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Understanding ionic transport in nanochannels has attracted broad attention from various areas in
energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely
to nanofluidic systems to obtain ionic concentration and electrical potential at channel–reservoir inter-
faces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theo-
ries with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be
questionable when the transport at nanochannel–reservoir interface is strongly non-equilibrium. In this
work, the Poisson–Nernst–Planck model for ion transport is numerically solved to obtain the exact
distributions of ionic concentration and electrical potential. The numerical results are quantitatively
compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore
justified by changing channel length, reservoir ionic concentration, surface charge density and channel
height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large
concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to mea-
sure the non-equilibrium extent and the relation between Q and the working conditions is studied in
detail.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Nanochannels are generally defined as channels with a charac-
teristic size below 100 nm in at least one dimension. To date
numerous fabrication technologies for nanochannels have been

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcis.2015.03.064&domain=pdf
http://dx.doi.org/10.1016/j.jcis.2015.03.064
mailto:mrwang@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.jcis.2015.03.064
http://www.sciencedirect.com/science/journal/00219797
http://www.elsevier.com/locate/jcis


H. Tian et al. / Journal of Colloid and Interface Science 452 (2015) 78–88 79
developed, allowing construction of nanofluidic devices. The
devices consist of nanochannels which connect larger channels or
reservoirs, are used to control ionic and molecular transport. The
applications of nanofluidic devices are broad, such as nanofluidic
diodes and transistors, routing, preconcentration and separation
of ions and biomolecules, micro total analysis systems (lTAS)
[1–5].

A typical diagram of the nanochannel network is referred to
Fig. 1. The surfaces of nanochannels are automatically charged
due to ionization of the surface groups, ions adsorption and other
possible mechanisms [6–10]. The electrostatic force on ions by
the surface charge rectifies the electrical field and therefore the
ion distribution in nanochannels. This brings some specific
functions and applications using these nanochannels [11].
Meanwhile, the existence of surface charge will change the ionic
concentrations and electrical potentials at the nanochannel–reser-
voir interfaces from the bulk ones, so that the electrical potential
difference and the ionic concentration difference actually acting
on the ions in the nanochannels differ from those between reser-
voirs, as shown in Fig. 1. The bulk concentrations and electrical
potentials in both reservoirs are known, whereas we need the real
boundary conditions to refine the ion transport through the
nanochannels. In previous studies, the Donnan equilibrium is com-
monly used to quantify such an interfacial drop of electrical poten-
tial [5,12–19]. As shown in Section 2, Donnan equilibrium is
derived from the classical thermodynamic theories with an
equilibrium assumption, and gives a succinct relationship of the
quantities between the bulk solution and nanochannel–reservoir
interface.

Donnan theory is very simple, but not the only interface theory.
Besides it, there are two more major models for interfacial poten-
tials. Mauro [20] used two Poisson equations (one for the bulk
solution and the other for the aqueous phase in membrane) con-
nected with continuous conditions to derive the continuous distri-
bution of the electrical potential at the interfaces. This model is
referred to as continuous Donnan model, though it is quite differ-
ent from the original Donnan theory. However, the model has no
explicit analytical solution, resulting in its difficulty to be used.
The surface potential model is based on Poisson–Boltzmann equa-
tion, whose idea is similar to the electrical double layer theory [21].
The surface potential model assumes that the membrane surface
has a uniform distribution of surface charge. It is clear that this
assumption brings many doubts and challenges. Therefore, after
a long time of developments the traditional Donnan equilibrium
theory is still the most popular one in the literature [5,15,17–
19,22]. However, the nanofluidic system may be in a strongly
Fig. 1. A diagram of nanochannel assembly. (a) The nanochannel network. (b) The details
is inlet (I) and the other is outlet (O) of the channel.
non-equilibrium state. The applicability of the classical Donnan
equilibrium for its interfacial condition may be questionable, and
has not been systematically studied.

There are many theoretical studies on Donnan equilibrium.
MacGillivray [16] used perturbation theory to study Poisson–
Nernst–Plank equations which describe ion transport in charged
membrane. He found that when the ratio of a Debye length and
the membrane thickness is small, the electroneutrality assumption
is a consequence of Poisson equation and Donnan equilibrium is a
consequence of Nernst–Plank equations. Generally speaking, PNP
model gives relatively accurate description of the ion transport.
However, without numerical simulation, PNP model is hard to
solve, therefore MacGillivary’s theory can only provide qualitative
analysis but not quantitative limit for the applicability of Donnan
equilibrium. Besides MacGillivray’s fundamental work, most of
other researches on Donnan theory are more related to its applica-
tions [23,24], and readers can refer to them for extended compre-
hension. Measurement methods have been developed for the
Donnan potential at a charged membrane/salt solution interface
[25]. The measurement is available to provide effective membrane
charge, which is an important parameter for ion transport.
Nevertheless, the measurement is restricted to special conditions,
making it hard to offer a large enough range of experiment data
for applicability study.

