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In this paper, we present an alternative approach for the turbulence modelling in the
single-relaxation-time lattice Boltzmann method (LBM) framework by treating the tur-
bulence term as an extra forcing term, in addition to the traditional approach of modifying
the relaxation time. We compare these two different approaches and their mixture in
large-eddy simulation (LES) of three-dimensional decaying isotropic homogenous tur-
bulence using the Smagorinsky model and the mixed similarity model. When the LES
was conducted using the Smagorinsky model, where the Boussinesq eddy-viscosity
approximation is adopted, the results showed that these three different implementations
are equivalent. However, when the mixed similarity model is adopted, which is beyond
the Boussinesq eddy-viscosity approximation, our results showed that an equivalent
eddy-viscosity will lead to errors, while the forcing approach is more straightforward
and accurate. This provides an alternative and more general framework of simulation
of turbulence with models in LBM, especially when the Boussinesq eddy-viscosity
approximation is invalid.

Keywords: turbulence modelling; lattice Boltzmann method; Smagorinsky model; de-
caying isotropic homogenous turbulence

1. Introduction

The lattice Boltzmann method (LBM) [1,2], an alternative originated from the lattice gas
automata [3] for solving the Navier–Stokes (NS) equations and modelling physics in fluids,
has attracted considerable attention over the last two decades. The prevalence of this method
is based upon its simple formulation, and the high level of suitability for computation on
massive parallel computer clusters. It has been successfully applied in many fluid flow
problems, including flows with simple or complex boundaries, two-phase flows, multi-
component flows, turbulent flows and other complex flows [4–7] and proven to be an
efficient and effective simulation tool.

The capability of the LBM for direct numerical simulation (DNS) of turbulent flows
was investigated right after its birth through comparison with the pseudo-spectral simu-
lations of decaying turbulence [1,8] and turbulent shear flows [9–11]. The inertial range
scaling of k−5/3 was reproduced and very good agreement was found for global quanti-
ties. Yu et al. [12] did a DNS of the three-dimensional decaying isotropic homogenous
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68 Z. Xia et al.

turbulence (DIHT) in inertial and rotating reference frames and their results clearly indi-
cate that the LBM captures the important features of decaying turbulence, in both inertial
and rotating reference frames. Recently, Peng et al[13] did a comprehensive comparison
between the LBM and pseudo-spectral methods for DNS of the three-dimensional DIHT.
The instantaneous velocity and vorticity fields, and statistical quantities, including the
total energy and the energy spectrum, the dissipation rate, the root-mean-squared pres-
sure fluctuation and the pressure spectrum, and the skewness and flatness of the velocity
derivative, were compared. They concluded that the LBM is a reliable and accurate method
for the DNS of decaying turbulence. Moreover, Wang et al. [14] did a three-dimensional
forced turbulence simulation using the multiple-relaxation-time (MRT) lattice Boltzmann
approach [15] together with the Guo’s forcing method [16], and careful comparisons with
the pseudo-spectral results were conducted. Chikatamarla and Karlin [17] used the en-
tropic LBM [18] to simulate the turbulent channel flow and flow past a circular cylinder at
Re = 3300.

