interface or the interface should be
far away from the particle. In this case, we remove the interface by fill the whole closed
channel with one fluid component as the dominant component and a small amount of
the other fluid component as the residual component, thus the slightly mixing feature of
the Shan-Chen model is accounted for.

When the fluid-fluid interface exists, using the fluid parameters in Section 3.1, we find
that the density of the average dominant fluid component is about 0.97, while the density
of the residual fluid component is about 0.03. Thus, we use these two values as the initial
density of the dominant component and the residual component, respectively.

We first focus on the slight mixing problem in the Shan-Chen model and let the two
fluid components to be neutral wetting, resulting in 90◦ contact angle. Virtual fluid is
used to balance the interactive forces on the fluid boundary nodes, so that the density
variations near the fluid-solid boundaries are minimized. The multicomponent fluids
result is almost identical to the single phase result, as shown in Fig. 10, despite that there
is a small amount of residual component.

Now we further consider the effect of the wetting models. The contact angle is no
longer 90◦, and the parameters of the wetting models are listed in Table 1. We first set
fluid R as the dominant fluid to simulate the situation when the particle is submerged in
the wetting component. Then we set fluid B as the dominant fluid to simulate the situa-
tion when the particle is submerged in the non-wetting component. As already shown in
Fig. 5 and Fig. 6, when the contact angle is not equal to 90◦, density variations near the
fluid-solid boundaries still exist even when the virtual fluid is used. Therefore, the effect
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Figure 11: (Color online) Simulation results of an elliptical particle settling in a closed channel filled with
wetting dominant component R with residual component B and non-wetting dominant component B with
residual component R, respectively, using the Martys model. (a) Trajectories of the falling particle. (b) The
fluid mass change of the dominant component outside the particle. The ’single phase’ result is obtained by pure
single phase LBM particle suspension code, excluding the Shan-Chen model and wetting models.

of the density variations as well as the fluid-solid interactive forces can be investigated
here.

Fig. 11a shows the trajectories of the particle when the Martys model is adopted as
the wetting model. We can see that the trajectories deviate significantly away from the
single phase result, especially for the one using the first-order refill method in the non-
wetting fluid region. Also, the fluid mass outside the particle is not conserved as shown
in Fig. 11b. In the Martys model, no virtual fluid is used to balance the fluid-fluid inter-
active forces from neighboring fluid nodes on the boundary nodes, therefore the total net
interactive force on the boundary nodes is the sum of the fluid-solid interactive forces and
fluid-fluid interactive forces, which results in large density variations, as shown in Sec-
tion 3.2. When the particle is submerged in the non-wetting fluid B, the residual wetting
fluid R on the boundary nodes experiences especially high interactive forces from nearby
nodes, because the fluid-fluid interactive forces and the fluid-solid interactive forces are
both towards the solid surface, which results in very large density gradient near the solid
surface, as shown in Fig. 6b. Thus, the density of the residual fluid R on the fluid node
which is newly created by the first-order refill method is so much higher than the average
density of the residual fluid R that at one point fluid components separation occurs and
forms a small fluid R drop on the back of the particle, as shown in Fig. 12, which violates
the assumption of no fluid-fluid interface.

Due to the large density variations caused by the Martys model, the present model
and the Jansen model both utilize the virtual fluid to balance the fluid-fluid interactive
forces on the boundary nodes, and on top of which the fluid-fluid interactive forces from
the additional virtual fluid control the contact angle. As pointed out in Section 2.1.2, in
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Figure 12: Contours of the density of fluid B (the non-wetting component). The particle is settling in fluid B
dominant region using Martys model and first-order refill method. A small drop of fluid R is formed on the back
of particle.

the Jansen model, only the virtual fluid density of the wetting component is modified
which affects the interactive forces on the non-wetting component on the fluid boundary
nodes, and therefore all the non-physical effects are concentrated on the non-wetting
component region. As shown in Fig. 13a, the trajectories of particle in the wetting fluid
component are almost identical to the single phase result, while in the non-wetting fluid
component case the trajectories deviate away from the single phase result significantly.
Fig. 13b shows the mass change of the dominant component with time. We can see that
the fluid mass change is significant when using the zeroth-order refill method, while the
fluid mass change is much smaller when using the first-order refill method. However, in
the non-wetting component case, the fluid mass change is still significant for the Jansen
model.