Although the Donnan equilibrium theory has been used to
determine boundary conditions for modeling ion transport in a sin-
gle nanochannel in the previous research [15,19,22], its applicabil-
ity has not been clarified yet. Since both theory analysis and
experiments meet difficulties, numerical modeling may be the best
way to quantitatively study the applicability of Donnan equilib-
rium at interfaces. Therefore, in this work the applicability of the
Donnan equilibrium theory will be examined numerically in a
reservoir–nanochannel–reservoir system as shown in Fig. 1(b).
The original governing equations for ion transport without equilib-
rium assumptions will be solved by a high-efficiency lattice
Boltzmann method (LBM), and the results are compared with pre-
dictions of Donnan equilibrium at interfaces.

In the rest parts of this paper, we first introduce the Donnan
equilibrium theory in membrane science and at nanochannel–
reservoir interfaces in Section 2. The mathematical model and
the numerical algorithm of LBM are introduced in Section 3.
Especially, a factor Q to measure the non-equilibrium effect is the-
oretically described in Section 3.3. The comparisons of Donnan
equilibrium and the modeling results are summarized and the
applicability of Donnan equilibrium is examined in Section 4.
Finally the conclusions will be drawn in Section 5.
of one channel, forming a typical reservoir–nanochannel–reservoir system. The left
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2. Donnan equilibrium

2.1. Donnan equilibrium theory in membrane science

Donnan equilibrium was first derived by Donnan [12] to study
semi-permeable membrane separating two salt solutions with dif-
ferent concentration or composition. Donnan analyzed several
cases for membranes with different permeable properties and dif-
ferent solution systems, and gave the equilibrium concentration in
the two solutions and equilibrium membrane electrical potential
with the application of thermodynamic theories [12]. Alexander
and Johnson [26] gave a systematic and explicit derivation for
Donnan equilibrium; readers can refer to this book for further
comprehension. Here in this paper, we only introduce the main
idea for the Donnan equilibrium.

The classical thermodynamics gives [27]:

dG ¼ Vdp� SdT þ
X

i

lidni; ð1Þ

where G is the Gibbs free energy, V is the volume, p is the pressure, S
is the entropy and T is the temperature; here consider dni moles of
free ions transfer from one side of the membrane to the other; li is
the electrochemical potential for component ion i, and its expres-
sion for component ions in strong electrolyte is:

li ¼ l0
i þ RTlnðf iciÞ þ ziF/; ð2Þ

where l0
i is the standard electrochemical potential, R is the thermo-

dynamic constant, f i is the activity coefficient for i-th ion which is
unity for ideal solutions, zi is the valence and ci is the molar concen-
tration of i-th ion, F is the Faraday constant, and / is the local
electrical potential.

Gibbs free energy is a general criteria of equilibrium for a
constant-pressure and constant-temperature system. For an equi-
librium membrane system at given pressure and temperature,
there is:

dG ¼
X

i

lidni ¼
X

i

ðl0idn0i þ l00i dn00i ÞP 0; ð3Þ

where l0i represents the electrochemical potential in the bulk solu-
tion on one side of the membrane, and l00i is that on the other side.
dn0i and dn00i are the slight changes of ion amount on either side, and
they satisfy dn0i ¼ �dn00i ¼ dni due to conservation of mass. Thus Eq.
(3) becomes:

dG ¼
X

i

ðl0i � l00i Þdni P 0: ð4Þ

Since dni can be positive or negative, Eq. (4) is true for any i-th
ion only if

l0i ¼ l00i : ð5Þ

With assuming ðl0
i Þ
0 ¼ ðl0

i Þ
00, substituting of Eq. (2) into Eq. (5)

leads to the general form of Donnan equilibrium in membrane
science:

/00 � /0 ¼ RT
ziF

ln
f 0ic
0
i

f 00i c00i

 !
: ð6Þ

The physical significance of Eq. (6) is the balance between diffu-
sion and electrical forces. If the electrolyte is simplified as binary
and symmetric, that is zp ¼ �zn ¼ z where i ¼ p represents for pos-
itive ion and i ¼ n represents for negative ion. Thus the Eq. (6) is
re-written as:

/00 � /0 ¼ RT
zF

ln
f 0pc0p
f 00pc00p

 !
¼ �RT

zF
ln

f 0nc0n
f 00nc00n

 !
: ð7Þ
A simple concentration relationship can be derived from Eq. (7):

c0pc0n ¼
f 00pf 00n
f 0pf 0n

c00pc00n: ð8Þ

However, the assumption ðl0
i Þ
0 ¼ ðl0

i Þ
00 is not always acknowl-

edged. Therefore Q0
i parameter is introduced as a correction factor

to describe the deviation [18,25,28]:

Q0
i ¼

f 00i
f 0i

exp l0
i

� �00 � ðl0
i Þ
0� �
=RT

� �
: ð9Þ

As a result, Eq. (6) is modified as:

/00 � /0 ¼ RT
ziF

ln
c0i

Q0
i c00i

 !
: ð10Þ

Define Q0 ¼ Q0
pQ0

n, and Eq. (8) converts to:

c0pc0n ¼ Q 0c00pc00n ð11Þ

Eq. (10) is much less popular than Eq. (6), because it is hard or
even impossible to calculate l0

i in practice and Q 0 is a correction
factor for non-ideal conditions due to the electrostatic forces
unbalance between the fixed charge and the free ions in the mem-
brane phase [18]. Note that the standard electrochemical potential
is defined at a standard state and is independent of concentration
and electric potential for dilute solution, therefore Q 0 will also not
change with these parameters. For the study of asymmetrical
membrane consisting of a cation-exchange layer and an anion-
exchange layer, a contact factor n is multiplied with Q 0 to compen-
sate the error of Donnan equilibrium due to different materials’
characteristics [18,28]. By choosing an appropriate n, the experi-
mental data showed well consistence with modified Donnan the-
ory. Inspired by this process, we propose a new Q factor to
measure the non-equilibrium effect, as described in Section 3.3.
Note that the original Donnan equilibrium is a membrane theory,
and takes no considerations of geometrical and scale effects of
the non-equilibrium cases.

Though the original Donnan equilibrium theory is proposed on
the two sides of the membrane, the developed Donnan theory is
available as well at the interface between the membrane and the
bulk solution. Teorell, Meyer and Sievers developed a fixed-charge
model (known as the TMS model) to describe the ion transport in
charged membrane [25,29,30]. In TMS model, the membrane
potential is divided into three parts:

D/ ¼ D/L
Don þ D/diff þ D/R

Don; ð12Þ

where D/L
Don and D/R

Don are the Donnan potential drops at the left
and right surfaces of the membrane (or at the inlet and outlet of a
nanochannel); D/diff is the diffusion potential, which drives the
ion transport in the membrane. Charged membrane exists in vari-
ous processes such as electrodialysis, reverse electrodialysis and
nanofiltration. The TMS model also obtains broad applications in
these areas. Though Teorell’s theory focuses on membrane, the
analysis method is quite similar to that of nanochannel. The calcu-
lations for the two Donnan potentials of a nanochannel will be
introduced in Section 2.2.

2.2. Donnan equilibrium theory at nanochannel–reservoir interfaces

As shown in Fig. 1, below we use subscript L to present the left
bulk solution and subscript R to present the right bulk solution.
The subscript I and O are used to mark the inlet and the outlet of
nanochannel respectively; l is the channel length and H is the chan-
nel height. Here the Donnan equilibrium theory is applied to the
reservoir–nanochannel interface in the reservoir–nanochannel–



Fig. 2. Electrochemical potential distributions along the x direction. lp and ln
represent for electrochemical potential of the positive ion and negative ion,
respectively. The dotted lines mark the entrance and exit of the nanochannel,
and the dash–dot lines mark the electroneutrality location (cp � cn ¼
ð�2r=zFHÞ � 99%). Simulation parameters are: cL ¼ 5� 10�4 mol=L,
cR ¼ 1� 10�4 mol=L, /L ¼ /R ¼ 0 V, r ¼ �0:001 C=m2, H ¼ 100 nm, L ¼ 1250 nm.
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reservoir system as shown in Fig. 1(b). That is, the electrochemical
equilibrium is assumed between the left bulk solution and the inlet
of nanochannel and between the right bulk solution and the outlet of
nanochannel. Here we first explore the relationship between the left
bulk and the inlet quantities. Due to equilibrium, there is:

/I � /L ¼
RT
ziF

ln
f i;Lci;L

f i;Ici;I

 !
: ð13Þ

Notice that there is no membrane considered here between the
left bulk solution and the left inlet of nanochannel. The Donnan
equilibrium is essentially electrochemical equilibrium which is
available for any equilibrium system with or without membrane.
Eq. (13) means the balance between the electrical field and diffu-
sion. However, if the bulk concentrations in the two reservoirs
are given and unequal, the system can hardly reach equilibrium
because the electrical potential cannot balance the concentration
gradient of both the cations and anions, leading to the doubt of
the applicability of Donnan equilibrium. The question will be
discussed later. To use and test the Donnan theory, here we still
suppose the quasi-equilibrium assumption is satisfied.

