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a b s t r a c t

Phonon hydrodynamics is an effective macroscopic method to study heat transport
in dielectric solid and semiconductor. It has a clear and intuitive physical picture,
transforming the abstract and ambiguous heat transport process into a concrete and
evident process of phonon gas flow. Furthermore, with the aid of the abundant models and
methods developed in classical hydrodynamics, phonon hydrodynamics becomes much
easier to implement in comparison to the current popular approaches based on the first-
principle method and kinetic theories involving complicated computations. Therefore, it
is a promising tool for studying micro- and nanoscale heat transport in rapidly developing
micro andnano science and technology.However, there still lacks a comprehensive account
of the theoretical foundations, development and implementation of this approach. This
work represents such an attempt in providing a full landscape, from physical fundamental
and kinetic theory of phonons to phonon hydrodynamics in view of descriptions of phonon
systems at microscopic, mesoscopic and macroscopic levels. Thus a systematical kinetic
framework, summing up so far scattered theoretical models and methods in phonon
hydrodynamics as individual cases, is established through a frame of a Chapman–Enskog
solution to phonon Boltzmann equation. Then the basic tenets and procedures in
implementing phonon hydrodynamics in nanoscale heat transport are presented through
a review of its recent wide applications in modeling thermal transport properties of
nanostructures. Finally, we discuss some pending questions and perspectives highlighted
by a novel concept of generalized phonon hydrodynamics and possible applications in
micro/nano phononics, which will shed more light on more profound understanding and
credible applications of this new approach in micro- and nanoscale heat transport science.
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1. Introduction

1.1. Micro- and nanoscale heat transport

Heat transport science is an old discipline dated back to the classical work by J. Fourier who proposed the constitutive
law termed after his name in his masterpiece [1]. Accurate description and understanding of heat transport hereafter
becomes vital not only in theoretical developments of thermodynamics [2–4] and statistical mechanics [5–7], but also in
wide engineering applications for chemical processes [8,9], energy and building [10,11], power production [12,13] and so
on. In terms of the physical mechanism of heat transport, different kinds of heat carriers have been proposed to explain
the process [14]: molecule, electron, photon and phonon. In the present work, we focus on the heat transport mediated by
phonon, which was first introduced to describe the heat conduction in dielectric solid by Peierls [15] and then refined and
expanded by subsequent researchers [16–20].

Near the end of last century, with the rapid development of micro- and nanofabrication [21] and nanotechnology [22],
as the size of systems drastically shrank down, Fourier’s law is considered no longer valid for heat transport due to the sub-
continuum effects. Therefore, it became crucial to develop substitutes in theory on micro- and nanoscale heat transport, to
tackle the related thermal phenomena in nanosystems, such as the intractable microelectronics cooling problems [23,24]
emerging in 1980s. Pioneering investigations were conducted in a systematical way by the group of C.L. Tien and coworkers,
and have been thoroughly summarized in Refs. [25,26], leading to the gradual establishment of the field of microscale
thermophysical engineering [27]. In recent years, there are increasing and urgent demands on deeper understanding
of the fundamental issues in this field, motivated by diverse technology applications such as the thermoelectric energy
conversion [28,29], micro- and nanoelectronics and optoelectronics [30], micro- and nanoelectromechanical systems [21],
functional nanomaterials [31]. These activities and progresses are summarized in some comprehensive reviews [32–36]
and several monographs [14,37–40]. Note that micro- and nanoscale denotes both the temporal aspect when the process
characteristic time is comparable to or smaller than the relaxation times of the heat carriers such as in short-pulse laser
heating process [41,42], and the spatial aspect when the system characteristic size becoming comparable to or smaller than
the mean free paths of the heat carriers such as in thin film heat conduction [43,44]. More detailed discussions of heat
transport regimes at micro- and nanoscale could be found in Refs. [25,45–47].

1.2. Overview of current methods

To treat heat transport at micro- and nanoscale, there are logically two categories of methods: theoretical and exper-
imental ones. In this work, we are focusing only on the theoretical methods. In the early stage of developments in this
field, kinetic modeling based on the phonon Boltzmann equation [41–44] and simplified molecular dynamics simulations
[48–50] were the major tools. With the advancements of molecular dynamic techniques [51–53], density functional pertur-
bation theory [54,55] and high performance computing [56], it becomes possible to perform large-scale simulations using
molecular dynamics and first-principle calculations to predict thermal transport properties of bulk- and nanostructures in
recent years [34]. Monte Carlo (or lattice Boltzmann method, etc.) solutions of the phonon Boltzmann equation supple-
mented with information from first-principle calculation, molecular dynamics or lattice dynamics simulation are currently
the main trend [53,57–60] in multi-scale modeling of micro- and nanoscale heat transport. Even though the first-principle
calculations ormolecular dynamics simulations are able to explainwhat happens atmicroscale, and the kinetic theory based
modeling can capture the statistical behavior of phonons at the mesoscopic scale, people have never faltered in the quest
for macroscopic description of phonon transport which has the capability to provide a clear and intuitive physical picture
for a better understanding. In summary, there are mainly four macroscopic methods available for nanoscale heat transport
in the literature: phonon hydrodynamic model [61,62], dual-phase-lag model [63,64], ballistic–diffusive model [65,66] and
thermon gas model [67,68].

All of these macroscopic, mesoscopic and microscopic methods are summarized in Fig. 1. Here the terms ‘microscopic’,
‘mesoscopic’ and ‘macroscopic’ represent modeling the nanoscale heat transport at three different levels of descriptions.
‘Microscopic’ method provides atomic-scale information, while ‘mesoscopic’ method produces statistical information such
as the particle distribution function, and ‘macroscopic’ method uses only several state variables for continuum media
(i.e. moments of the particle distribution function). In the present work, we aim to clarify the significance of macroscopic
methods and focus on the phonon hydrodynamic model, which has never been addressed in the previous reviews
[32–34,36].

1.2.1. Microscopic methods
The main idea of microscopic method is through direct simulations of the motion and interactions of atoms in solids

by numerically solving the fundamental dynamic equations. In the framework of classical mechanics, Newton’s equation is
solved, as the foundation of molecular dynamics simulation method. Whereas in the quantum mechanical framework, the
Schrödinger equation is solved, corresponding to the first-principle method.

Classical molecular dynamics simulation usually includes two branches [69]: the Green–Kubo (equilibrium) method
based on fluctuation–dissipation theorem [70], and direct (non-equilibrium) method by calculating the induced heat flux
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Fig. 1. Current methods in micro- and nanoscale heat transport science.

(or temperature gradient) from the applied temperature gradient (or heat flux). The information of positions and velocities
of all the atoms need be stored at each step of the simulation, thus being very time- and computational-source-consuming.
To alleviate this situation, combination ofmolecular dynamics and lattice dynamics simulations has been proposed to obtain
the phonon information (dispersion relation, relaxation time) as inputs to the solution of phonon Boltzmann equation and
worked well in predicting lattice thermal conductivity [53,69]. Nevertheless, the results of molecular dynamics simulation
much depend on the developments of accurate inter-atomic potential functions and usually limit to high-temperature
circumstance [60,69].

Therefore, the first-principlemethod emerges [71], aiming at parameter-free predictions of thermal transport properties
over a wide range of temperature. Based on density functional perturbation theory, it obtains the harmonic (second-order)
and anharmonic (third-order) interaction force instants for the pairs of atoms and triplets of atoms respectively as inputs to
the solution of phonon Boltzmann equation [71]. It worked well in predicting thermal conductivity of diverse categories of
bulk materials [71,72] and showed promising potential for nanostructures as well [73].

1.2.2. Mesoscopic methods
Mesoscopic methods refer to the kinetic modeling based on phonon Boltzmann equation or its derivatives (such as the

Equation of Phonon Radiative Transport, EPRT [44]). Solution of Boltzmann equation is not easy because of its complex
collision term [74]. There are usually two trains of thought: a full solution and a single mode relaxation time (SMRT)
approximation [14,38]. The full solution needs complicated numerical iteration [71] or ab initio variational approach [75].
The SMRT approximation is more preferred [53,58,59,76,77] because of its simplicity although empirical parameters
have been utilized, which are often adjusted from experimental data. Monte Carlo method has been used to solve the
phonon Boltzmann equation [78], especially for micro- and nanoscale heat transport [60]. Lattice Boltzmann method is
an alternative [79] yet still in its infancy [80], which will be further discussed later.

1.2.3. Macroscopic methods
In parallel to the developments of microscopic and mesoscopic methods, fruitful efforts have also been put on the

macroscopic method for micro- and nanoscale heat transport. The macroscopic approach is based on generalized heat
transport equations which are able to describe heat transport in a wide range of scales, including not only the conventional
diffusive regime where Fourier’s law is valid, but also the so-called ballistic regime and the so-called phonon hydrodynamic
regime. Among the available macroscopic methods, one spreading over a large span of time is the phonon hydrodynamics
model [62]. Note that the denomination ‘‘phonon hydrodynamics’’ is found in the literature with two slightly different but
related meanings. In line of phonon kinetic theory, ‘‘phonon hydrodynamics’’ refers to a particular phonon flow regime
with the dominant effect of normal phonon–phonon collisions over resistive collisions, and termed as ‘‘classical phonon
hydrodynamics’’ as in Section 3; inmacroscopic non-equilibrium thermodynamics, it refers to the use of transport equations
analogous to classical hydrodynamic equations, with the heat flux and temperature gradient playing the roles of velocity
and pressure gradient respectively, and termed as ‘‘phenomenological phonon hydrodynamics’’ as in Section 4. The details
of them will be elucidated soon below. Phonon hydrodynamics was first proposed at the mid-period of last century for
studying heat waves in dielectric solid at low temperature [61,81]. Numerous subsequent theoretical work [82–86] was
followed by mathematical physicists to refine, develop and extend the original model. The substantial bridging between
phonon hydrodynamics and nanoscale heat transport was accomplished recently in the landmark work by Jou and his
coworkers [62], based on a heuristic analogy between nanoscale phonon gas flow and rarefied gas flow. It opens up a new
field in applying the hydrodynamic approach to analyze nanoscale heat transport, thus simplified the problem and showed
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an intuitive and clear physical picture consistent with the existing knowledge about hydrodynamics. Many applications are
extensively studied, such as the prediction of thermal conductivity of nanostructures [62,87].

The Dual-Phase-Lag (DPL) model [63,64] (or the so-called Jeffrey’s type model [88]) was proposed in the end of last
century. Its starting point is Fourier’s law q = −λ∇T , which indicates an unphysical instantaneous response between heat
flux and temperature gradient [89]. The DPL model proposed new causal response through adding two phase lags into the
Fourier’s law thus achieving q


r, t + τq


= −λ∇T (r, t + τT ), which allows both heat flux as the cause of temperature

gradient when τq<τT , and temperature gradient as the cause of heat flux when τq > τT [37]. This is a unified model
trying to incorporate many different situations of heat transport at different scales by grasping the common feature.
From our perspective, the DPL model usually captures well the behavior of heat transport mediated by two (or multi-)
carriers (or media), such as the electron–phonon interactions in the laser-heating process in metal [90], superfluid and
normal components inducedheatwavepropagation in superfluid liquid helium [90],multi-phase inducednonhomogeneous
heating response in porousmedia [91] and amorphousmedia [92]. Another characteristic of DPLmodel is that the two phase
lags have usually to be determined by adjusting to the experimental data of thermal response.

Ballistic-diffusivemodel [65,66] is an another attempt to transit frommesoscopic kinetic theory tomacroscopic equations
to describe nanoscale heat transport. It divides the phonon distribution function at a given point into two parts [65]: one
from the inside ofmedium (diffusive part), the other from the boundary ofmedium (ballistic part). By integrating the phonon
Boltzmann equation, two evolution equations are obtained for the internal energy (or heat flux) of the diffusive and ballistic
phonons respectively. This model contributes more to the conceptual aspect with only simple 1D and 2D heat conduction
benchmarks studied [93–95] rather than to practical applications. Note that the ballistic–diffusive model strictly belongs to
a mixed macroscopic–mesoscopic method [96] since the heat flux of ballistic phonons has to be calculated from the kinetic
theory.