When LBM is used to simulate turbulence incorporated with modelling approaches,
the Boussinesq eddy-viscosity approximation is always adopted. Hou et al. [19] used
the Smagorinsky subgrid-scale (SGS) model to modify the relaxation time in the LBE
by the effective relaxation time τ ∗ = 3(νT + ν0) + 1/2, where ν0 and νT are the ki-
netic viscosity and turbulent eddy-viscosity, respectively. They applied this method to
study the dynamics and the Reynolds number dependence of the flow structures in a
two-dimensional driven cavity flow and concluded that the combination of the LBM
and the SGS model offers a promising approach for turbulent flow simulations. Fol-
lowing this work, Yu and Girimaji [20], Yu et al. [21,22], Orphee et al. [23], Dong
et al. [24,25] and Premnath et al. [26,27] conducted large-eddy simulations (LESs) of
different turbulent flows using the LBM, and the results are encouraging. Chen et al.
[28,29] insightfully analysed the analogy between the turbulent fluctuations and micro-
scale thermal fluctuations, and showed that modelling turbulence in terms of LBE is very
effective due to the remarkable similarity between the two. Almost all research works
mentioned above were based on the assumption of the Boussinesq eddy-viscosity approx-
imation. However, not all turbulence models could be approximated by the Boussinesq
eddy-viscosity approximation, such as the stress-transport model in Reynolds-averaged
Navier–Stokes (RANS) [30], and the mixed (similarity or non-linear) models [31], the
approximate deconvolution method (ADM) [32] and the constrained SGS models [33]
in LES. A more general way to incorporate turbulence models into the LBM is still
missing.

In fact, Sagaut [34] proposed an extension of the ADM for the lattice-Boltzmann-
based LES approach. Malaspinas and Sagaut [35] proposed a consistent SGS model for the
LBM-LES. In this study, we are going to propose a different approach to incorporate the
turbulence models in LBM, which is to treat the turbulent terms as an extra forcing term as
usually done in traditional NS solvers.

The remaining part of the present work is organised as follows. Section 2 will be devoted
to the numerical methods and flow parameters, including a review of the LBM with external
forcing term, a discussion of turbulence modelling and three different implementations of
turbulence models in LBM, and a short description of the flow parameters. The simulation
results, including the validation of basic LBM code, and comparisons of the three imple-
mentations of the Smagorinsky model and the mixed similarity model in LBM-LES, will
be presented in Section 3. The conclusions and discussions will be given in Section 4.
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2. Numerical methods and flow parameters

2.1. Lattice Boltzmann method with external forcing term

In the present study, the single-relaxation-time lattice Boltzmann equation (LBE) with
external forcing term is used [1,2,16]:

fi(x + eiδt , t + δt ) = fi(x, t) − 1

τ

[
fi(x, t) − f

(eq)
i (x, t)

]
+ δtgi(x, t). (1)

Here, fi(x, t) is the distribution function (DF) for particles with velocity ei at position x
and time t, δt is the time increment, gi(x, t) is the forcing term as a result of the body force
density F. f (eq)

i is the equilibrium distribution function (EDF) and τ is the non-dimensional
relaxation time. In what follows, the D3Q19 model will be used. The discrete velocities
and related weighting factors are

ei =
⎧⎨⎩

(0, 0, 0) wi = 1/3, i = 0,

(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c wi = 1/18, i = 1 − 6,

(±1,±1, 0)c, (0,±1,±1)c, (±1, 0,±1)c wi = 1/36, i = 7 − 18,

(2)

where, c = δx/δt = 1 in lattice units (i.e. δx = δt).
The EDF for incompressible flow is [36]

f
(eq)
i = wi

{
δρ + ρ0

[
3ei · u

c2
+ 9(ei · u)2

2c4
− 3u2

2c2

]}
. (3)

Guo’s forcing term gi [16] is adopted here due to its comprehensive consideration on both
the discrete lattice effect and the contributions of the body force to the momentum flux. It
reads as

gi =
(

1 − 1

2τ

)
ρ0wi

[
3(ei − u)

c2
+ 9(ei · u)

c4
ei

]
· F, (4)

where δρ is the density fluctuation, ρ0 is the constant mean density in the system which
is usually set to 1. The total density is ρ = ρ0 + δρ. The sound speed of the model is
cs = c/

√
3. The macro quantities δρ and u are related to the DF as

δρ =
∑

i

fi, ρou =
∑

i

eifi + δt

2
ρ0F. (5)

Through the Chapman–Enskog analysis, the above LBE leads to the following macro-
scopic equations:

∂t δρ + ρ0∇ · u = 0, (6)

∂tu + ∇ · (uu) = − 1

ρ0
∇p + ∇ · [ν(∇u + (∇u)T )] + F, (7)

with p = c2
s δρ and the kinetic viscosity ν = 1/3(τ − 1/2)c2δt. Note that the δρ in the above

equations could be replaced by ρ since ρ0 is constant.
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70 Z. Xia et al.