To facilitate the analysis, we assume a uniform negative surface
charge on wall surfaces with a surface charge density r. The elec-
trolyte is simplified as binary and symmetric, and the solution is
dilute, that is zp ¼ �zn ¼ z, f p ¼ f n ¼ 1. Thus Eq. (13) is re-written
as:

/I � /L ¼
RT
zF

ln
cp;L

cp;I

� �
¼ �RT

zF
ln

cn;L

cn;I

� �
; ð14Þ

and the relationship of the concentrations are:

cp;Lcn;L ¼ cp;Icn;I: ð15Þ

The electroneutrality condition has to be ensured:

cp;L ¼ cn;L ¼ cL; ð16Þ

cp;I � cn;I ¼ �
2r
zFH

: ð17Þ

Eq. (17) is derived from the charge compensation between the
surface charge and solution charge, which are 2r and
zFHðcp;I � cn;IÞ per unit area respectively under the assumption of
negligible concentration variation along the channel height direc-
tion. The combination of Eqs. (15)–(17) leads to the most common
form of Donnan equilibrium for interface concentrations:

cp;I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
zFH

� �2
þ ðcLÞ2

r
� r

zFH
; ð18Þ

cn;I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
zFH

� �2
þ ðcLÞ2

r
þ r

zFH
: ð19Þ

The electrical potential drop at the interface can be obtained
from Eq. (13). This derivation can be applied to both the left and
right interface. The boundary conditions of both ends of the
nanochannel can be obtained by the combination of Donnan equi-
librium and electroneutrality assumption:

ci;I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
zFH

� �2
þ c2

L

r
� r

ziFH
; ð20Þ

ci;O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
zFH

� �2
þ c2

R

r
� r

ziFH
; ð21Þ

/I ¼ /L þ
RT
zF

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

zFH

� �2
þ c2

L

r
þ r

zFH

 !,
cL

 !
; ð22Þ
/O ¼ /R þ
RT
zF

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

zFH

� �2
þ c2

R

r
þ r

zFH

 !,
cR

 !
: ð23Þ

In fact, since we take no special consideration of nanochannel
geometry, Eqs. 20–23 are applicable also for membranes. Along
the derivation of Eqs. 20–23, all the assumptions mentioned above
summarized as: (a) ideal solution and symmetrical electrolyte; (b)
uniform surface charge density; (c) uniform concentration at the
inlet and outlet; (d) electroneutrality assumption; (e) equilibrium
assumption. Eqs. 20–23 will become more complicated without
the assumptions (a) and (b). The assumption (c) is natural because
Donnan equilibrium is a simplified one-dimensional theory. The
electroneutrality assumption (d) is unconvinced and the equilib-
rium assumption (e) is more critical and significant because most
nanofluidic systems may be not in an equilibrium state. Thus we
will compare Eqs. 20–23 with the PNP numerical results to explore
the applicability of Donnan equilibrium. To facilitate the calcula-
tion, we choose a straight nanochannel for calculation and analysis.

3. Mathematical models and numerical methods

3.1. Poisson–Nernst–Plank model

We use the PNP model to solve the ion transport in a planer
nanochannel (channel height is nano-sized and much smaller than
the other two dimensions) which connects reservoirs, as shown in
Fig. 1(b). Due to the symmetry of geometry, only a half is calcu-
lated. The side walls of the nanochannel framework are assumed
to be negatively charged with the same surface charge density as
the channel walls.

For simplicity, we assume: (a) dispersion and advection
neglected (the convection is very weak in the conditions we stud-
ied because no pressure drop or electrical potential drop is applied
to the system); (b) no chemical reaction considered; (c) the solu-
tion ideal or dilute. In this case, the steady-state Nernst–Plank
equations are

Jp ¼ �
ezpDp

kT
cpr/� Dprcp; ð24Þ

Jn ¼ �
eznDn

kT
cnr/� Dnrcn; ð25Þ



Fig. 3. The variation of (a) concentrations and (b) electrical potential along the x axis. The dotted lines mark the entrance and exit of the nanochannel, and the dash–dot lines
mark the electroneutrality location (cp � cn ¼ ð�2r=zFHÞ � 99%). Calculation parameters: cL ¼ 5� 10�4 mol=L, cR ¼ 1� 10�4 mol=L, /L ¼ /R ¼ 0 V, r ¼ �0:001 C=m2,
H ¼ 100 nm, L ¼ 1250 nm.