The thermon gas model, with a history of nearly ten years [67], was to describe heat transport through the classical
fluidmechanics equations for heat by introducing a so-called thermomass defined as the equivalent mass of thermal energy
based on Einstein’s mass-energy equivalence [68]. In this model, heat conductions can be treated as thermon gas flows in
media driven by a temperature gradient. Thermon is defined as a unit quasi-particle carrying thermal energy. For solids, the
thermon gas is the phonon gas for crystals, attached on the electron gas for pure metals, or just between both for most of
other solids. Although predictions based on this model of effective thermal conductivity of nanomaterials have gained good
agreements with experimental data [97–99], the theoretical gap between physical picture and constitutive equations has
not been perfectly fulfilled. This model was evaluated consistent with the phonon hydrodynamic model, and never beyond
the theoretical framework of the phonon hydrodynamics [100,101].

All these major macroscopic models are available to describe or capture the nonlocal effect of the heat flux and the
temperature gradient between different locations [102]. Besides, it isworthmentioning that some other similarmacroscopic
models are also proposed, such as the C-F heat conduction model [103], the stochastic heat equation [104] and so on.

Although the subsequent studies for thesemacroscopicmodels have claimed that they all have fundamental bases on the
phonon Boltzmann equation [65,100,105], the phonon hydrodynamic model is the most natural and direct production from
the phonon Boltzmann equation. The macroscopic constitutive equations of phonon hydrodynamics can be derived directly
from the phonon Boltzmann equation, which avoids empirical parameters or pure mathematical terms in other models.
Therefore it can provide a clear and intuitive physical picture, and thus converts the abstract and ambiguous heat transport
process into a concrete and evident phonon gas flow process, which help us better understand the indiscerniblemechanism.
In the present work, we focus on reviewing and expatiating the microscopic and mesoscopic physical and mathematical
foundations for the phonon hydrodynamic model. Only in this way is it possible to capture the main essences and key
features of nanoscale heat transport applications yet still using simple formulations.

1.3. Objectives and structure of this review

Therefore, the objectives of the present review include the following aspects: (1) to provide a solid conceptual foundation
for phonon hydrodynamics in view of descriptions of phonon systems at different levels; (2) to examine the existing theoret-
ical methods in developing phonon hydrodynamicmodels from phonon Boltzmann equation, and establish a unified kinetic
framework for these models, thus bridging the mesoscopic physics and macroscopic approaches; (3) to summarize the fun-
damentals and procedures in implementing phonon hydrodynamics to nanoscale heat transport with actual application
cases; (4) to give possible perspectives and future trends by revisiting the current status of phonon hydrodynamic model.

This review is organized as: in Section 2, the concepts of phonon, phonon kinetic theory and phonon hydrodynamics
are introduced in a systematical way, from the perspective of microscopic, mesoscopic and macroscopic descriptions
respectively. Then a unified kinetic framework is established for phonon hydrodynamic model in Section 3 through an
asymptotic solution to phonon Boltzmann equation, with also a summary of previousmodels by diversemethods that could
be included as different orders of specific solutions. These theoretical foundations pave the road for actual applications of the
phonon hydrodynamics in predicting the thermal transport properties of nanostructures—the main contents in Section 4,
where other essential fundamentals for applications including the heat flux boundary and its thermodynamic foundations
are introduced as well. Finally, in Section 5 we discuss some open questions and possible perspectives of the phonon
hydrodynamic model, after which concluding remarks are made in Section 6.
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Fig. 2. One-dimensional monoatomic lattice chain.

2. Concepts and foundations

2.1. Phonon

The concept of phonon was first introduced by Einstein [106] and Debye [107] in dealing with the specific heat capacity
of dielectric solid. This phonon model is used to describe the equilibrium properties of solid. It was Peierls [15] who
generalized the equilibriumphononmodel to nonequilibriumheat transport, and proposed the Peierls–Boltzmann transport
equation [16] for phonons, inspired from kinetic theory of gases [108].

Phonon is defined as wave packet [14,109] from the perspective of classical mechanics, or minimum energy quantum
[38,39,110] from the perspective of quantummechanics. Therefore we consider the description of phonons in two aspects:
classical and quantum mechanical pictures. For simplicity, a one-dimensional monoatomic lattice chain, shown in Fig. 2, is
taken to represent the realistic three-dimensional lattice structure in dielectric solid. The interacting atoms are treated as
a spring-mass system, with an identical atom mass m, a spring constant κ and a spacing a between the atomic equilibrium
positions. N is the total number of atoms, the position of each termed as xs, with s = 1, 2, . . . ,N . Harmonic interaction is
assumed between adjacent atoms.

2.1.1. Classical mechanical picture
Based on Newton’s equation in classical mechanics, the dynamic relation for lattice vibration is:

m
d2xs
dt2

= κ (xs+1 + xs−1 − 2xs) . (1)

Defining the displacement from corresponding equilibrium position as us = xs − x0s , we obtain the equation for lattice
displacement:

m
d2us

dt2
= κ (us+1 + us−1 − 2us) , (2)

the solution of which has the following form [38]:

us = A exp [−i (ωt − ksa)] , (3)

with A,ω, k denoting respectively the amplitude, frequency andwave number of lattice vibration, i being the imaginary unit.
Substitution of Eq. (3) into Eq. (2) gives rise to the dispersion relation for the wave propagation of lattice vibration:

ω = 2


κ

m

sin ka
2

 , (4)

which is a periodic function of kwith a period 2π/a. Mathematically, only one period is sufficient to account: (−π/a, π/a),
known as the first Brillouin zone. Anywave number beyond the first Brillouin zone can be shifted into this domain by integer
times of periods [110]. Physically, the wave number cannot be larger than π/a because the wave length (λ = 2π/k) cannot
be smaller than twice the atomic spacing [38].

The plane harmonic wave described by Eq. (3) does not convey any signal or energy actually. Based on the dispersion
relation Eq. (4), the concept of ‘‘localized wave packet’’ is introduced, which is the essential energy or signal carrier. Two
plane harmonic waves with slight wave number difference (∆k) around k0 are described respectively by:

us1 = A exp [−i ((ω0 − ∆ω) t − (k0 − ∆k) sa)] , (5a)
us2 = A exp [−i ((ω0 + ∆ω) t − (k0 + ∆k) sa)] . (5b)

Combination of these two waves results in the propagation of a wave packet:

us = us1 + us2 = Ã cos (ω0t − k0sa) , (6)

with the combinational amplitude Ã = 2A cos (∆ωt − ∆ksa). The localized wave packet is exactly the classical mechanical
picture of phonon. Distinct from the phase speed (vp = ω0/k0) of lattice vibration, the propagating speed of thewave packet
or phonon is termed as group speed:

vg =
∆ω

∆k
=

∂ω

∂k
. (7)
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2.1.2. Quantum mechanical picture
Schrödinger equation is the fundamental equation in quantum mechanics, which needs the Hamiltonian of the

monoatomic lattice chain:

H =


s


1
2
mẋ2s +

1
2
κ (xs+1 − xs)2


. (8)

Eq. (8) indicates that the monoatomic lattice chain is a coupling interaction system, thus a solution of Schrödinger equation
becomes complicated. To decouple the atomic interaction, phonon coordinate is introduced based on a Fourier transforma-
tion of the atomic coordinate [110]:

Qk = N−1/2

s

xs exp (−iksa) . (9)

In this way, Eq. (8) turns into a summation of independent harmonic oscillators:

H =


k


1
2
mQ̇kQ̇−k +

1
2
mω2

kQkQ−k


, (10)

with the dispersion relation obtained:

ωk = 2


κ

m

sin ka
2

 . (11)

Eq. (11) is identical to Eq. (4) got from the classical mechanics. Combination of Eq. (10) and Schrödinger equation leads to
the kinematic equation for each harmonic oscillator [110]:

Q̈k + ω2
kQk = 0, (12)

which gives the discrete energy eigenvalue [111]:

Ek =


nk +

1
2


}ωk (nk = 0, 1, 2, . . .). (13)

The minimum energy quantum }ωk in Eq. (13), in analogy to the definition of photon, is termed as a phonon, being
exactly the quantum mechanical picture. nk is the energy level of the harmonic oscillator or average number of phonons in
the mode (k, ωk), and obeys the Bose–Einstein statistics. Moreover, a phonon can be treated as a quasi-particle possessing a
quasi-momentum p = h/λ = }k based on the wave-particle duality in quantum mechanics.

2.2. Phonon kinetic theory

2.2.1. Phonon Boltzmann equation
Analogous to the transport equation proposed by Boltzmann [6,112] for rarefied gas transport, the phonon Boltzmann

equation is in prior introduced to phonon transport by Peierls [16]:

∂ f
∂t

+ vg · ∇f = C (f ) , (14)

where the phonon distribution function is f ≡ f (x, t, k), with f (x, t, k)dxdk denoting the number of phonons around
spatial interval (x, x + dx) and wave vector interval (k, k + dk) at certain time t . k is the wave vector as an extension of
wave number k, related to phonon quasi-momentum (crystal momentum) through p = }k. vg is the phonon group velocity,
and can be computed from:

vg = ∇kω (15)

as an extension of Eq. (7). C(f ) is the phonon collision termevaluating the effect of phonon scattering processes. Thus phonon
Boltzmann equation describes a balance between variation, advection and scattering processes of phonons, adopting the
same form of classical balance laws in transport processes [8].

2.2.2. Phonon scattering
Understanding phonon scatterings is crucial to specify the collision term C(f ) in Eq. (14). They are usually grouped into

two categories [16,109,113]: normal (N) process and resistive (R) process. R processmainly includes three-phononUmklapp
(U) process, phonon-imperfection and phonon-boundary scatterings. In terms of their conservation properties, the number
of phonons is not conserved as they can be created or annihilated, such as in three-phonon scattering where two phonons
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Fig. 3. Three-phonon N process (a) and U process (b) [38].

Table 1
Classification and properties of phonon scatterings.

Phonon scattering Momentum Energy Effect

N process Normal process Conserved Conserved Indirect resistance

R process
Umklapp process Not conserved Conserved Direct resistance
Imperfection scattering Not conserved Conserved Direct resistance
Boundary scattering Not conserved Conserved Direct resistance

combine into one or one divides into two; N process conserves phonon quasi-momentum while R process does not; the
energy of phonons is always conserved in any kind of scattering processes. These features are much different from the
conventional conservation laws of molecular number, momentum and energy assumed in rarefied gas transport, in that
phonon is a virtual particle whereas molecule is a real particle.

Three-phonon N process and U process make up the main scattering mechanisms in dielectric solid, as shown in Fig. 3.
Mathematically they result from additional perturbative third-order terms besides the harmonic terms in Eqs. (1) and (8),
and physically they originate in the non-harmonic lattice interaction. The energy and momentum balance equations for
them are respectively:

}ω1 + }ω2 = }ω3, (16)
}k1 + }k2 = }k3 + G, (17)

where G is the reciprocal lattice vector, and G = 0 corresponds to N process whereas G ≠ 0 corresponds to U process.
In terms of the effect of N and R processes, both of them will introduce thermal resistance to phonon heat transport,

resulting in finite lattice thermal conductivity. R process causes a direct thermal resistance by destroying the phonon quasi-
momentum,while Nprocess causes an indirect one by redistributing the phonon frequency spectrum. The effect of N process
is often neglected and not satisfactorily treated in modeling lattice thermal conductivity [114]. Merely recently in first-
principle method [115] or phenomenological models [116,117] is there a little attention paid on it. Appropriate treatment
of R process and N process will be further discussed below.

The portion of different kinds of phonon scatterings varies with the temperature in dielectric solid. At extremely low
temperature, the lattice vibrations are in low energy level and small quantities of phonons are produced, which result in
scarce scattering rate and long mean free path. Therefore, phonon-boundary interaction becomes the dominant scattering
in this regime. With the temperature elevating, both the phonon quantity and three-phonon scattering rate increases. In
this regime, N process dominates over R process because the lattice energy level is still low to make the combination of
two phonons go beyond the first Brillouin zone, as is shown in Fig. 3(a). When the temperature elevates further to a higher
value, the combination of two phonons easily goes outside the first Brillouin zone, as is shown in Fig. 3(b), which fosters the
dominance of R process over N process in this regime. Finally, the classification and properties of different kinds of phonon
scatterings are summarized in Table 1.