In the present model, the control of the virtual fluid density is more flexible, and
the non-physical effects can be evenly distributed between the wetting component and
the non-wetting component. As shown in Fig. 14a, the deviations of the trajectories in
the multicomponent fluids from the single phase result are small for either the wetting
component or the non-wetting component, and also the first-order refill method works
a little better than the zeroth-order refill method. More dramatic improvement is found
in mass conservation. In Fig. 14b, we can see that when the first-order refill method is
used along with the present wetting model, the fluid mass of the dominant component
is approximately conserved, meanwhile the fluid mass changes significantly when using
the zeroth-order refill method. In Fig. 15a, the trajectories of the present model are di-
rectly compared with the trajectories of the Jansen model, and only the results obtained



Y. Chen et al. / Commun. Comput. Phys., 18 (2015), pp. 757-786 777

x

y

100 200 300 400 500
30

35

40

45

50

55

Wetting fluid dominant - first-order refill
Non-wetting fluid dominant - first-order refill
Singlephase result
Wetting fluid dominant - zeroth-order refill
Non-wetting fluid dominant - zeroth-order refill

t

F
lu

id
 m

as
s 

ch
an

ge

0 10000 20000 30000
-200

0

200

400

Wetting fluid dominant - first-order refill
Non-wetting fluid dominant - first-order refill
Singlephase result
Wetting fluid dominant - zeroth-order refill
Non-wetting fluid dominant - zeroth-order refill

Figure 13: (Color online) Simulation results of an elliptical particle settling in a closed channel filled with
wetting dominant component R with residual component B and non-wetting dominant component B with
residual component R, respectively, using the Jansen model. (a) Trajectories of the falling particle. (b) The
fluid mass change of the dominant component outside the particle. The ’single phase’ result is obtained by pure
single phase LBM particle suspension code, excluding the Shan-Chen model and wetting models.
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Figure 14: (Color online) Simulation results of an elliptical particle settling in a closed channel filled with
wetting dominant component R with residual component B and non-wetting dominant component B with
residual component R, respectively, using the present model. (a) Trajectories of the falling particle. (b) The
fluid mass change of the dominant component outside the particle. The ’single phase’ result is obtained by pure
single phase LBM particle suspension code, excluding the Shan-Chen model and wetting models.

using the first-order refill method are shown. The maximum deviation from the single
phase result occurs in the non-wetting component case using the Jansen model, thus, the
overall accuracy of the present model is higher than the overall accuracy of the Jansen
model. Also, the total mass of the dominant component is approximately conserved in
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Figure 15: (Color online) Comparison of simulation results obtained by the present model and the Jansen model,
using the first-order refill method. (a) Trajectories of the falling particle. (b) The fluid mass change of the
dominant component outside the particle. The maximum deviation of the trajectory from the single phase result
occurs when the particle is settling in non-wetting fluid using the Jansen model. The mass is approximately
conserved for the present model, while the mass is not conserved for the Jansen model when the particle is in
non-wetting component.

the present model while the total mass of non-wetting component decreases in the Jansen
model, as shown in Fig. 15b.

Fig. 16 shows the vectors of the fluid-fluid interactive force acting on the dominant
fluid component on the fluid nodes near the particle. Consistent with our analysis, the
fluid-solid interactive force which is used to control the contact angle is mainly concen-
trated in the non-wetting component in the Jansen model, while in the present model,
the fluid-solid interactive force is evenly distributed in each component. As a result, the
overall influence of the discretized fluid-solid interactive forces to the suspended particle
is smaller in the present model than in the Jansen model.

3.5 Particle penetrating the fluid interface

In Section 3.4 we considered the multicomponent effects to the particle with the absence
of the fluid interface and monitored the fluid mass drift for each component. In this
subsection, we will focus on the process of the particle penetrating the fluid interface and
monitor the fluid mass drift.

The simulation configuration is identical to the one in Section 3.3, except that the
fluid R is the wetting phase and fluid B is the non-wetting phase and the interior fluid
is excluded, as shown in Fig. 17. The wetting parameters of the fluids are chosen from
Table 1. Since the zero-order refill method results in significant fluid mass drift for all
three wetting models, as shown in Fig. 11, Fig. 13 and Fig. 14, here we only perform the
simulations with the first-order refill method.

We monitor the fluid mass drift for each component, and the results are shown in
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Figure 16: Vectors of the fluid-fluid interactive force acting on the dominant fluid component on the fluid nodes
near the particle.

Fig. 18. The Martys model performs the worst among the three models. The present
model works equally well before and after the interface penetration. The nonwetting
phase mass drift before penetration is very close to the wetting phase mass drift after
penetration. For the Jansen model, because most of the nonphysical effects are concen-
trated in the nonwetting phase, the nonwetting phase mass drift before penetration is
very large, resulting in a high peak before penetration as shown in Fig. 18, although the
wetting phase mass drift is slightly smaller than the present model after penetration.

In summary, the present approach has the overall lowest level of maximum mass
drift during the whole process of the penetration. The remaining small mass drift can be
corrected by evenly redistributing the extra mass to the solid surface [31].
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Figure 17: Contours of fluid R at different time (in lattice unit). Fluid R is the wetting phase, while fluid B is
the nonwetting phase.
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Figure 18: Fluid mass variation of each fluid component outside the particle with time. The first-order refill
method is used here. The present model has the lowest level of the maximum mass drift in the overall particle
settling process.