The strain rate tensor Sij = 1/2(∂ui/∂xj + ∂uj/∂xi) can always be calculated using the
macroscopic quantities directly by the finite-difference scheme. However, in LBM, Sij can
alternatively be obtained through the DFs as

Sij = − 3

2ρ0c2τδt

Qij − 3

4c2τ
(uiFj + ujFi), Qij =

∑
k

ekiekj

[
fk − f

(eq)
k

]
. (8)

2.2. Turbulence modelling

In turbulent flow, the Reynolds number is usually very high. In this situation, DNS is very
expensive, therefore turbulence modelling approaches are very applausive, among which
are the most used RANS equations and LES. When turbulence modelling is adopted in
LBM, Equation (1) will be modified as

f̂i(x + eiδt , t + δt ) = f̂i(x, t) − 1

τ∗

[
f̂i(x, t) − f̂

(eq)
i (x, t)

]
+ δt ĝ

∗
i (x, t), (9)

with τ ∗ and ĝ∗
i as the modified relaxation time and forcing term, respectively.

The corresponding modelled macroscopic equations are

∂t δ̂ρ + ρ0∇ · û = 0, (10)

∂t û + ∇ · (ûû) = − 1

ρ0
∇p̂ + ∇ · [ν∗(∇û + (∇û)T )] + F̂∗, (11)

where the ‘hat’ denotes the averaging process for RANS or filtering process for LES, and
ν∗ and F̂∗ are the corresponding viscosity and the external body force.

Meanwhile, when the ‘hat’ operation is applied to Equations (6) and (7), we have

∂t δ̂ρ + ρ0∇ · û = 0, (12)

∂t û + ∇ · (ûû) = − 1

ρ0
∇p̂ + ∇ · [ν(∇û + (∇û)T )] + F̂ − ∇ · T, (13)

where T = ûu − ûû is the resulting extra term, i.e. Reynolds stresses for RANS or SGS
stresses for LES. Comparison between the above Equations (10)–(11) and (12)–(13)
will provide the basic ideas of implementations of turbulence modelling in the LBM
framework.

If the Boussinesq eddy-viscosity approximation is adopted in Equation (13), then Tij

could be modelled by −2νt Ŝij , with ν t the eddy-viscosity for RANS or LES. Then, in
LBM, two instinctive different implementations can be used to take this extra term into
account. One is to absorb the eddy-viscosity into the physical viscosity, resulting in the
total effective viscosity ν∗ = ν + ν t in Equation (11), while the forcing term keeps the
same; and the other is to maintain the physical viscosity, while the extra term −∇ · T is
added to the external forcing term in Equation (11).
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In the former one (referred as approach A1), a total effective relaxation time τ ∗ can be
related to the effective viscosity ν∗ as

τ∗ = τ + τt = 1

2
+ 3ν∗

c2δt

, (14)

where, τ t = 3ν t/(c2δt) is the relaxation time corresponding to the turbulent eddy-viscosity
ν t. This implementation is quite straightforward and one only needs to change the relaxation
time in the LBE-DNS code to run the LBE-LES simulation.

In the latter one (referred as approach A2), the relaxation time keeps unchanged, i.e.
τ ∗ = τ = 1/2 + 3ν/(c2δt), but the forcing term is modified as

ĝ∗
i =

(
1 − 1

2τ∗

)
ρ0wi

[
3(ei − u)

c2
+ 9(ei · u)

c4
ei

]
· F̂∗, (15)

with F̂∗ = F̂ + ∇ · (2νtS). In this implementation, one has to calculate the divergence of
turbulent stresses, which is a little more time consuming.