Fig. 4. Comparison between Donnan theory and LBM results for inlet and outlet (a) cation concentration, (b) anion concentration and (c) electrical potential along with the
variation of the channel length. The upper blue lines represent the inlet quantities, and the lower red lines represent the outlet quantities. Calculation parameters:
cL ¼ 5� 10�4 mol=L, cR ¼ 1� 10�4 mol=L, /L ¼ /R ¼ 0 V, r ¼ �0:001 C=m2, H ¼ 100 nm. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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where Dp and Dn are the diffusion coefficient of the cations and
anions; e is the unit charge; k is the Boltzmann constant; Jp and Jn

are the ion flux per unit area, and satisfy

r � Ji ¼ 0 ði ¼ p;nÞ: ð26Þ

The Poisson equation:

r2/ ¼ � qe

e0e
; ð27Þ

where qe is the local volume charge density, and qe ¼
P

zieNAci in
the solution (NA is the Avogadro constant); e0 is the permittivity
of free space, e is the dielectric constant.

The reservoir boundary conditions /L, /R, ci;L, ci;R are given. All
the walls are assumed to be homogeneously charged and have a
uniform surface charge density r.

In this work, all the parameters are given as follows:
T ¼ 300 K; zp ¼ �zn ¼ 1; Dp ¼ Dn ¼ 1� 10�9; e ¼ 6:95� 10�10

(take no account of the variation of e). To make full use of the
computing resources, instead of giving a large enough reservoir
for all the cases, we use a parameter w to control the area of
the reservoir:

w ¼
np�nn

2

� �
nanochannel

npþnn

2

� �
reservoirþnanochannel

�
r

zFH Hl
cLþcR

2 Hlþ HreslresðcL þ cRÞ

¼ rl
zFðcL þ cRÞ Hl

2 þ Hreslres
� � ; ð28Þ
Fig. 5. Comparison between Donnan theory and LBM results for inlet and outlet (a) catio
variation of concentration. The upper blue lines represent the inlet quantities, an
cR ¼ 1� 10�4 mol=L, /L ¼ /R ¼ 0 V, r ¼ �0:001 C=m2, H ¼ 100 nm, L ¼ 1250 nm. (For in
the web version of this article.)
where np and nn is the moles of positive ion and negative ion respec-
tively; Hres and lres are the size of the reservoir. w measures the vari-
ation of the concentration distribution induced by the surface
charge of the reservoir. After numerical checks, we choose
w ¼ 0:05 to give the large enough reservoir, and ðHres � HÞ=lres ¼ 2
to give the shape of the reservoirs, since in this condition the con-
centration field and potential field become almost changeless with
the reservoir size (generally the variation is less than 3%).

3.2. Lattice Boltzmann method

Lattice Boltzmann method is a promising numerical method for
simulating fluid flows and modeling multiphysical transports in
fluid [31]. Originally proposed to solve the Navier–Stokes (NS)
equation, LBM has extended to solve other partial differential
equations like convection–diffusion equation and Poisson equa-
tion. Previously, a multiple LB model has been established by
Wang and Kang [32] and modified by Yoshida et al. [33] to main-
tain the locality of the algorithm. It is proved to be capable of sim-
ulating electrokinetic transport of ionic species by recovering the
full PNP model.

Generally, the evolution equations for ion transport and electri-
cal potential are written as

gaðrþeadt;Di
;tþdt;Di

Þ�ga r;tð Þ¼� 1
sDi

gaðr; tÞ�geq
a ðr;tÞ

	 

þxadt;Di

1�0:5
sDi

� �
eziDi

kT
r�ðcir/Þ; ð29Þ
n concentration, (b) anion concentration and (c) electrical potential along with the
d the lower red lines represent the outlet quantities. Calculation parameters:
terpretation of the references to color in this figure legend, the reader is referred to
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haðrþ Dr; t þ dt;/Þ � haðr; tÞ ¼ �
1
s/

haðr; tÞ � heq
a ðr; tÞ

	 

þxadt;/ 1� 0:5

s/

� �
qe

ere0
; ð30Þ

respectively. ga, ha represent the distribution functions for ionic
concentration and electrical potential, which depend on the posi-
tion vector r and the time t. The sDi

, dt;Di
and s/, dt;/ are the corre-

sponding dimensionless relaxation time and time step. For higher
efficiency, we employ the D2Q5 models with the discrete velocities

ea ¼
ð0;0Þ a ¼ 1
ðcos ha; sin haÞ; ha ¼ ða� 2Þp=2 a ¼ 2� 5

�
; ð31Þ

and the distribution coefficients xa ¼ 1
3 ; a ¼ 1; xa ¼ 1

6 ; a ¼ 2� 5.
The macroscopic quantities, i.e., the ionic concentration and the
electrical potential can be calculated as ci ¼

P
aga, / ¼

P
aha .