2.2.3. Callaway’s relaxation approximation
The full collision term in phonon Boltzmann equation is difficult to tackle because of the complex nature of phonon

scatterings [16,17], similar to the molecular collision term in Boltzmann equation for rarefied gas [108]. Therefore, inspired
by the linear BGK relaxation approximation [74] to molecular collision term, Callaway proposed the dual relaxation
approximation to the phonon collision term [113]:

C (f ) = −
f − f eqR

τR
−

f − f eqN

τN
. (18)

In Eq. (18), τR, τN are the relaxation times for R and N processes respectively, and the equilibrium distribution functions for
R and N processes are respectively the Planck distribution [113] (i.e. Bose–Einstein distribution [38]):

f eqR =
1

exp (}ω/kBT ) − 1
(19)
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Table 2
Relaxation time expressions of N and R processes.

Work τ−1
N τ−1

U τ−1
i τ−1

b

Callaway [113] B1ω
2T 3 B2ω

2T 3 Aω4 vg/L

Holland [118] B1,Lω
2T 3 B2,iω

2/ sinh (}ω/kBT ) Aω4 vg/FLB1,TωT 4 (i = L, T )
Morelli et al. [123] B1,iω

2T exp

−θD,i/3T


(i = L, T ) B2,Lω

2T 3 B2,TωT 4 Aiω
4 (i = L, T ) vg, i/Leff (i = L, T )

Mingo [76,119] Neglected Bω2T exp (−C/T ) Aω4 vg/FL
Chantrenne et al. [120] Neglected BLω

2T 1.5 BTωT 4 Aω4 vg/FL
Ward and Broido [124] B1ω

2T [1 − exp (−3T/θD)] B2ω
4T [1 − exp (−3T/θD)] – –

Maldovan [122] Neglected Biω
2T exp (−C/T ) (i = L, T ) Aω4 –

Notes: a The subscripts i, b denote imperfection and boundary respectively; b The subscripts L, T denote longitudinal and transverse respectively; c
F denotes the geometrical factor, with L the geometrical characteristic dimension; d A, B, C are empirical coefficients obtained through fitting the
experimental data; e θD denotes the Debye temperature; f In Ref. [122], the phonon-boundary scattering is incorporated through a reduced mean free
path rather than the relaxation time; g In Ref [124], only the normal process and Umklapp process are studied.

and the displaced Planck distribution [38,113]:

f eqN =
1

exp [(}ω − }k · u) /kBT ] − 1
, (20)

with kB denoting the Boltzmann constant, T the thermodynamic temperature, } ≡ h/2π the reduced Planck constant, and
u the drift velocity of phonons. The drift velocity u is distinct from the group velocity vg and is a space- and time-dependent
macroscopic velocity related intimately to heat flux, as to be shown below. As is pointed out in Refs. [116,117], a crucial
difference between the R and N processes is that in the former ones the phonons exchange momentum in such a way that
eachmode tends towards a true (Planck) equilibrium distribution whereas the latter ones result in collective effects leading
to displaced Planck distribution.

The relaxation times for N and R processes usually depend on phonon frequency and crystal temperature as τR(ω, T ),
τN(ω, T ). However, unified mathematical expressions are still lacking for them to date [114]. Previous work [76,113,118–
122] have to adjust empirical coefficients in their relaxation time expressions to fit the experimental data of bulk lattice
thermal conductivity. Nevertheless, Callaway’s approximation much simplified the collision term and non-doubtfully acts
as a milestone in the development of phonon heat transport models. For convenience to future explorations, most of the
achieved expressions of relaxation times for N and R processes are summarized in Table 2. It is seen that themain difference
of relaxation time expressions lies in the N process and Umklapp process, while those of imperfection and boundary
scatterings have nearly consistent forms.

2.3. Phonon hydrodynamics

In classical transport theory, hydrodynamics represents the macroscopic level of description for fluid systems [125].
Similarly, phonon hydrodynamics denotes the same level of descriptions for phonon systems. In this section, firstly a brief
introduction is given to the description of fluid systems at different levels. Then a consistent conceptual framework is
established for phonon systems, and the role of phonon hydrodynamics in phonon transport theory is thus highlighted.

2.3.1. Description of fluid systems at different levels
A fluid system could be described at three different levels, to different extent of details with different amount of

information [125]. At the microscopic dynamic level, the kinematic details (velocities and positions) of all the particles
are known; and at the mesoscopic kinetic level, only the distribution function of a single representative particle is given;
while at macroscopic hydrodynamic level, several average variables of many particles such as the mass density and velocity
(moments of the single-particle distribution function) are specified. In terms of the dimension of temporal and spatial scales,
the dynamic level usually corresponds to the period of particle vibration and force distance between particles, the kinetic
level corresponding to the collision relaxation time and mean free path, whereas the macroscopic level corresponds to the
flow time and characteristic length of fluid system [126].

Different levels of descriptions for fluid systems need different governing equations. At the dynamic level, all the particles
are described by Newton’s equation (or Hamiltonian equation) in classical mechanics [127], or by Liouville equation in
statistical mechanics [128]; at the kinetic level, Boltzmann transport equation is the evolution equation for the single-
particle distribution function; at the hydrodynamic level, the fluid behavior is often determined by the Navier–Stokes
equations. The governing equations at different levels are correlated intimately: Boltzmann transport equation could be
derived through the BBGKY hierarchy [126] from Liouville equation, while Navier–Stokes equations could be derived
through a Chapman–Enskog solution [108] to Boltzmann transport equation. This intimate mathematical connection
originates in the physical correlation between them: the macroscopic behavior of fluids is shown based on the mesoscopic
statistics of fluid particle mixture, which are ultimately determined by the microscopic dynamics of fluid particles. The
relationship between different levels of descriptions of fluid flow system is summarized in Fig. 4(a).
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(a) For fluid flow system.

(b) For phonon transport system.

Fig. 4. Hierarchical descriptions for (a) fluid flow and (b) phonon transport systems at different levels.

2.3.2. Hydrodynamic description of phonon systems
The study on phonon hydrodynamics began in the exploration of heat waves [88,129,130] (second sound). Landau [131]

and Tisza [132] independently predicted the existence of wavelike propagation of thermal energy (termed as second sound
first by Landau [131] in contrast to pressurewave as the first sound) in liquid Helium II based on their two-fluid superfluidity
theory [133]. Later, Lifshitz [134] suggested a method for exploring second sound, which was first detected in experiments
by Peshkov [135]. These work in liquid Helium motivated the seeking of heat waves in dielectric solid [136,137], because
of the same elementary excitations (i.e. phonons) [133]. The early attempt [138] to detect the second sound in quartz
and sapphire crystal failed, due to insufficient purity and large anisotropy of crystalline sample [138] on one hand, and
ambiguous theoretical foundation [109,139] on the other hand. The first experimental observation of second sound in solid
helium [140] was not achieved before the systematical theoretical investigations by the group of Krumhansl [61,81,141,
142]. Their work [61,81] derived the Guyer–Krumhansl (G–K) equation and gave a window condition for the occurrence of
second sound, through a solution of linearized phonon Boltzmann equation by Eigen-value analysis method. Based on their
results, it is merely feasible to detect the second sound in the hydrodynamic region or phonon Poiseuille flow [143] region,
where N process dominates over R process.

The G–K equation is a macroscopic heat transport equation, playing the same role as Navier–Stokes equation in hydro-
dynamics, and corresponds to the hydrodynamic description of phonon systems. It can be derived from phonon Boltzmann
equation at mesoscopic kinetic level based on many different methods as will be summarized in the following section.
Section 2.1 actually corresponds to the microscopic description of phonons. The relationship between different levels of
descriptions for phonon transport system is summarized in Fig. 4(b).

Finally it is possible to give an intuitive physical picture of the hydrodynamic behavior of phonon systems. As is shown
in Section 2.2, phonon quasi-momentum does not destroy in N process. When N process is dominant over R process and its
mean free path is much smaller than the dimension of crystalline sample, the momentum conservation is ensured during
scattering events just as in gas transport. Thus the local equilibrium can be reached in each small element of the crystalline
sample [144], and the macroscopic behavior of phonons resembles that of the classical viscous fluid.

3. Classical phonon hydrodynamics

The field of phonon hydrodynamics was gradually established since the fundamental work by Guyer and Krumhansl
[61,81]. Hereafter, further theoretical advances [82,145,146] are achieved by the Eigen-value analysis method applied in
Refs. [61,81], with also credible applications inmodeling lattice thermal conductivity [147,148]. Other approacheswere also
proposed such as the approximatemethod [149],microscopic dynamicsmethod [150] andGreen functionmethod [151], and
were summarized thoroughly in a review article [152]. In recent years,motivated by the extensivemodels [108,153–155] for
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gas transport, several newmethods are developed to obtain phonon hydrodynamicmodels, including themaximumentropy
momentmethod [156,157], Grad’s typemomentmethod [84] and Chapman–Enskogmethod [86,158]. In this section, a brief
overview is firstly given to the three classicalmethods: Eigen-value analysismethod, Chapman–Enskogmethod andmoment
method. Then a unified kinetic framework is established through a solution to phonon Boltzmann equation with Callaway’s
relaxation approximation by Chapman–Enskog method. It will be shown that most of previous phonon hydrodynamic
models can be included in the present framework as special cases.

3.1. Diverse branches and methods

3.1.1. Eigen-value analysis method
The Eigen-value analysis method was initially suggested by Peierls [15] and later developed in Ref. [159] to solve the

phonon Boltzmann equation in the presence of sole N process. It was first applied to investigate the phonon hydrodynamic
behaviors in Refs. [61,81]. In the frame of this method, (14) is cast into an instructive form [61,81,82]:

D∗f =

R∗

+ N∗

f , (21)

with D∗ the drift operator containing transient and advection terms, R∗ and N∗ being the collision operators for R and N
processes respectively. In extremely low temperature case where R∗

≪ N∗, the solution of Eq. (21) is obtained in terms
of the eigenvectors of N∗ operator. The eigenvectors are grouped into two categories: those having zero eigenvalue and
those having nonzero one. The former make up the null space of N∗ operator, where there are merely four eigenvectors:
|η0⟩, |η1x⟩, |η2x⟩ and |η3x⟩, which are related intimately to the phonon energy density (E) and the components (qx, qy, qz) of
heat flux vector respectively. Thus the solution is expressed as a linear combination of the eigenvectors of N∗ operator:

f =


m

am (x, t) |ηm⟩. (22)

Substituting Eq. (22) into Eq. (21), they finally got the energy balance equation and the G–K equation [61]:

τR
∂q
∂t

+ q + λ∇T =
1
5
v2
gτNτR


∇

2q + 2∇ (∇ · q)

, (23)

with λ the bulk thermal conductivity, and a coefficient ‘2’ before the gradient of divergence of heat flux, slightly distinct
from ‘1/3’ got in Ref. [82] by the same method. Note that Eq. (23) has a similar form to Navier–Stokes equation [133]:

ρ


∂v
∂t

+ (v · ∇) v


= −∇p + µ∇
2v +


ς +

1
3
µ


∇ (∇ · v) , (24)

where ρ, v and p are the mass density, mass velocity and pressure of fluid, respectively, µ and ζ are the shear and bulk
viscosity, respectively. This similarity lays amathematical foundation for the phonon hydrodynamicsmodel, although some
tiny differences still exist because of the heat flux term in Eq. (23) while lacking in Eq. (24), and the advection term in
Eq. (24) while lacking in Eq. (23). The difference is attributed to some difference between phonons and fluids, as will be
explained based on the kinetic framework developed below. Note that a more general equation analogous to Eq. (23), but
with different interpretation of the several coefficients, may be found in turbulent superfluid helium [160–163].Wewill not
enter into this specialized topic, but anyway it is interesting to know about the possibility that the range of an equation of
the form as (23) may be more general than for phonons in solids. In fact, an equation analogous to Eq. (23) has been derived
from a more general setting by means of a non-equilibrium maximum entropy operator method, not only for phonons,
but also for electrons, although the particular range of its application is different for both systems, and more restricted for
electrons [164].