Nevertheless, the turbulence term can always be divided into two parts, T = T1 + T2,
with T1 being used in the approach A1 and T2 being used in the approach A2 (this
will be referred as the mixed approach or approach A3). In the appendix of a paper by
Premnath et al. [27], they mentioned about this mixed approach of incorporation of the
dynamic mixed model and dynamic two-parameter SGS model in MRT-LBM. However, no
simulation results or comparison results were shown.

In fact, not all turbulence models could be approximated by the Boussinesq eddy-
viscosity approximation, such as the stress-transport model in RANS [30], and the mixed
(similarity or non-linear) models [31,37] and the constrained SGS models [33] in LES. In
this case, one may obtain an approximated equivalent eddy-viscosity by the least-square
method and adopt the approach A1. However, this could inevitably lead to some errors. A
more accurate way is to directly employ the approach A2 or the mixed approach A3.

In the following part, we will take the Smagorinsky SGS model [31,38] and the mixed
similarity model [31,37,39–41] as examples for the turbulence term. In the Smagorinsky
model, the SGS eddy-viscosity ν t is calculated from the filtered strain rate tensor S̃ij and a
filter width �:

νt = (Cs�)2|S|. (16)

Here, Cs is the model coefficient, and |S| =
√

2S̃ij S̃ij is the characteristic filtered rate of

strain with S̃ij being calculated using Equation (8) or using other traditional finite-difference
scheme. In the mixed similarity model, the SGS stress is evaluated as

Tij = (ũi ũj − ¯̃ui
¯̃uj ) − 2(Cs�)2|S|S̃ij . (17)

Here, ‘bar’ denotes a filtering operation at a test-filter scale �̄ = 2�. Usually, the model co-
efficient Cs is computed through a dynamic procedure in mixed similarity model [37,39,41].
However, for simplicity, we chose to use a constant value Cs = 0.1 as evaluated from a-priori
experiment test [40].

If approach A1 is used in Smagorinksy model, then the turbulent relaxation time τ t

could be calculated explicitly by its definition, where |S| is calculated using τ ∗ at the previous
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72 Z. Xia et al.

Table 1. Flow parameters for DIHT.

Solver Model N3 ν δt τ Vscale

PS DNS 1283 0.01 0.001 – –
LBM DNS 1283 2.037 × 10−4 2π /128 0.5125 2.037 × 10−2

LBM LES-SM 643 1.019 × 10−4 2π /64 0.5031 1.019 × 10−2

LBM LES-MS 643 1.019 × 10−4 2π /64 0.5031 1.019 × 10−2

Note: SM, Smagorinsky model; MS, mixed similarity model.

time step. However, one can also calculate it implicitly at current time step as [19,21,42]

τt = 1

2

(√
τ 2 + 2(Cs�)2

ρ0c4
s δ

2
t

√
2Q̂ij Q̂ij − τ

)
. (18)

2.3. Flow parameters

In this study, the three-dimensional DIHT is simulated by LBM using both DNS and LES
approaches. The simulations were conducted on a cubic box with size L3 = (2π )3 and grid
resolution N3. The physical kinetic viscosity νs = 0.01 and related physical time step is dts
= 0.001. In LBM, δx = δt = 2π /N. The flow parameters are listed in Table 1.

The initial velocity field was obtained from a separated DNS of stationary isotropic
homogenous turbulence using the pseudo-spectral method with the same flow parameters
and grid resolution. The forcing was implemented at the large scales by fixing the kinetic
energy at first two wave numbers. The initial Taylor micro-scale Reynolds number was kept
Reλ ≈ 47.8. Then, the velocity field was rescaled to the lattice frame by a velocity scale
Vscale to make sure that Mamax = ‖u‖max/cs ≤ 0.15. The initial density fluctuation δρ and
DFs fi can then be obtained by an iteration procedure [12,13,21]. As discussed by Yu et al.
[21], this iteration procedure can minimise the errors due to the initialisation of LBE. The
viscosity in lattice units is related to the physical viscosity by ν = νs × Vscale.