3.6 Particle suspended on the fluid interface

In this subsection, we perform three dimensional simulations of particle suspended on
fluid interface. For the problem shown in Fig. 3, the fluid-solid interactive forces induced
by the wetting model determine the final shape of the fluid drop, and the contact an-
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Figure 19: A schematic illustration of calculating contact angle based on the equilibrium position of a spherical
particle suspended on the fluid interface.

gles are formed by a flat solid surface in contact with these two fluid components. For
the problem of a particle suspending on the interface of two fluid components shown
in Fig. 19, if gravity is neglected, the fluid-solid interactive forces determine the stable
position of the particle, and hence the final static contact angles. If the wetting model is
correct and all the corresponding LBM parameters used in both simulations are the same,
then the static contact angles predicted from both cases should be consistent with each
other.

As shown in Fig. 19. The contact angle can be obtained by measuring the distance h
between the particle center and the interface surface. Then the contact angle of fluid R is,

θR =arccos

(

h

R

)

. (3.3)

The computation grid used here is 130×128×128, with bounce-back boundary con-
dition applied to x = 1 and x = 130, and periodic boundary condition applied to other
boundary planes. Other parameters in LBM are identical to the ones used in Section 3.1.
Initially, a spherical particle with a radius of 15 in lattice unit is placed in the center of the
simulation domain. The density of the particle is 2 in lattice unit. For x≤65, the domain
is filled with fluid R, while for For x≥66 the domain is filled with fluid B. If the contact
angle for fluid R and B is 90◦, then the initial particle position is the equilibrium position.

As we adjust the wetting parameters of our wetting model, the particle will not be
balanced by the wetting force in its initial position. After the particle reached to its equi-
librium position, we then measured the position of the particle center and the position of
fluid interface, and calculated the contact angle according to Fig. 19 and Eq. (3.3). Mean-
while, we also obtain the value of contact angle according to Fig. 3 and Eq. (3.2). We then
compared the contact angle obtained by the above two methods. As shown in Fig. 20,
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Figure 20: Comparisons of contact angles obtained by 3D simulations of a drop attached to a flat wall and 3D
simulations of a particle suspended on the fluid interface.

we can see that the contact angles obtained by these two methods are very close to each
other, which indicates that our proposed wetting model is correct. The value of the wet-
ting parameter of fluid B is the opposite number of fluid R in Fig. 20, as suggested in
Section 2.1.2.

The contact angles obtained by particle suspended on the interface experience some
fluctuations, and also, the obtained contact angles with particle are slightly smaller than
the ones with flat wall. The zigzag representation of the curved surface of the particle, as
well as the compressible effect of LBM, may be responsible for the small deviations. By
increasing the grid resolution, we are able to obtain better consistency between these two
contact angle measurement methods.

4 Conclusions

In this work, the impact of non-physical density variations near the solid surface, caused
by introduction of the wetting models in the Shan-Chen lattice Boltzmann multicompo-
nent model, on the particle motion in binary immiscible fluids is studied. A modified
wetting model combined with the first-order refill method is then proposed to reduce the
non-physical effects, and the performance of the new approach is evaluated by compari-
son with existing wetting models.

Our numerical results show that the density variations caused by the combined effect
of the weak compressibility and wetting models can affect the motion of the suspended
particle significantly. Although the Jansen model can eliminate such variations for fluids
of neutral wetting, it still leads to relatively large density variations near the surface of the
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solid phase in the non-wetting fluid phase while there are negligible density variations
in the wetting phase. The wetting model proposed in this study can keep the magnitude
of the density variations in the same relatively low level for both the wetting phase and
the non-wetting phase. As a result, the overall accuracy can be improved.

The refill method used to reconstruct fluid information in the newly created lattice
nodes when the particle moves away plays a much more important role in ensuring fluid
mass conservation here than in the single phase case, due to the fluid density variations
mentioned above near the solid surface, as shown in our simulations. The first-order
refill method which considers the gradient of the density variations can significantly im-
prove the fluid mass conservation during the settling process of the particle, especially
when combined with the present wetting model. The extra computation cost for the first-
order refill method is negligible compared with the overall computation cost, as the refill
procedure only occurs when the particle moves to uncover fluid nodes. Also, the refill
procedure mostly occurs near the rear edge of the particle where there are usually enough
fluid nodes for extrapolations used in the first-order refill method.

In summary, our modified wetting model, combined with the first-order refill method,
significantly improves mass conservation and simulation accuracy, no matter whether
the particle is submerged in one component (Fig. 15) or penetrating fluid interface (Fig.
18). In addition, the present approach has the overall lowest level of fluid mass drift
during the whole process of the particle penetrating the fluid interface.

We do notice that when the contact angle is very large or small, or the surface tension
is very large, the interactive forces between solid and fluid can be relatively large and re-
sult in large density variations near the solid surface. In such case, a small amount of fluid
mass change still exists even using our approach. The process of the particle penetrating
the fluid-fluid interface will also cause a small amount of fluid mass change. However,
compared with previous approaches, the fluid mass drift is significantly reduced in the
present approach. In these cases, one can just monitor the fluid mass drift, and redis-
tribute the extra mass on the particle surface. We suggest that the evaluation of the extra
mass should be averaged over time but not every step, since some mass fluctuations are
caused by the change of lattice nodes occupied by the particle, and once the averaged
extra mass reaches a threshold the redistribution procedure is then carried out.
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