3.1.2. Chapman–Enskog method
Chapman–Enskog method for the solution of phonon Boltzmann equation includes two derivatives: (1) the continuous

asymptotic expansion; (2) the discrete lattice Boltzmann scheme. The latter is taken into account because of two aspects: (1)
the lattice Boltzmann equation can be derived from Boltzmann transport equation as a special discretized form [165–167];
(2) the hydrodynamic equations can be recovered from lattice Boltzmann equation by Chapman–Enskog method [155,168].
Thus it is possible to obtain the hydrodynamic description for phonons by the lattice Boltzmann scheme.
I. Continuous form: asymptotic expansion

Chapman–Enskog method was developed along Hilbert expansion [169]—the first perturbative approach to solve the
Boltzmann equation, independently by Enskog [170] and Chapman [171] in dealing with rarefied gas transport. Early trace
of the application of thismethod to phonon transport is the aforementioned approximatemethod [143,149], which assigned
the solution by the displaced Planck distribution. The approximate method could be actually treated as a special case of
zeroth-order Chapman–Enskog expansion. The closure and stability problems were then discussed by mathematicians for
the moment equations of phonon Boltzmann equation in the line of Chapman–Enskog method [172–174]. Substantial
progress is not made before the work by Banach and Larecki [86], where Chapman–Enskog expansion was conducted
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around the displaced Planck distribution and macroscopic heat transport equations were derived within different orders
of approximations. Subsequently, they made a solution to the infinite system of moment equations of phonon Boltzmann
equation [175] by the same method and analyzed the stability [175,176] of different orders of solutions. These works
constitute a solid theoretical foundation for phonon hydrodynamics modeling. However, there is still a distance away from
credible applications of the hydrodynamic heat transport equations obtained in Refs. [86,175,176].
II. Discrete form: lattice Boltzmann scheme

Shortly after the lattice Boltzmann scheme was proposed in Refs. [177,178], Guyer [158] applied it to simulate the
phonon gas hydrodynamics. Merely N processes of transverse and longitudinal phonons were considered and the isotropic
D2Q7 lattice without center-point component was applied, with 2 denoting the dimension and 7 denoting the number
of directional components [158]. There are no advances until Jiaung and Ho [179] made a Chapman–Enskog expansion
solution to phonon lattice Boltzmann equation under Callaway’s relaxation approximation, and achieved a macroscopic
heat transport equation similar to G–K equation. It is a milestone in the development of lattice Boltzmann modeling
of phonon hydrodynamics, in that this work first bridged the mesoscopic numerical scheme and macroscopic phonon
hydrodynamics. On the other hand, it takes into account both N process and R process thus beingmore credible thanmerely
considering N process in Ref. [158]. Though, the conventional D2Q9 lattice is used, assuming a fictitious larger phonon speed
in the diagonal direction than in the straight direction [179]. In the frame of the scheme proposed in Ref. [179], Lee et al.
[180,181] devised a novel interfacial boundary collision rule for the simulation of multiphase phonon hydrodynamics to
tackle the heat transport between dissimilar materials. In spite of these pioneering work, the lattice Boltzmann modeling is
still in its fancy due to the following aspects: (1) dimensionless variables are taken in all of these simulations [158,179–181]
with parameters still far away from realistic values of engineeringmaterials; (2) a reasonable lattice structure is still lacking
to accurately describe the microscopic dynamics of phonons; (3) treating the frequency spectral characteristic of phonons
remains an open question.

There are several other reports [58,79,80,182–184] on lattice Boltzmann modeling of phonon transport in both bulk and
nanostructuredmaterials in the last several years. They are not introduced here because from a point of view of the classical
phononhydrodynamicswhere theNprocess dominates thephonon transport, their schemes of lattice Boltzmannmodel deal
with only the R process, which is beyond the classical phonon hydrodynamics. Therefore a concept of generalized phonon
hydrodynamics and the corresponding lattice Boltzmann implementation will be introduced and discussed in Section 5.

3.1.3. Moment method
Moment method is proposed by Grad [153] as an alternative approach to solve the Boltzmann equation in addition

to Chapman–Enskog method. Its basic idea is to construct for high-order moments (the viscous stress and heat flux, etc.)
balance equations involving the fluxes of them. To obtain closed expressions for these fluxes and thus a determined system
of differential equations, the distribution function is expanded around the equilibrium distribution in Hermite polynomials
truncated at a specific order. In the developments of phonon hydrodynamics models, there are mainly two derivatives
of moment methods: Grad’s type moment method as a kinetic approach, and maximum entropy moment method as a
variational approach, as to be introduced respectively.
I. Grad’s type moment method

In the spirit of Grad’s idea, a modified moment method is proposed to derive the nine-moment phonon hydrodynamics
through a closure procedure for the fluxes of high-ordermoments. The phonon distribution function is expanded around the
Planck distribution in earlywork [185] and around the displaced Planck distribution in subsequentwork [84]. The expansion
around the displaced Planck distribution in subsequent work hold the advantage that the heat flux is incorporated into the
heat transport model in a non-perturbative manner [84,86,175], which is thus still valid for a large value of heat flux in
nonlinear problems. Though, to avoid mathematical intricacies without losing physical interpretation, both linear phonon
dispersion relation and isotropic gray approximation are assumed in their derivations [84,185]. In a series of work [186]
the one-dimensional rotationally symmetric reduction of the nine-moment phonon hydrodynamics was demonstrated
to adopt a symmetric hyperbolic form. Symmetric hyperbolicity has at least three benefits for mathematical physicists
[186,187]: (1) it guarantees finite propagating speed of disturbances; (2) it ensures well-posedness of Cauchy problems;
(3) it allows for the propagation of wave fronts.

Although some fundamental theoretical works have been done, the moment phonon hydrodynamic model is still far
away from actual applications. This situation was not remedied until recently the boundary conditions are derived for the
macroscopic moment equations [188]. The derivation is based on a Grad’s closure by expanding the phonon distribution
function around Planck distribution. Three types of boundary conditions have been applied [188]: isotropic scattering,
specular scattering and thermalization. The 4-, 9-, 16-, and 25-moment phonon hydrodynamics equations are solved for 1D
steady-state heat transfer and 2D phonon Poiseuille flow, with the profiles of both temperature and heat flux distributions
obtained. Nevertheless, comparison of theoretical predictions to experimental results is still lacking due to too many
simplified assumptions.

Finally, an interesting aspect is noted that nine-moment phonon hydrodynamic model corresponds to the classical
thirteen-moment model in hydrodynamics [153,154]. Both of them truncate the moment systems up to third order in
the frame of Grad’s method. However, the former lacks the zeroth-order moment due to the non-conservation of phonon
number. On the other hand, under the linear gray approximations, the phonon momentum density is proportional to heat
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flux. Therefore another three moments are reduced in phonon hydrodynamics. This explain why at the same level only
nine moments exist in phonon hydrodynamics whereas thirteen moments in classical hydrodynamics, and indicates some
difference between kinetic theories of phonons and fluids.
II. Maximum-entropy moment method

Maximum entropy method [189] is another closure approach to the moment systems of phonon Boltzmann equation.
Based on this method, four-moment [83,156] and nine-moment [85,109,185] phonon hydrodynamics were derived
successively. Its basic tenet is to acquire the phonon distribution function bymaximizing the phonon entropy density under
the constraints of prescribed state variables (energy, quasi-momentum, momentum flux, etc.) with a Lagrange multiplier
method [190]. Thus a closed set of balance equations are obtained for all the phonon state variables and Lagrangemultipliers,
and have been demonstrated [85,157] to admit symmetric hyperbolic form. The linear isotropic phonon dispersion relation
is usually assumed in early work [83,85,156,157,185], as in Grad’s type moment method. Only recently the influence
of nonlinear dispersion is studied on the relation of phonon hydrodynamics to phenomenological theories with internal
vector [191] and the propagating speed of weak discontinuity [192] in the frame of four-moment models.

Finally, note that moment phonon hydrodynamic model derived by maximum entropy method was demonstrated
[83,109,185] to be consistent with that obtained by extended thermodynamics method, which was proposed [193,194]
based on classical kinetic theory of gases.

3.2. A unified kinetic framework

In this subsection, phonon hydrodynamic models will be derived through solving the phonon Boltzmann equation
under Callaway’s relaxation approximation (18) with Chapman–Enskog method. Therefore a unified kinetic framework is
established, which sums up most of previous models derived by different methods. The present derivation is based on the
approach proposed in Ref. [86], however, with several differences:
(1) Dimensional variables are used, in contrast to non-dimensional ones in Ref. [86];
(2) Two temporal scales and one spatial scale as in classical hydrodynamics [155] are used, in contrast to infinite temporal

and spatial scales in Ref. [86];
(3) Sub-order (sub-first-order and sub-second-order) approximations are also considered of the full zeroth- and first-order

expansions in Ref. [86].

3.2.1. Assumptions
As in previous study on deriving the phonon hydrodynamicmodels, the following approximations aremade [84,86,188]:

(1) Debye approximation: the linear phonon dispersion relation introduced by Debye [107]: ω = vgk is adopted, with the
phonon group velocity (15) reducing to:

vg =
vg

k
k. (25)

(2) Isotropic approximation: the phonon properties in one crystalline direction are representative of that in the whole
wave vector space, and thus three identical acoustic phonon branches are consideredwith the contribution from optical
phonon branches neglected.

(3) Gray approximation: a representative phonon branch is considered with constant relaxation times τR, τN. Although τR,
τN are usually dependent on phonon frequency and crystal temperature, we treat the simple gray case for mathematical
simplicity without losing physical interpretation.

3.2.2. Macroscopic variables definitions
Phonon transport is described by several macroscopic state variables [16,109] at the hydrodynamic level. Based on the

principles in statistical physics [125], they are obtained by integrating the product of phonon distribution function and
corresponding microscopic variables: the energy density of phonons:

E =


}ωf

3dk
(2π)3

, (26)

where 3 represents the number of acoustic phonon branches and 2π results from the elemental volume in the wave vector
space, the momentum density of phonons:

P =


}kf

3dk
(2π)3

(27)

and the heat flux:

q =


vg}ωf

3dk
(2π)3

. (28)

Substitution of Eq. (25) into Eq. (28) gives rise to the relation between heat flux and phonon momentum density:

q = v2
gP. (29)
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The flux of heat flux Q is defined based on the balance equation of heat flux as in extended thermodynamics [40,187]:

Q =


vgvg}ωf

3dk
(2π)3

. (30)

It is a second-order symmetric tensor (Q = QT ) which could be split into a trace part and a deviatoric (traceless) part as:

Qij =
1
3
v2
gEδij +


vg,<ivg,j>}ωf

3dk
(2π)3

, (31)

with δij the unit tensor, and ⟨⟩ denoting the deviatoric part.

3.2.3. Conservation laws and balance equations
Both N and R processes ensure energy conservation, yielding the following relations under gray approximation:

}ωf
3dk

(2π)3
=


}ωf eqR

3dk
(2π)3

,


}ωf

3dk
(2π)3

=


}ωf eqN

3dk
(2π)3

. (32)

Merely N process ensures momentum conservation thus yielding:
}kf

3dk
(2π)3

=


}kf eqN

3dk
(2π)3

. (33)

The balance equations of phonon energy andmomentum densities are obtained through an integration of the product of
phonon Boltzmann equation and microscopic variables }ω and }k respectively:

∂E
∂t

+ ∇ · q = 0, (34)

∂P
∂t

+
1
v2
g
∇ · Q = −

P
τR

. (35)

Substitution of Eq. (29) into Eq. (35) gives rise to the balance equation for heat flux (heat transport equation):

∂q
∂t

+ ∇ · Q = −
q
τR

, (36a)

or rewritten as when combined with Eq. (31):

∂q
∂t

+
1
3
v2
g∇E + ∇ · Q◦ = −

q
τR

. (36b)

The deviatoric part of Q is denoted by Q◦.
In order to obtain the heat transport equation as an explicit relation between heat flux and temperature (or energy

density) gradient, we have to acquire the phonon distribution function in terms of phonon energy density and heat flux.
Thus a solution of phonon Boltzmann equation is needed. An exact analytical one is difficult althoughmany approximations
have beenmade. Therefore, a multiscale asymptotic expansion is conducted for the phonon distribution function. Sub-order
approximations to each order of expansions are considered to further simplify the solution in the following.