3. Results

In this section, we present the results of our numerical simulations. First, we are going
to validate our basic LBM code by comparing the DNS results with those from pseudo-
spectral method under the same conditions. Then simulations with three different LBM-LES
implementations of two different SGS models were carried out and put into comparison.

3.1. Validation of the basic LBM code

In this subsection, the DNSs of the DIHT were carried out using LBM (LB-DNS) and
pseudo-spectral (PS-DNS) methods with N = 128.

Figure 1 shows the energy spectra from both LB-DNS and PS-DNS at differ-
ent time points. Since the de-aliasing is accomplished by nullifying ûi(ki, t) for k =√

k2
1 + k2

2 + k2
3 > N/3 in the pseudo-spectral method, its actual wave numbers are k ≤

N/3. However in LB-DNS, its actual wave numbers can be k ≤ N/2. It is clearly seen
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k

E(
k,
t)

10 20 30 40 50 60
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

t/t0=0.0166(LB-DNS)
t/t0=0.166(LB-DNS)
t/t0=0.83(LB-DNS)
t/t0=1.66(LB-DNS)
t/t0=3.32(LB-DNS)
t/t0=4.98(LB-DNS)
t/t0=0.0166(PS-DNS)
t/t0=0.166(PS-DNS)
t/t0=0.83(PS-DNS)
t/t0=1.66(PS-DNS)
t/t0=3.32(PS-DNS)
t/t0=4.98(PS-DNS)

Figure 1. The energy spectra E(k, t) from different numerical methods at different time points.
Solid lines are from DNS with LBM (denoted as LB-DNS) and dashed lines with symbols are from
pseudo-spectral method (denoted as PS-DNS).

from this figure that the spectra from the two different methods match very well with
each other at lower wave numbers, where most of the kinetic energy is preserved, and
the deviations emerge first at wave number near k ∼ N/3 and then move to smaller wave
numbers as time evolves. These slight differences on spectra at high wave numbers will
not cause significant deviations on the integral quantities, such as the normalised kinetic
energy k(t)/k0 and the normalised dissipation rate ε(t)/ε0, as shown in Figure 2. From these
comparisons, we can assure that our basic LBM code is correct and reliable.

3.2. Comparisons of different implementations of the Smagorinsky model
in LBM-LES

In this subsection, we will compare the LES results from three different implementations of
the Smagorinsky SGS model in LBM simulations with Cs = 0.17. In the mixed approach,
the two parts were half and half. The results from approaches A1, A2 and A3 are denoted
as SM-A1, SM-A2 and SM-A3, respectively.

In Figure 3, we are showing the energy spectra E(k, t) from the three above-discussed
implementations of the Smagorinsky SGS model at four different time, i.e. t/t0 = 0.0166,
0.166, 0.83 and 1.66. Clearly, the differences on the spectra are negligible and those spectra
from the SM-A3 lie between those from SM-A1 and SM-A2. These negligible deviations
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t/t0

k(
t)/
k 0

10-2 10-1 100

10-2

10-1

100

LB-DNS
PS-DNS

(a)

t/t0

ε(
t)/

ε 0

10-2 10-1 100
10-3

10-2

10-1

100

LB-DNS
PS-DNS

(b)

Figure 2. Time evolution of the normalised kinetic energy k(t)/k0 (a) and the normalised dissipation
rate ε(t)/ε0 (b) from different numerical methods: LB-DNS and PS-DNS.

in spectra result in almost the same statistical quantities, such as the normalised kinetic
energy k(t)/k0 shown in Figure 4 and the flow fields shown in Figure 5.