Because of the explicit coupling of the governing equations, Eqs.
(29) and (30) have to be solved iteratively. Detailed information for
the numerical procedure can be found in Ref. [32].

3.3. Q factor for measuring Donnan theory

Before exploring the applicability of Donnan theory, we used
our LBM simulations for intuitional understanding of the ion trans-
port phenomenon in the system shown in Fig. 1(b). If l0

i is negligi-
ble, the electrochemical potential can be calculated from the PNP
Fig. 6. Comparison between Donnan theory and LBM results for inlet and outlet (a) catio
variation of surface charge density. The upper blue lines represent the inlet quantities
cL ¼ 5� 10�4 mol=L, cR ¼ 1� 10�4 mol=L, /L ¼ /R ¼ 0 V, H ¼ 50 nm, L ¼ 625 nm. (For in
the web version of this article.)
numerical results, and its cross-sectional averaged value along
the x direction for one case is shown in Fig. 2. It is known that
Donnan equilibrium assumes the equality of the electrochemical
potential for each ion species at the reservoir–nanochannel inter-
face. However, as shown in Fig. 2, the electrochemical potentials
(positive ion, negative ion and net charge) vary along the x axis,
smoothly in the reservoir area and sharply in the channel region,
especially for the electrochemical potential of net charge. This
rationalizes Donnan equilibrium in some extent. The variation of
the electrochemical potential at the reservoir–inlet interface is
much smaller than that in the nanochannel, leading to good
approximate equilibrium between the reservoir and the channel
ends. Meanwhile the approximation results in the overestimated
results at the inlet and underestimated ones at the outlet.

Therefore, we propose a Q factor in this study to measure the
integrated non-equilibrium extent, which can estimate the theo-
retical deflection of the Donnan equilibrium for prediction of the
concentrations. In consideration of inequality of the electrochemi-
cal potential under non-equilibrium conditions, we define:
Qi;in ¼
f i;I

f i;L
exp ðli;L � li;IÞ=RT

� �
: ð32Þ

Note the difference between Eqs. (9) and (32) that Qi;in is vari-
able with concentration and electrical potential of the solution
but Q0

i is not. As a result, Q i;in is available to reflect the non-
equilibrium effect at the inlet interface of the nanochannel.
n concentration, (b) anion concentration and (c) electrical potential along with the
, and the lower red lines represent the outlet quantities. Calculation parameters:

terpretation of the references to color in this figure legend, the reader is referred to
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For simplicity, we assume l0
i

� �
L ¼ l0

i

� �
I , and thus Eq. (14)

converts to:
/I � /L ¼
RT
zF

ln
cp;L

Q p;incp;I

� �
¼ �RT

zF
ln

cn;L

Qn;incn;I

� �
: ð33Þ

Define Q in ¼ Qp;inQn;in, Eq. (8) converts to:
cp;Lcn;L ¼ Q incp;Icn;I; ð34Þ
and Qout can be similarly defined. Eqs. (20) and (21) convert to:
ci;I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

zFH

� �2
þ c2

L

Q in

s
� r

ziFH
; ð35Þ
ci;O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

zFH

� �2
þ c2

R

Q out

s
� r

ziFH
: ð36Þ

Here Q in and Qout represents for the integrated non-equilibrium
effect caused by both cations and anions at the inlet and outlet
interface of the nanochannel respectively. The calculated Q by Eq.
(34) from the numerical results describes the theoretical deflection
of Donnan equilibrium prediction for concentrations. In
Section 4.2, we use Q to analyze non-equilibrium effect on
concentrations.
Fig. 7. Comparison between Donnan theory and LBM results for inlet and outlet (a) catio
variation of channel height. The upper blue lines represent the inlet quantities, an
cL ¼ 5� 10�4 mol=L, cR ¼ 1� 10�4 mol=L, /L ¼ /R ¼ 0 V, r=H ¼ �1� 104 C=m3, L ¼ 1250
referred to the web version of this article.)
4. Results and discussion

Fig. 3 shows the variation of ionic concentrations and electrical
potential along the x direction, and all the values are averaged
across the channel.

As shown in Fig. 3, the electroneutrality assumption is true in
most part of the channel. Since Eqs. 20–23 are derived from com-
bination of the Donnan equilibrium and the electroneutrality
assumption, the check of Donnan equilibrium by comparing
boundary conditions must be based on the truth of the elec-
troneutrality assumption. Therefore, we can take cp;I , cn;I , /I , cp;O,
cn;O, /O at the electroneutrality location cp � cn ¼ � 2r

zFH

� �
� 99%

� �
as the real boundary conditions, as the dash–dot lines show in
Fig. 4a and b.