3.2.4. Multiscale expansion
Two temporal scales and one spatial scale are applied,with their relations to the normal temporal and spatial scales [155]:

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
, (37)

∂

∂xi
= ε

∂

∂x1i
, (38)

where t1 and t2, x1 i (i = 1, 2, 3) are the multiscale temporal and spatial variables, and ε is a small parameter which will be
explained below. The phonon distribution function is expanded asymptotically as:

f = f0 + εf1 + ε2f2 + · · · , (39)

with f0, f1 and f2 denoting the zeroth-, first- and second-order approximate components respectively.
The small parameter ε usually denotes Kn number (the ratio of mean free path to the characteristic size of fluid system)

in classical hydrodynamics [154,155]. Navier–Stokes equation is thus derived through a solution of the Boltzmann equation
by Chapman–Enskog expansion up to first order in Kn. In contrast, the small parameter here will not be the same because
the definitions of mean free path and Kn become ambiguous due to two categories of phonon scatterings. Therefore, as in
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previous work, the small parameter is assumed as the ratio of the relaxation time of N process to that of R process [86,175]:

ε =
τN

τR
. (40)

In this way, we consider the situation where the relaxation time of N process is much smaller than that of R process. Small
relaxation time means frequent scatterings whereas large one denotes scarce scatterings. This is reasonable because N
process dominates over R process in classical phonon hydrodynamics.

Substituting Eqs. (37)–(39) into Eq. (14), and combining the terms in each order of the small parameter ε, we achieve the
approximate components of phonon distribution function respectively:

f0 = f eqN , (41)

f1 = f eqR − f eqN − τN


∂ f0
∂t1

+ vgi
∂ f0
∂x1i


, (42)

f2 = f eqN − f eqR + τN


∂ f0
∂t1

−
∂ f0
∂t2

−
∂ f1
∂t1

+ vgi
∂ f0
∂x1i

− vgi
∂ f1
∂x1i


. (43)

Note that in previous work [86,175], it was assumed in prior to expand the phonon distribution function around displaced
Planck distribution, which in contrast is obtained naturally in Eq. (41) in the present framework.

Substituting Eq. (39) into the kinetic definitions Eqs. (26)–(30), we can expand the macroscopic variables in several
approximate components similarly:

E = E0 + εE1 + ε2E2 + · · · , with En =


}ωfn

3dk
(2π)3

, (44a)

P = P0 + εP1 + ε2P2 + · · · , with Pn =


}kfn

3dk
(2π)3

, (45a)

q = q0 + εq1 + ε2q2 + · · · , with qn =


vg}ωfn

3dk
(2π)3

, (46a)

Q = Q0 + εQ1 + ε2Q2 + · · · , with Qn =


vgvg}ωfn

3dk
(2π)3

. (47)

Combined with the conservation relations Eqs. (32), (33), (44a) and (45a) reduce to:

E = E0 =


}ωf eqN

3dk
(2π)3

, En =


}ωfn

3dk
(2π)3

= 0, for n ≥ 1, (44b)

P = P0 =


}kf eqN

3dk
(2π)3

, Pn =


}kfn

3dk
(2π)3

= 0, for n ≥ 1. (45b)

Taking into account the relation between heat flux and phonon momentum density in Eq. (29), we get from Eq. (45b):

q = q0 =


vg}ωf eqN

3dk
(2π)3

, qn =


vg}ωfn

3dk
(2π)3

= 0, for n ≥ 1. (46b)

Only the zeroth-order approximate component of phonon distribution function contributes to the phonon energy density,
momentumdensity and heat flux, while the higher-order approximate components contribute solely to the flux of heat flux.

Finally, substitution of Eqs. (43)–(47) into the energy and momentum balance equations (34) and (36) gives rise to the
following equations at different order of approximations:

∂E
∂t1

+
∂

∂x1i
qi = 0, (48a)

∂E
∂t2

= 0, (48b)

∂qi
∂t1

+
∂

∂x1j
Q0ji = −

1
τN

qi, (49a)

∂qi
∂t2

+
∂

∂x1j
Q1ji = 0. (49b)

3.2.5. Zeroth-order expansion solution
The zeroth-order approximate component f0 is taken into account in this part, and the zeroth-order expansion solution

will be obtained. The kinetic expression of the flux of heat flux becomes:

Q = Q0 =


vgvg}ωf0

3dk
(2π)3

. (50)
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Therefore all the macroscopic variables become dependent merely on f0. We will achieve the explicit forms of them and the
heat transport equation by substituting Eq. (41) into the kinetic definitions of them. However, the drift velocity in displaced
Planck distribution Eq. (20) makes the integration in Eqs. (44b)–(46b) and Eq. (50) difficult. Thus in this part, we firstly
consider the approximations of Eq. (20) up to first and second order respectively, globally corresponding to sub-first-order
and sub-second-order approximations of zeroth-order expansion, and finally the full zeroth-order expansion.

I. Sub-first-order approximation
If the drift velocity term is assumed to be small, then a Taylor expansion of Eq. (20) around Planck distribution Eq. (19)

up to first order becomes:

f eqN ≈ f eqR + f eqN1 , (51)

with the sub-first-order term f eqN1 = f eqR


1 + f eqR


}k · u/kBT . This expansion is valid at |−}k · u/kBT | ≫ }ω/kBT ,

inferring ‘‘u ≫ vg ’’ when combined with the linear dispersion relation. Substituting Eq. (51) into Eqs. (44b), (46b) and
(50) respectively and conducting integrations in the whole wave vector space (the details of computation are shown in
Appendix A), we achieve the expressions of the phonon energy density:

E =
4π5 (kBT )4

5

hvg
3 , (52)

the heat flux:

q =
16π5 (kBT )4

15

hvg
3 u =

4
3
Eu, (53)

and the flux of heat flux:

Q =
1
3
v2
gEI. (54)

The limit of integration extends from the first Brillouin zone to the whole wave vector space (−∞, +∞) which makes
the integration much simpler. This simplification is appropriate because heat transport in low temperature dielectric
crystals is contributed dominantly by phonons at low energy levels with short wave vectors [83,156]. Eq. (52) shows that
phonon energy density is proportional to the quartic power of the temperature, which is quantitatively consistent with
previous results obtained by Grad’s type moment method [84,186,188], maximum entropy moment method [83,109,156]
and Chapman–Enskog method [86,175].

Substitution of Eqs. (52) and (54) into Eqs. (34) and (36) gives rise to the energy balance equation and heat transport
equation respectively:

CV
∂T
∂t

+ ∇ · q = 0, (55)

τR
∂q
∂t

+ q = −λ∇T , (56)

with the thermal conductivity λ = CV τRv
2
g/3 and the heat capacity per unit volume (got from dE = CVdT ) CV =

16π5k4BT
3/5


hvg
3. Eq. (56) is exactly the Cattaneo–Vernotte (C–V) equation [89,195] which adds the thermo inertia effect

[40,88,187] into the classical Fourier’s law. They are also consistent with the four-field equations obtained in moment
phonon hydrodynamics [109,188]. In a word, the celebrated C–V model is achieved through the sub-first-order
approximation of zeroth-order expansion solution. Finally note that heat flux is related intimately to drift velocity of
phonons in Eq. (53), inferring that the drift velocity is proportional to heat flux as u =

3
4
q
E .

II. Sub-second-order approximation
If the Taylor expansion of Eq. (20) around Planck distribution is truncated at second order, we get f eqN = f eqR + f eqN1 + f eqN2 ,

with the sub-second-order term:

f eqN2 =
1
2


}k · u
kBT

2

exp


}ω

kBT


exp


}ω

kBT


+ 1


exp


}ω

kBT


− 1

3
. (57)

Through similar procedures as in sub-first-order approximation, we achieve the expressions of the phonon energy density:

E =
4π5 (kBT )4

5

hvg
3 

1 +
10
3

χ2


, (58)
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with the ratio of phonon drift speed to group speed χ ≡ u/vg, the heat flux same as Eq. (53) since Eq. (57) contributes
nothing to heat flux:

q =
16π5 (kBT )4

15

hvg
3 u, (59)

and the flux of heat flux:

Q =
4π5 (kBT )4

15

hvg
3 v2

g I +
8π5 (kBT )4

15

hvg
3 u2I +

16π5 (kBT )4

15

hvg
3 uu. (60)

The flux of heat flux is reformulated in terms of phonon energy density and heat flux by combining (58)–(60):

Q =
1
3
v2
gEI +

3vg

2vgE +


4v2

gE2 − 30q2
⟨qq⟩. (61)

Substituting Eq. (61) into Eq. (36), we acquire the heat transport equation:

∂q
∂t

+
1
3
v2
g∇E + ∇ ·

3vg⟨qq⟩

2vgE +


4v2

gE2 − 30q2
= −

q
τR

. (62)

Previous work [100] tried to derive the heat transport equation in thermon gas model from phonon Boltzmann
equation with Callaway’s relaxation approximation. It approximated the phonon distribution function by displaced Planck
distribution within second-order Taylor expansion, and is exactly equivalent to the sub-second-order approximation of
zeroth-order expansion in the present work. The heat flux expression Eqs. (53) or (59) achieved here is consistent with that
obtained in Ref. [100].
III. Full zeroth-order expansion

Finally, the full zeroth-order expansion is considered without any approximations to the displaced Planck distribution.
Through similar procedures in sub-first-order and sub-second-order approximations, we achieve the expressions of phonon
energy density, heat flux and the flux of heat flux respectively (the details of computation are shown in Appendix B):

E =
4π5 (kBT )4

15

hvg
3 χ2

+ 3
1 − χ2

3 , (63)

q =
16π5 (kBT )4

15

hvg
3 1

1 − χ2
3 u, (64)

Q = v2
g
4π5 (kBT )4

15

hvg
3 1

1 − χ2
2 I + 16π5 (kBT )4

15

hvg
3 1

1 − χ2
3 uu. (65)

Eqs. (63)–(65) in one-dimensional forms are consistent with the corresponding expressions obtained in four-moment
nonlinear phonon hydrodynamics [149]. It considered a one-dimensional steady-state heat conduction through a cylindrical
dielectric solid, with the phonon distribution function approximated by displaced Planck distribution [149].