Figure 5 shows the contours of u from the three different implementations of the
Smagorinsky SGS model on the plane z = π at t/t0 = 0.166 (panel (a)) and t/t0 = 1.66
(panel (b)). Clearly, the flow fields are still the same even after it evolves a time period of
1.66t0. From this comparison, we may conclude that the three different implementations of
turbulence models under the Boussinesq eddy-viscosity approximation are equivalent.

k

E(
k,
t)

10 20 30 4010-12

10-10

10-8

10-6

10-4

10-2

DNS
SM-A1
SM-A2
SM-A3

t/t0=0.166

t/t0=0.0166

t/t0=1.66

t/t0=0.83

Figure 3. The energy spectra E(k, t) from three different implementations of the Smagorinsky SGS
model at different time points. Dashed lines are from SM-A1, dash-double-dotted lines are from
SM-A2 and solid lines are from SM-A3. The thick solid lines from LB-DNS are used as references.
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t/t0

k(
t)/
k 0

10-2 10-1 100

0.2

0.4

0.6

0.8

1

SM-A1
SM-A2
SM-A3

Figure 4. Time evolution of the normalised kinetic energy k(t)/k0 from three different implementa-
tions of the SGS model.

3.3. Comparisons of different implementations of the mixed similarity model in
LBM-LES

In this subsection, we will compare the LES results from three different implementations
of the mixed similarity SGS model in LBM simulations with Cs = 0.1. In approach A1, we
approximated the SGS stress by introducing an equivalent eddy-viscosity as

ν̂t = −Tij S̃ij

2S̃ij S̃ij

= −(ũi ũj − ¯̃ui
¯̃uj )S̃ij

2S̃ij S̃ij

+ (Cs�)2|S|. (19)

X
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Figure 5. Contours of u from three different implementations of the Smagorinsky SGS model on the
plane z = π at different time points: (a) t/t0 = 0.166; (b) t/t0 = 1.66. Dashed lines are from LES-A1;
dash-double-dotted lines are from LES-A2 and solid lines are from LES-A3.
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Figure 6. The energy spectra E(k, t) from three different implementations of the mixed similarity
SGS model at different time points. Dashed lines are from MS-A1, dash-double-dotted lines are from
MS-A2 and solid lines are from MS-A3. The thick solid lines from LB-DNS are used as references.

In the mixed approach A3, the dissipation part (Smagorinsky part) was implemented using
approach A1 while the similarity part was planted using approach A2. Clearly, when the
mixed similarity SGS model is used, approach A1 is only an approximation, which inevitably
leads to errors; while approaches A2 and A3 are accurate. In the following, the results from
approaches A1, A2 and A3 will be denoted as MS-A1, MS-A2 and MS-A3, respectively.
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Figure 7. Time evolution of the normalised kinetic energy k(t)/k0 from three different implementa-
tions of the mixed similarity SGS model.
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In Figure 6, we are showing the energy spectra E(k, t) from the three above-discussed
implementations of the mixed similarity SGS model at four different time points, i.e. t/t0 =
0.0166, 0.166, 0.83 and 1.66. It can be clearly seen that the spectra from MS-A2 and MS-A3
are almost the same at all wave numbers, while those from MS-A1 deviate from those from
MS-A2 and MS-A3 at high wave numbers (k � 21). However, these differences at high
wave numbers do not result in significant deviations on the statistical quantities, such as
the normalised kinetic energy k(t)/k0 shown in Figure 7, but cause significant disparities in
single flow fields as shown in Figure 8.

Figure 8 shows the contours of u from the three different implementations of the
Smagorinsky SGS model on the plane z = π at t/t0 = 0.083 (panel (a)), t/t0 = 0.166 (panel
(b)), t/t0 = 0.83 (panel (c)) and t/t0 = 1.66 (panel (d)). Obviously, the flow fields from these
three different implementations are almost the same at early stage (t/t0 = 0.083, panel (a)).
However, as time evolves, the flow fields from MS-A2 and MS-A3 still keep the same while
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Figure 8. Contours of u from three different implementations of the mixed similarity SGS model
on the plane z = π at different time points: (a) t/t0 = 0.083; (b) t/t0 = 0.166; (c) t/t0 = 0.83; (d) t/t0

= 1.66. Dashed lines are from MS-A1, dash-double-dotted lines are from MS-A2 and solid lines are
from MS-A3.
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the disparities between those from MS-A1 and MS-A2 emerge and become more and more
apparent. These disparities are believed to come from the approximation of the similarity
part in the mixed similarity model by an equivalent eddy-viscosity ν̂t as discussed above.