However, the above method leads to shrinking of the channel
length. For all cases the paper focuses on, under the condition of
weak electrical field, the ionic concentration is linear along the
channel except for the inlet and outlet regions, as shown in
Fig. 3. This has been reported in previous literature [34,35]. In fact,
the concentration gradient and electrical field were always
assumed to be constant in the simplest approach of this problem
[5]. Therefore the corrected boundary conditions rationalized as
shown in Fig. 3. With acknowledgement of the electroneutrality
assumption, we are able to explore the applicability of the
Donnan equilibrium.

Note that in the following discussion, the effect from external
electrical potential is not considered. If the external/applied poten-
tial is high, the potential profile and concentration profile will
n concentration, (b) anion concentration and (c) electrical potential along with the
d the lower red lines represent the outlet quantities. Calculation parameters:
nm. (For interpretation of the references to color in this figure legend, the reader is
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become non-linear, and the determination at the interfaces is not
valid any more, which means the comparison between the
Donnan equilibrium and the PNP results will make no sense.

4.1. Comparison between theoretical and numerical results

(1) Channel length effect

The comparisons between Donnan theory prediction and LBM
numerical results for ionic concentrations and electrical potential
distribution at inlet and outlet interfaces changing with the chan-
nel length are shown in Fig. 4. The figure show that when the chan-
nel is long enough, the predicted ionic concentrations by both the
Donnan equilibrium theory and the LBM modeling agree well with
each other. The deviation becomes significant when the channel
length is low (approximately L/H < 10). The Donnan theory over-
rates the concentrations at the inlet and underrates that at the out-
let. The electrical potential is more sensitive to the channel length
because the deviation for the electrical potential prediction is
much larger, especially at the outlet. When we switch the channel
height, H = 50 nm, or the higher ionic concentration,
cL = 1 � 10�3 mol/L, the similar results are found. The figures for
these two cases are not listed here, yet the data is used in the
Q factor analysis in Section 4.2.
Fig. 8. Q factor along with the change of (a) the channel length, (b) concentration, (c)
referred to Section 4.1.
(2) Concentration effect

When cR ¼ 1� 10�4 mol=L and cL is increased, the comparison
between Donnan theory and LBM results are shown in Fig. 5. The
system is exactly at the equilibrium state when cL ¼ cR and
/L ¼ /R, and the Donnan equilibrium is accurate for this case.
This is confirmed by the numerical results in Fig. 5. When the con-
centration gradient increases, the non-equilibrium effect becomes
significant, and Donnan equilibrium deviates from the numerical
results, as shown in Fig. 5. Since the channel length is not long
enough, the electrical potential shows significant divergences at
outlet. The concentration difference effect here together with the
channel length effect above may lead to a hypothesis of simplified
joint factor of the concentration gradient (Dc=L), which will be
examined by the Q factor analysis in Section 4.2.

(3) Surface charge density effect

The comparison between Donnan equilibrium predictions and
LBM results for different surface charge densities is shown in
Fig. 6. Under the assumption of homogeneous charge of walls,
the results indicate that surface charge density effects on the capa-
bility of Donnan theory in this nanochannel–reservoir system are
slight. As has been known that the surface charge density may
surface charge density, and (d) channel height. All the relevant parameters can be
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depend on the local solution properties [9,10], such as ionic con-
centration and temperature, more complicated surface complexity
may be introduced to consider the real variable surface charge den-
sity effect in our future work.

(4) Channel height effect

To consider the channel height effect on the capability of
Donnan theory, we select a large channel length, L ¼ 1250 nm for
a given moderate concentration difference to decouple with other
effects discussed above. The comparisons between the Donnan
theory and the numerical results are shown in Fig. 7. Basically as
long as the channel height is much larger than the molecular size
of solution so that the continuum assumption still holds [36,37],
the channel height can hardly influence the local equilibrium of
ion distribution in the nanochannel. This is confirmed by the
results in Fig. 7, and it seems that Donnan equilibrium is more
applicable for a narrower nanochannel. Note please such a conclu-
sion is based on the homogeneous charge of walls and the long
enough channel. For a given channel length, the wider is the chan-
nel, the more significant is the inlet and outlet effect and therefore
the non-equilibrium effect.

4.2. Q factor analysis

The Donnan equilibrium applicability has been illustrated qual-
itatively by Figs. 5–8. For an accurate quantitative description, we
adopt the Q factor analysis. In this work, the Q factor is calculated
by Eq. (34) from the LBM modeling results. The variations of Q fac-
tor with the channel length, concentration difference, surface
charge density and channel height are plotted in Fig. 8.