Combination of Eqs. (63)–(65) gives rise to the expressions of drift velocity and the flux of heat flux respectively in terms
of phonon energy density and heat flux:

u =
3vgq

2vgE +


4v2

gE2 − 3q2
, (66)

Q =
1
3
v2
gEI +

3vg ⟨qq⟩

2vgE +


4v2

gE2 − 3q2
. (67)

For a small heat flux, Eq. (66) reduces to a linear dependence of drift velocity on heat flux obtained in sub-first-order
approximation. Thus it is a generalized relation between u and q in the region far from equilibrium state, and is consistent
with the result of three-dimensional case in Refs. [86,175]. Substituting Eq. (67) into Eq. (36a), we acquire the heat transport
equation:

∂q
∂t

+
1
3
v2
g∇E + ∇ ·

3vg ⟨qq⟩

2vgE +


4v2

gE2 − 3q2
= −

q
τR

. (68)

Eq. (68) is consistent with the phonon hydrodynamic models obtained by maximum entropy moment method [83,85,156],
Grad’s type moment method [84,186], and Chapman–Enskog method at three dimensional case [86,175]. It is seen that the
present order of expansion sum up many previous models derived by different approaches.
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3.2.6. First-order expansion solution
In this part, the first-order approximate component f1 is also taken into account, and the first-order expansion solution

will be got. It is obtained by substituting Eq. (41) into Eq. (42):

f1 = f eqR − f eqN − τN


∂ f eqN

∂t1
+ vgi

∂ f eqN

∂x1i


. (69)

The following differential relations are got based on the chain rule:

∂ f eqN

∂t1
=

∂ f eqN

∂uj

∂uj

∂t1
+

∂ f eqN

∂T
∂T
∂t1

, (70)

∂ f eqN

∂x1i
=

∂ f eqN

∂uj

∂uj

∂x1i
+

∂ f eqN

∂T
∂T
∂x1i

. (71)

The partial differentials with respect to t1 (∂uj/∂t1, ∂T/∂t1) in Eq. (70) are related to the partial differentials with respect
to x1 i through Eqs. (48a) and (49a) when combined with Eqs. (63) and (64). Therefore we will achieve f1 in terms of phonon
energy density, heat flux and their spatial gradients by substituting the displaced Planck distribution Eq. (20) into Eqs. (69)–
(71). Then the explicit forms of the flux of heat flux and heat transport equation will be acquired. However, the displaced
Planck distributionmakes the full first-order expansion become extremely complicated and lose its physical indication. The
corresponding heat transport equation will be too complex for actual applications, as is shown in previous work [86,175].
Therefore, in the spirit of zeroth-order expansion solution in Section 3.2.5, merely the sub-first-order approximation to the
first-order expansion is considered. The full first-order expansion could be referred in Refs. [86,175] and not introduced here
due to its lengthy process and lacking of physical interpretation.

I. Sub-first-order approximation
Taylor expansion truncated at first order is assumed for the displaced Planck distribution, as in part I of Section 3.2.5.

Thus the expressions of approximate phonon distribution, phonon energy density and heat flux remains the same, and are
rewritten here for the sake of convenience:

f eqN ≈ f eqR + f eqN1 , (51)

E =
4π5 (kBT )4

5

hvg
3 , (52)

q =
16π5 (kBT )4

15

hvg
3 u =

4
3
Eu. (53)

The zeroth-order component of the flux of heat flux becomes:

Q0 =
1
3
v2
gEI. (54)

The first-order component of the flux of heat flux will be obtained once the first-order phonon distribution function f1 is
determined.

Substitution of Eq. (51) into Eqs. (69)–(71), supplementedwith Eqs. (52)–(54), (48a) and (49a), gives rise to the expression
of f1:

f1 = −
}k · u
kBT

− τN



}ki
kBT

f eqR


1 + f eqR

 
−

v2
g

4E
∂E
∂x1i

+
ui

E
∂qj
∂x1j

−
3qi
4EτN



−
1
CV

∂qj
∂x1j

f eqR


1 + f eqR

 }vgk
kBT 2

+f eqR


1 + f eqR

 }vgk
kBT 2


2f eqR + 1

 }k · u
kBT

− f eqR


1 + f eqR

 }k · u
kBT 2


+

vg

k
}kikj
kBT

f eqR


1 + f eqR

 3
4

∂

∂x1i

qj
E



+
vg

k
ki

∂T
∂x1i

f eqR


1 + f eqR

 }vgk
kBT 2

+f eqR


1 + f eqR

 }vgk
kBT 2


2f eqR + 1

 }k · u
kBT

− f eqR


1 + f eqR

 }k · u
kBT 2





. (72)
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Putting Eq. (72) into Eq. (47), we get the following integration because the terms from the odd function part of the integrand
vanish:

Q1 = −}v3
g


τNkk
k



−
1
CV

∂qj
∂x1j


f eqR


1 + f eqR

 }vgk
kBT 2


+

vg

k
}kikj
kBT

f eqR


1 + f eqR

 3
4

∂

∂x1i

qj
E


+

vg

k
ki

∂T
∂x1i


f eqR


1 + f eqR

 }vgk
kBT 2


2f eqR + 1

 }k · u
kBT

− f eqR


1 + f eqR

 }k · u
kBT 2




3dk

(2π)3
(73)

which could be divided into three parts:

Q1 = Q1,I + Q1,II + Q1,III, (74a)

with each part respectively resulting in finally (the details of computation are seen in Appendix C):
Q1,I


mn =

1
3
v2
gτN

∂qi
∂x1i

δmn, (74b)


Q1,II


mn = −

1
5
v2
gEτN


∂

∂x1i

qi
E


δmn +

∂

∂x1m

qn
E


+

∂

∂x1n

qm
E


, (74c)


Q1,III


mn = −

4
5

v2
gτN

T


qi

∂T
∂x1i

δmn + qn
∂T

∂x1m
+ qm

∂T
∂x1n


. (74d)

If the nonlinear effects resulting from the product of heat flux and temperature gradient are negligible, then Eq. (74d)
vanishes and Eq. (74c) reduces to:

Q1,II

mn = −

1
5
v2
gτN


∂qi
∂x1i

δmn +
∂qn
∂x1m

+
∂qm
∂x1n


. (75)

The first part Eq. (74b) of the flux of heat flux resembles the bulk viscous term in classical hydrodynamics [133]. If it is
neglected as the bulk viscosity usually not considered in fluid dynamics, the expression of the flux of heat flux is achieved
by combining Eqs. (54) and (75):

Qmn =
1
3
v2
gEδmn −

1
5
v2
gτN


∂qi
∂xi

δmn +
∂qn
∂xm

+
∂qm
∂xn


. (76)

Substituting Eq. (76) into Eq. (36a), we achieve the heat transport equation:

τR
∂qn
∂t

+ qn +
1
3
v2
gτR

∂E
∂xn

=
1
5
v2
gτNτR


∂2qn

∂xm∂xm
+ 2

∂

∂xn


∂qi
∂xi


, (77a)

or in vector form:

τR
∂q
∂t

+ q + λ∇T =
1
5
v2
gτNτR


∇

2q + 2∇ (∇ · q)

. (77b)

Eq. (77) is exactly the G–K equation (23) obtained by solution of linearized phonon Boltzmann equation with Eigen-value
analysis method. If the ‘‘bulk viscous term’’ Eq. (74b) of the flux of heat flux is also taken into account, then the expression
of the flux of heat flux is achieved by combining Eqs. (54), (74b) and (75):

Qmn =
1
3
v2
gEδmn −

1
5
v2
gτN


∂qn
∂xm

+
∂qm
∂xn

−
2
3

∂qi
∂xi

δmn


. (78)

Substituting Eq. (78) into Eq. (36a), we achieve the heat transport equation:

τR
∂qn
∂t

+ qn +
1
3
v2
gτR

∂E
∂xn

=
1
5
v2
gτNτR


∂2qn

∂xm∂xm
+

1
3

∂

∂xn


∂qi
∂xi


, (79a)

or in vector form:

τR
∂q
∂t

+ q + λ∇T =
1
5
v2
gτNτR


∇

2q +
1
3
∇ (∇ · q)


. (79b)

Eq. (79) is a revised G–K equation obtained in Ref. [82] with also the Eigen-value analysis method, and recently obtained
in moment phonon hydrodynamics by Grad’s type method [188]. From our perspective, the slight difference between Eqs.
(77) and (79) is attributed to different treatments of the ‘‘bulk viscous term’’ Eq. (74b) in the flux of heat flux. Note that the
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Table 3
Correlations between present kinetic framework and previous phonon hydrodynamic models.

Present kinetic framework Previous work and methods

Zeroth-order expansion

Full expansion

[149] Approximate method
[83,85,156] Maximum entropy moment method
[84,186] Grad’s type moment method
[86,175] Chapman–Enskog method

Approximations
Sub-first-order [89,195] Phenomenological
Sub-first-order [109] Maximum entropy moment method
Sub-second-order [100] Approximate method

First-order expansion

Full expansion [86,175] Chapman–Enskog method

Approximations

Sub-first-order [143] Approximate method
Sub-first-order [61,81,82] Eigen-value analysis method
Sub-first-order [196] Phenomenological
Sub-first-order [158,179] Lattice Boltzmann scheme
Sub-first-order [188] Grad’s type moment method

revised G–K equation (79) has almost the same form as Navier–Stokes equation (24) at negligible advection term and bulk
viscosity ζ , except the heat flux term resulting fromRprocess (as shown in the derivation of Eq. (35)). Actually previouswork
studied phonon hydrodynamic phenomena in very pure alkali-halide crystals by directly applying Navier–Stokes equation
to phonon gas flow [196], thus could be included in the present order of approximation.

Recently, a lattice Boltzmann scheme is proposed for phonon hydrodynamics based on a first-order Chapman–Enskog
expansion around a truncated displaced Planck distributionwithin first order [179], which is actually identical to the present
sub-first-order approximation. However, an additional term of temperature second-order spatial partial derivative in the
energy balance equation is obtained in Ref. [179], and results in an additional four-order spatial partial derivative term in
the temperature differential equation. Based on our detailed analysis, this additional term results from the fictitious larger
phonon speed in diagonal direction of D2Q9 lattice used in Ref. [179] and will vanish under the isotropic approximation.
Thus the lattice Boltzmann scheme is consistent with the present order of expansion.

Therefore, the celebrated G–K equation is derived through a sub-first-order approximation to first-order expansion
solution. The present work provides a much more intuitive and simpler way to derive it from phonon kinetic theory, in
contrast to the Eigen-value analysis method in previous work [61,81] with obscure mathematics. Finally, the heat flux term
in Eq. (77) will vanish in the absence of R process (τR → ∞), where the G–K equation reduces to:

∂q
∂t

+
1
3
v2
gCV∇T =

1
5
v2
gτN


∇

2q + 2∇ (∇ · q)

. (80)

Eq. (80) is consistent with the heat transport equations obtained in previous work [143,158] where only N process is
considered.

3.3. Summary: incorporation of previous models

A unified kinetic framework is established through a Chapman–Enskog expansion solution to phonon Boltzmann
equation in Section 3.2. Different sub-order approximations to zeroth-order and first-order expansions respectively give rise
to different heat transport equations obtained in previous phonon hydrodynamicmodels, which thus could be incorporated
into the present theoretical formalism as special cases. The correlations are thoroughly summarized between the present
kinetic framework and previous models in Table 3.

4. Phenomenological phonon hydrodynamics

The discussions in Section 3mainly focus on the derivation of heat transport equations fromphonon Boltzmann equation,
with actual applications less considered. In last few years, inspired by the progress in microscale gas flow by analytical and
experimental method [197–201], DSMC [202–204] and lattice Boltzmann simulations [205–207], people began to apply
the hydrodynamic approach to study micro- and nanoscale heat transport [62,98,208,209]. In modeling nanoscale phonon
transport, the nonlocal effect plays a relevant role [62], which could be understood from two aspects: (1) physically it comes
from the confinement of phonon-boundary scattering; (2) mathematically it may be described by a gradient term of the
heat flux. The cross-section heat flux distribution of in-plane phonon transport through a thin film at different Knudsen
numbers [38] shown in Fig. 5 is a good manifest of the nonlocal effect. It is seen that at high Kn (for instance, Kn = 1) in
nanoscale, the heat flux distribution deviates from the usual uniformprofile (Kn = 0.001 in the diffusive regime) determined
by the classical Fourier’s law. The non-uniform heat flux distribution resembles much the velocity distribution in micro-
channel gas flow, both of them having a non-vanishing value at the boundary. Based on this kind of similarity, the phonon
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K n

K n

K n

K n

Fig. 5. Analytical solution of cross-section heat flux distribution of in-plane phonon transport through a silicon thin film with diffuse lateral walls; the
properties of silicon at 300 K are used; for all the Knudsen numbers, the same temperature gradient of 0.01 K per mean free path is applied.

hydrodynamic model is proposed [62] for nanoscale heat transport. To cover the non-local phonon transport behavior, a
G–K like equation with gradient terms of heat flux is applied in prior [62,210]:

τR
∂q
∂t

+ q + λ∇T = l2

∇

2q + 2∇ (∇ · q)

, (81)

with l the phononmean free path. Since the application of G–K equation at elevated temperature (such as room temperature)
seems lacking of a solid foundation, we use the denomination ‘‘phenomenological phonon hydrodynamics’’ throughout this
section, as is already explained at the beginning of Section 1.2.3. Actually, Eq. (81) is slightly different from the original G–K
equation (77); but for convenience, we still use the name of ‘‘G–K equation’’ for Eq. (81) hereafter. Though logically a rigorous
connection is lost to the kinetic theory discussed in Section 3, historically the phenomenological phonon hydrodynamics
provides a simple approach to understand the nanoscale heat transport, which is reasonable in views of both physical picture
andmathematical description. To remedy this situation, an extended concept ‘‘generalized phonon hydrodynamics’’ will be
proposed and discussed in Section 5. TheG–K equation becomes themacroscopic governing equation, acting the same role as
the Navier–Stokes equation for gas flow. Thus heat flux boundary condition has also been developed for microscale phonon
gas flow, analogous to the velocity slip boundary for microscale gas flow [62].