From the above comparison, we may conclude that the three different implementations of
turbulence models beyond the Boussinesq eddy-viscosity approximation are not equivalent.
The idea of introducing an equivalent eddy-viscosity will inevitably lead to some errors.
This might indicate that the implementation of turbulence models in the LBM through
forcing term is a more general approach.

4. Conclusions and discussions

In the simulation of turbulence with modelling approach in the LBM framework, the most
popular way is to modify the relaxation time based on the Boussinesq eddy-viscosity
approximation. However, not all turbulence models can be approximated by the Boussinesq
eddy-viscosity assumption, which raises some difficulties in this traditional approach. An
alternative and more general way1 is to treat the turbulence term as an extra forcing term.

This study first reviewed the single-relaxation-time LBE with extra forcing terms and
the relative macro–meso relations. The Chapman–Enskog expansion shows that the strain
rate tensor is related to the DFs as well as the extra forces.

When a turbulence modelling approach is incorporated into the LBM, three different
implementations can be adopted, i.e. the widely used modification of the relaxation time
(A1), the extra forcing approach (A2) and the mixed approach (A3). We compare these three
different approaches in LES of three-dimensional DIHT using the Smagorinsky model and
the mixed similarity model. When the LES was conducted using the Smagorinsky model,
where the Boussinesq eddy-viscosity approximation is adopted, the results showed that
these three different implementations are equivalent. However, when the mixed similarity
model is adopted, which is beyond the Boussinesq eddy-viscosity approximation, our results
showed that an equivalent eddy-viscosity will lead to errors, while the forcing approach is
more straightforward and accurate. This provides an alternative and more general framework
of simulation of turbulence with models in LBM, especially when the Boussinesq eddy-
viscosity approximation is invalid.

In the future, comparisons with different turbulent models in forced isotropic turbulence
can be conducted, where more quantities, such as energy flux, the high-order moments of
longitudinal velocity increment or the extended self-similarity [44,45] behaviour, could be
compared. Also, we will compare these three different implementations of turbulent models
in more complex flow problems. Furthermore, we hope that these different approaches of
incorporating the turbulence models into LBM may inspire developing of new turbulence
methods in gas-kinetic schemes.
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Note
1. As pointed out by one of the referees that the word ‘general’ here is somewhat misleading. We

would like to emphasise here that the word ‘general’ focuses on the capability to treat different
types, within or beyond the Boussinesq approximation, of turbulence models. When LBM is used
to simulate turbulence incorporated with modelling approaches, different perspectives exist. If
a turbulence model (SGS or RANS) was derived through the Boltzmann equation based on the
kinetic theory, then the notion of effective relaxation time is way more general [28,43]. From
this perspective, a well-defined characteristic relaxation time scale could describe self-consistent
dynamics of turbulent fluctuations better, and usually the notion of eddy-viscosity was adopted,
as reviewed in this paper, to estimate the effective relaxation time in applications. However, if we
viewed LBM as a tool to solve the Navier–Stokes (NS) equations, then we might use the extended
LBE (Equation (9)) to solve flow problems incorporated with turbulence models (RANS or LES
models) instead. From this perspective, LBM is just a special solver, as the finite-volume method,
to NS equations, and we could adopt any type of turbulence models, within or beyond eddy-
viscosity assumption, as claimed in this work. If we further took the notion of eddy-viscosity,
we could simply use the effective relaxation time to account for the turbulence models. At this
point, these two different perspectives reach the same formulas.
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