Fig. 8(a) confirms that for the given concentrations, the LBM
results agree quite well with the predictions of Donnan
equilibrium theory when the channel length is long enough.
Furthermore, it indicates that ðQin � 1Þ or ð1=Qout � 1Þ may have
a power law relation with the channel length. The fitting power
and the correlation coefficients are listed in Table 1. The correlation
coefficients are pretty close to unity, which proves the power law
relationship.

Similarly, influences from concentration, surface charge, and
channel size on the applicability of Donnan equilibrium are ana-
lyzed by the Q factor in Fig. 8(b–d). Fig. 8(b) shows that if we keep
cR ¼ const and increase cL, the theoretical deflection of Donnan the-
ory increases with the concentration difference, and the relation-
ship between Q and concentration difference seems nearly linear.
However since the power exponents in Table 1 are not around
unity, Q may not simply increase linearly with the concentration
gradient. The Q factor versus the surface charge density is shown
in Fig. 8(c). The relatively small variation indicates that the surface
charge density may have limited influence on the non-equilibrium
effect. Fig. 8(d) shows that Q factor increases with the channel
height, but the change is relative small, especially at the inlet.
The result means that the Donnan theory can predict accurately
the interfacial electrical boundary conditions at the channel ends
for very small channel height as long as the channel is long enough.
Table 1
Power relationship calculation.

Group 1 Group 2 Group 3

Power exponent n
Qin �1.831 �1.344 �1.331
Qout �1.415 �1.573 �1.362

Correlation coefficient R2

Qin 0.9972 0.9959 0.9799
Qout 0.9754 0.9933 0.9891
To summarize, we have known that the Q factor is available to
measure the parameter influence of non-equilibrium effect on
applicability of Donnan theory. Note that Q reflects the relative
error instead of the absolute error, so that in spite of
1=Q out � 1ð Þ � ðQin � 1Þ, the absolute theoretical errors at inlet

and outlet of Donnan theory are at the same level (Figs. 4–7). Yet
the more distinct variation of 1=Q out makes it much easier to
analysis the applicability of Donnan theory.

One more step, a dimensionless parameter h is defined to
represent the integrated all influences from the channel length,
concentration difference, surface charge density and channel size:

h ¼ Dc
c�

H
L

� �1=2 kD

L
; ð37Þ

where c� ¼ cL for calculations at inlet and c� ¼ cR for outlet; Dc is the
concentration drop along the nanochannel:

Dc ¼ ci;O � ci;I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
zFH

� �2
þ c2

R

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

zFH

� �2
þ c2

L

r
; ð38Þ

and kD is the Debye length calculated by c�:

kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ee0RT

2z2F2c�

s
: ð39Þ

The relationship between h and Q for all the calculated cases in
this paper is shown in Fig. 9. The results indicate that the Q factor
increases approximately linearly with h. Both Qin and 1/Qout are
plotted in the same figure and the Q factor at outlet seems more
sensitive. Therefore, the value of h at the outlet interface is avail-
able as a criterion to evaluate the applicability of Donnan equilib-
rium theory. Donnan equilibrium is more accurate for a smaller h.

5. Conclusions

In this work, the applicability of the Donnan equilibrium theory
is studied by comparing the theoretical predictions with the
numerical results of the Poisson–Nernst–Planck model solved by
lattice Boltzmann methods at the nanochannel–reservoir inter-
faces. The results indicate that:

(i) For equilibrium or near-equilibrium conditions, such as long
enough channels, Donnan equilibrium is available to provide
accurate predictions of electrical potential and ionic concen-
tration drops at the interfaces. The non-equilibrium condi-
tions may lead to theoretical deflection of Donnan theory,
and the predicted electrical potential at interfaces is more
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sensitive than the concentration to the non-equilibrium
effects.

(ii) The non-equilibrium factors in nanofluidic systems enhance
the deflection of predictions by the Donnan theory at
nanochannel–reservoir interfaces. The Donnan equilibrium
underestimates electrokinetic quantities at inlet and overes-
timates those at outlet. The Donnan theory works poorly for
short nanochannels, large concentration difference and wide
openings, but its applicability is not sensitive to the surface
charge of walls when a homogeneous charge is assumed;

(iii) A non-dimensional parameter, Q factor, is proposed to mea-
sure the non-equilibrium extent quantitatively. Q increases
significantly when the channel becomes shorter or the ionic
concentration difference between reservoirs gets larger, yet
Q is not sensitive to the surface charge of channel walls,
for homogeneous charge assumption, and to the channel
height. Furthermore, another dimensionless parameter h is
proposed to describe the integrated non-equilibrium influ-
ences from all working conditions. Donnan equilibrium is
more accurate for a smaller h.
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