In this section, firstly an overview is given to the velocity slip boundary for microscale gas flow and heat flux boundary
for microscale phonon gas flow. Then the thermodynamic foundations for both G–K equation and heat flux boundary
are introduced in the line of extended irreversible thermodynamics [40]. These laid a solid foundation for credible
applications of phonon hydrodynamics in predicting the thermal transport properties of nanostructures, as summarized in
Section 4.3. Finally, a revisit is made of the difference between phonon and gas flows, and the relationship between phonon
hydrodynamics and thermon gas models.

4.1. Origin and fundamentals

4.1.1. Velocity slip boundary in microscale gas flow
Inmicroscale gas flow, theKnudsennumber (Kn) is defined as the ratio ofmolecularmean free pathΛ to the characteristic

dimension L of gas flow (such as the height of a channel, or the diameter of a pipe) [154]: Kn = Λ/L. Based on the range
of Kn, gas flow is usually grouped into four regimes [198,211]: Kn ≤ 0.001, continuum flow regime; 0.001 < Kn < 0.1,
slip flow regime; 0.1 ≤ Kn < 10, transitional flow regime; Kn ≥ 10, free molecular flow regime. The Navier–Stokes
equation is derived from Boltzmann equation in the limit of small Kn [125,212], being rigorously valid in continuum flow
regime. Therefore the gas flows in other regimes have to be treated through a solution of the Boltzmann equation, which is
often intractable and time-consuming. The inefficient kinetic method fosters simple treatment: Navier–Stokes equation is
assumed to be still effective for gas flow within slip regime, when supplemented with velocity slip boundary.

The first velocity slip boundary is proposed by Maxwell [213], and adopts the following expression for isothermal gas
flow between stationary parallel plates:

vw = CΛ
∂v
∂n

, (82)
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with vw the slip velocity of gases at the wall, n denoting the unit normal direction of the wall and C the slip coefficient
determined by the surface properties of the plates. Eq. (82) is a first-order boundary, which is later generalized to second-
order by Cercignani [214,215]:

vw = C1Λ
∂v
∂n

− C2Λ
2 ∂2v
∂n2

, (83)

with C1, C2 slip coefficients determined from the solution of Boltzmann equation or experimental measurements.
Subsequently, many other velocity slip models were also proposed, which have been summarized thoroughly in the review
article [216] and will not be deeply explored here.

4.1.2. Heat flux boundary in phonon hydrodynamics
The heat flux boundary is developed in a heuristic way based on the similarity between phonon and gas flows in two

aspects: governing equations and physical pictures. For steady-state phonon heat transport in nanostructures, the G–K
equation (81) reduces to [62,87,210]:

λ∇T = l2∇2q. (84)

The divergence of heat flux has been vanished at the steady state based on Eq. (34), whereas the heat flux term is negligible
in comparison to the Laplacian term of heat flux in nanostructures where l is much larger than the system dimension
[62,87,210]. Eq. (84) resembles the steady-state Navier–Stokes equation with negligible nonlinear advection term:

∇p = µ∇
2v, (85)

which is applied to describe the Stokes flows at low Reynolds number or parallel flows (such as the Poiseuille flow and
Couette flow). In the case of fully-developed Poiseuille flow in a cylindrical pipe or between parallel plates, Eq. (85) gives
rise to a parabolic velocity distribution across the flow section. Therefore, Eq. (84) infers a similar behavior of phonon gas
Poiseuille flow with a parabolic heat flux distribution across the heat flow section. In analogy to the velocity slip boundary
Eq. (82) for microscale gas flow, the heat flux boundary is assumed [62]:

qw = Cl
∂q
∂n

, (86)

with qw the phonon heat flux at the boundary, n denoting the unit normal direction of the boundary and C the boundary
coefficient. Subsequently, the first-order boundary Eq. (86) is generalized to a second-order one in the framework of
extended irreversible thermodynamics [210]:

qw = Cl
∂q
∂n

− αl2
∂2q
∂n2

, (87)

withα an additional boundary coefficient to describe the phononbackscattering effect because of boundary roughness [210].
Note that although the present derivation is under simplified circumstance, the heat flux boundary is still valid for more
extensive situations. In a recent work [217], the heat flux boundary condition Eq. (86) is also derived from the discrete
Boltzmann transport equation based on a decomposition of the particle distribution function into an equilibrium part and
a nonequilibrium part, the gradients of which give rise to the heat flux in the bulk region and heat flux at the boundary
respectively. This theoretical study provides a primary microscopic foundation for the heat flux boundary condition Eq.
(86); on the other hand, further explorations on the physical nature of boundary heat flux in the future are thus motivated
since the derivation in Ref. [217] is mainly from the mathematical perspective.

4.2. Thermodynamic foundations

Thermodynamics has a close relation to heat transport science since its early debating on the nature of heat as a form
of substance (caloric) or energy [218]. The kinetic (energy) viewpoint finally won and gave rise to the rigorous statement
of second law by Clausius and Thomson [218]. Afterwards, the classical irreversible thermodynamics [219] was established
independently by Onsager [220,221], Eckart [222,223], Meixner [224] and Prigogine [225] for the near-equilibrium heat
transport described by Fourier’s law. In recent years, the rapid progress in micro- and nanoscale heat transport induces
generalized heat transport equations, which foster the development of irreversible thermodynamic theories [226,227] such
as rational thermodynamics [228], rational extended thermodynamics [187], extended irreversible thermodynamics [40],
weakly nonlocal thermodynamics [229] and GENERIC [230]. G–K equation is actually a generalized heat transport equation
beyond Fourier’s law by including the relaxation (memory) and nonlocal effects [46]. Thus Jou and his co-workers have
established a solid thermodynamic foundation for G–K equation and phonon hydrodynamics widely applied in micro- and
nanoscale heat transport.

In this subsection, a summary is made of the thermodynamic foundations for both the G–K equation and the
heat flux boundary. Different branches of thermodynamic theories have been proposed, but the extended irreversible
thermodynamics is the main line, with a brief introduction to other formalisms in the following.
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4.2.1. Thermodynamic derivation of G–K equation
In classical irreversible thermodynamics for heat transport in rigid solid, the specific energy e is the basic state variable

and Fourier’s law is a deduction from the linear thermodynamic flux–force relation. To recover the relaxation and nonlocal
terms in G–K equation, both the heat flux q and the flux of heat flux Q are elevated as additional state variables, being
the main idea of extended irreversible thermodynamics. Thus G–K equation was derived [35,231–233] in the extended
state variable space based on the generalized second law in extended irreversible thermodynamics. Moreover, the G–K
equation was also obtained by the dynamical nonequilibrium temperature method [234,235], weakly nonlocal irreversible
thermodynamics [236,237] and minimum entropy production variational principle [238,239]. From our perspective, these
thermodynamic formalisms are similar to extended irreversible thermodynamics, and are actually different derivatives of
extended thermodynamics [240,241]. As a result, we focused on the derivation of G–K equation in extended irreversible
thermodynamics.

We follow the general lines taking e, q, Q◦ and Q as the basic state variables. Q is the trace of the flux of heat flux. The
present derivation is slightly different from previous work [231] where e, q and Q are taken as state variables, and also
different from Refs. [232,233] where the evolution equations are assumed in prior for state variables. The specific entropy
is dependent on the state variables as s = s(e, q,Q◦,Q ) with the generalized Gibbs equation:

ds = θ−1de − vα1q · dq − vα2Q◦ : dQ◦ − vα0QdQ , (88)

with θ the nonequilibrium absolute temperature, v the specific volume, α0, α1 and α2 coefficients to be explained below.
Combined with the energy balance equation (34) (E = ρe), Eq. (88) becomes:

ρ ṡ = −θ−1
∇ · q − α1q · q̇ − α2Q◦ : Q̇◦ − α0Q Q̇ , (89)

where the dot denotes time derivatives. Comparing Eq. (89) to the local entropy balance equation [219]:

ρ ṡ = −∇ · Js + σ s, (90)

with the expression of entropy flux postulated as [40]:

Js =
q
θ

+ β1Q◦ · q + β2Qq, (91)

we achieve the expression of entropy production rate:

σ s
= q ·


−α1q̇ + ∇(θ−1) + β1∇ · Q◦ + β2∇Q


+ Q◦ :


−α2Q̇◦ + β1 (∇q)s

◦


+ Q


−α0Q̇ + β2∇ · q


. (92)

In Eq. (92), β1 and β2 are coefficients to be identified below, and (∇q)s
◦
is the symmetric deviatoric part of the tensor ∇q.

To ensure a non-negative entropy production rate restricted by the second law, linear flux–force relations are assumed:

µ1q = −α1q̇ + ∇(θ−1) + β1∇ · Q◦ + β2∇Q
µ2Q◦ = −α2Q̇◦ + β1 (∇q)s

◦

µ0Q = −α0Q̇ + β2∇ · q
(93a)

with µ0, µ1, and µ2 phenomenological coefficients. Eq. (93a) is reformulated as:

τ1q̇ = − (q + λ∇θ) + ∇ · Q
τ2Q̇◦ = −Q◦ + 2β ′′ (∇q)s

◦

τ0Q̇ = −Q + β ′
∇ · q

(93b)

with the identifications of parameters:

µ1 =
1

λθ2
, α1 =

τ1

λθ2
, β1 = β2 = µ1

µ2 =
µ1

2β ′′
, α2 =

τ2

2λθ2β ′′
, µ0 =

µ1

β ′
, α0 =

τ0

λθ2β ′
.

(94)

Usually it is assumed that the relaxation time of the flux of heat flux is negligibly smaller than that of the heat flux,
i.e. τ2 ≈ 0, τ0 ≈ 0. Therefore the heat transport equation is obtained by eliminating the flux of heat flux in Eq. (93b):

τ1
∂q
∂t

= − (q + λ∇θ) + β ′′
∇

2q +


β ′

+
β ′′

3


∇(∇ · q). (95)

In comparison to the G–K equation (77), the unknown coefficients and parameters in (95) are identified as:

β ′
=

1
3
τRτNv2

g , β ′′
=

1
5
τRτNv2

g , τ1 = τR. (96)

Thus the G–K equation is exactly derived. In some theories, instead, it has been assumed that the relaxation time of the flux
of heat flux is of the same order as that of the heat flux. In such a case, it has been proposed to take as independent variables
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all the higher-order fluxes of heat flux (respectively related to higher-order moments of phonon distribution function), thus
leading to a hierarchy of coupled equations for the higher-order fluxes [40,109]. This formalism leads to a continued-fraction
expression for the thermal conductivity in terms of the wave vector times the mean free path (or in terms of the Knudsen
number) [40]. Under some simplifying assumptions about the relaxation times of the higher-order fluxes (for instance,
assuming that all of them are equal, or depend mildly on the tensorial order of the corresponding fluxes) one may get an
effective thermal conductivity qualitatively describing the transition from the diffusive to the so-called ballistic regimes of
heat transport [46].

Finally, a brief introduction is given to the derivation of the steady-state G–K equation by the minimum entropy
production variational principle. Its main idea is to obtain the heat transport equation by minimizing the following
functional [238,239]:

I =


V

σ sdV +


V

γ∇ · qdV , (97)

with γ a Lagrange multiplier for the steady-state constraint (∇ · q = 0), and the entropy production rate for G–K equation
obtained in extended irreversible thermodynamics is [238,239]:

σ s
=

1
λθ2


q · q + l2


∇q : (∇q)T + 2 (∇ · q)2


. (98)

4.2.2. Thermodynamic derivation of heat flux boundary
The heat flux boundary is derived through similar procedures in the line of extended irreversible thermodynamics. Based

on the definitions of specific energy and entropy at the boundary, the heat flux and the flux of heat flux at the boundary, the
generalized Gibbs equation becomes [242]:

dsw = θ−1
w dew − vα′

1qw · dqw − vα′

2Qw : dQw, (99)

with the subscript ‘‘w’’ denoting quantities at the boundary, and the apostrophe to distinguish the coefficients from those
used in previous derivation of G–K equation. The entropy balance equation is still the same as Eq. (90), but only with
subscripts ‘‘w’’. The entropy flux is supposed to assume the following form [242]:

Jsw · n =
qw · n
θ∞

−
q · n
θw

+ ϖQw · qw · n, (100)

with θ∞ the environment temperature, ϖ a constant, n being the unit normal vector of the wall. Combination of Eqs. (90),
(99) and (100) gives rise to the expression of entropy production rate:

σ s
w = qw ·


1

θ∞

−
1
θw


n + ϖQw · n − α′

1q̇w


− α′

2Qw : Q̇w. (101)

To ensure non-negative entropy production rate restricted from the second law, linear flux–force relations at the
boundary are also assumed:

µ′

1qw =


1

θ∞

−
1
θw


n + ϖQw · n − α′

1q̇w

µ′

2Qw = −α′

2Q̇w.

(102)

Combined with Eqs. (102), and (93) based on the continuity of the flux of heat flux, the tangential boundary heat flux is
derived finally:

qwt = Cl
∂q
∂n

, (103)

with the slip coefficient C =
ϖ

µ′
1


µ1
µ2

. Eq. (103) is exactly the first-order heat flux boundary Eq. (86). Note that the second-
order heat flux boundary condition Eq. (87) can be also obtained by introducing higher-order flux of heat flux into the state
variable space [239,242].

Finally, we introduce the main idea of deriving heat flux boundary in another way: the minimum entropy production
variational principle. In contrast to Eqs. (97) and (98) in deriving the steady-state G–K equation, additional terms related to
the heat flux at the boundary are included into the entropy production rate [239]:

I =


V


σ s

+ γ∇ · q

dV +


A

l
λθ2C

(qw · qw) dA. (104)

Minimizing the functional equation (104) will result in the first-order heat flux boundary equation (86). Similarly, the
second-order heat flux boundary could be obtained by introducing higher-order fluxes.
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Fig. 6. Phonon gas flow through nano thin film.

4.3. Applications: thermal conductivity predictions of nanostructures

For heat transport in nanostructures, the heat flux distribution can be obtained by a solution of the G–K equation
with heat flux boundary. Integration of the heat flux distribution in a cross section of the nanostructure gives rise to the
effective thermal conductivity,whichusually deviates from thebulk value anddecreaseswith the reduction of nanostructure
size [38]. In this subsection, the credible application of phonon hydrodynamics is presented to model the size-dependent
thermal conductivity of typical nanostructures: nano thin films and nanowires [62,243–248]. Furthermore, the effect of wall
roughness in nanostructures on thermal conductivity is considered by including it into the phonon hydrodynamic model.

4.3.1. Nano thin films
Heat transport through a nano thin film is modeled by phonon gas flow between two parallel plates as is shown in

Fig. 6. The length and height of the channel is L and h respectively, whereas the width is much larger than the height with
only a unit width is accounted. The temperature difference between the inlet and outlet of the channel is ∆T . Therefore
it becomes a two-dimensional temperature-difference driven phonon gas flow, exhibiting a similar physical picture of
pressure-difference driven gas Poiseuille flow between parallel plates.

The heat flux through the nano thin film consists of two parts: q = qb + qw with qb the bulk part and qw the boundary
part, which are assumed additive independently [62,87,210]. The bulk part is obtained by an analytical solution of Eq. (84)
with the conventional boundary condition:

qb =
λ∆T
2l2L


h2

4
− y2


. (105)

The boundary part is obtained by putting Eq. (105) into the first-order heat flux boundary equation (86):

qw = Cl
∂qb

∂n
= −Cl

∂qb

∂y
= C

hλ∆T
2lL

. (106)

Summation of Eqs. (105) and (106) gives the total heat flux:

q =
λ∆T
2l2L


h2

4
− y2


+ C

hλ∆T
2lL

. (107)

Integration of Eq. (107) across a section of the channel results in the total heat flow rate:

Qh =

 h/2

−h/2
qdy =

λh2∆T
2lL


h
6l

+ C


, (108)

which gives an effective thermal conductivity based on Fourier’s law:

λeff =
QhL
h∆T

=
λh2

12l2


1 +

6l
h
C


. (109)

Eq. (109) indicates a size dependence of the thermal conductivity of nano thin film.
This derivation is simple but heuristic for physical interpretation. In realistic situation, the heat flux term should be added

to Eq. (84) since it is not negligibly small because the lateral size (h) of thin film spreads from nanoscale to microscale.
Through similar procedures, an effective thermal conductivity is derived [62]:

λeff = λ


1 −

2l
h

tanh


h
2l


+ C tanh


h
2l


. (110)

The comparison of the predictions by Eq. (110) with several different boundary coefficients C to experimental results
[249–252] is shown in Fig. 7. Note that in microscale gas flow, the velocity slip coefficient depends on the surface properties
of the wall. Similarly, the heat flux boundary coefficients will depend on the properties of the boundary. As scarce work
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Fig. 7. Effective thermal conductivity of nano thin films modeled by phonon hydrodynamic model (solid lines), Fuchs–Sondheimer model (dash or dot or
dash–dot lines) and obtained in experiments (marks).

Fig. 8. Phonon gas flow through a nanowire.

has discussed this kind of dependence, several empirical values are adopted for the moment. Further work is needed to
understand the relation between the boundary properties and heat flux boundary coefficients in the future. The silicon
nano thin film at 300 K is modeled, with bulk thermal conductivity λ = 148 W/(m.K) and bulk mean free path l = 40 nm.
It is seen that the phonon hydrodynamic model displays a good performance in predicting the size-dependent thermal
conductivity of nano thin films. In addition, a comparison is made between the phonon hydrodynamic model and the
classical Fuchs–Sondheimer model [253,254]:

λeff

λ
= 1 −

3 (1 − s)
2ξ

 1

0
ϕ

1 − ϕ2 1 − exp (−ξ/ϕ)

1 − s exp (−ξ/ϕ)
dϕ. (111)

Eq. (111) is obtained through a solution of phononBoltzmann equation under gray SMRT approximation,with ξ denoting the
inverse of Knudsen number (Kn = l/h), s being the specularity parameter [38]. The average mean free path for bulk silicon
at 300 K under gray approximation is still inconclusive in the literature, thus three different proposed values l = 40 nm,
l = 210 nm and l = 260 nm are adopted respectively. Fully-diffusewall of the thin film is assumed, thus s = 0. Although the
Fuchs–Sondheimer model (with l = 210 nm or l = 260 nm) gives rise to comparable results to the phonon hydrodynamic
model as is shown in Fig. 7, the phonon hydrodynamic model holds the following several advantages: (1) Eq. (111) assumes
an integral form,which ismuchmore complex thanEq. (110), therefore it is easier tomake aqualitative analysis (for instance,
the asymptotic analysis) to obtain a physical interpretation based on Eq. (110); (2) Eq. (111) is obtained through a solution
of phonon Boltzmann equation, which is only feasible for simple geometries such as the parallel thin film, while phonon
hydrodynamics is a macroscopic model and easier to be extended to complex geometries, as to be discussed below.

4.3.2. Nanowires
Heat transport through a nanowire is modeled by phonon gas flow through a circular pipe, as is shown in Fig. 8. The

radius and length of the pipe is respectively R and L. The temperature difference between the inlet and outlet of the pipe is
∆T . Therefore it is a two-dimensional temperature-difference driven phonon gas flow, exhibiting a similar physical picture
of pressure-difference driven gas Poiseuille flow in a circular pipe.

Through a similar process to the derivations of Eqs. (109) and (110), the steady-state G–K equation (with the heat flux
term kept) supplemented with the first-order heat flux boundary equation (86) finally gives rise to an effective thermal



Y. Guo, M. Wang / Physics Reports 595 (2015) 1–44 27

C

C

C

Fig. 9. Effective thermal conductivity of nanowires modeled by phonon hydrodynamic model (solid lines) and obtained in experiments (marks).

conductivity for the nanowire [87,247]:

λeff = λ


1 − 2Kn


J1 (i/Kn)
J0 (i/Kn)

2  J0 (i/Kn)
iJ1 (i/Kn)

+ C


, (112)

where Kn = l/R, and J0, J1 are zeroth-order and first-order Bessel functions of the first kind respectively. The comparison of
the prediction by Eq. (112) with several boundary coefficients C to experimental results [255] is shown in Fig. 9, with the
diameter of the nanowire d = 2R. The silicon nanowire at 300 K is modeled, with the bulk properties the same as that used
for nano thin film. It is seen that the phonon hydrodynamic model displays a good performance again in predicting the size-
dependent thermal conductivity of nanowires. Note that the data of d = 22 nm in Ref. [255] is not adopted here. This result
cannot be explainedwell even by phonon kinetic theory [76,119], thus is not included into the present hydrodynamicmodel.
Quantum effect is expected to become relevant at such a small size, but it is not within the present theoretical framework,
therefore not investigated here.

In a series of work, the phonon hydrodynamic model is also applied to analyze the size-dependent thermal conductivity
of elliptical nanowires, which has the following expression [247]:

λeff =
λ

2Kn


1

2Kn
1

1 + (b/a)2
+ CS


. (113)

In Eq. (113), a, b are respectively the length of semi-long and semi-short axis of the ellipse, Kn = l/b, and S is a numerical
correction factor for heat flux at the walls adopted from analytical solution of microscale gas flow through elliptical tube
and given by S = 1 − 0.6976


(b/a)2 − 1


/

1.951 (b/a)2 + 1


[256].

Moreover, other hydrodynamic methods have been proposed to model the size-dependent thermal conductivity of
nano thin films and nanowires. One is the thermon gas model, which treats the heat transport process as an equivalent
thermon gas flow. To model the nanoscale heat transport, corrections of the gas-surface confinement effect [97,98] and
ends effect [99] are added into the original model, based on the results for the gas flow in micro-channels. The modified
thermon gas model gives pretty good predictions of thermal conductivities of nano thin films [98], nanowires [98,99] and
nanotubes [97,98] in comparison to the results obtained in experiments or by molecular dynamics simulation. Recently,
in the conceptual frame of rarefied gas dynamics, the size-dependent viscosity of thermon gas is extracted from the
experimental data of thermal conductivities of nanostructures and substituted into the phonon gas model [257], whence
the thermal conductivities of both nano thin films and nanowires have been asserted to be explained well. Another similar
model is developed in Ref. [208], where the steady-state G–K equation is analytically solved with the non-dimensional
boundary heat flux correlated to a size-dependent effective phonon mean free path.

4.3.3. Roughness effect
The applications discussed above cover the predictions of thermal conductivity of nanostructures with smooth walls.

However, in actual engineering, there may be roughness in nanostructures such as the rough nanowires as enhanced
thermoelectric materials [258,259]. Because of the clear physical picture of phonon hydrodynamics, it is credible to extend
the smooth wall case to the rough one. The second-order heat flux boundary equation (87) is used, with the boundary
coefficient α to describe the effect of wall roughness on phonon gas flow [210]. Combined with the correlations between
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boundary coefficients and geometry parameters (C = C ′ (1 − ∆/D) , α = α′∆/D), the effective thermal conductivity of
rough nanowire is achieved [243,245]:

λeff =
λ

8Kn2


1 + 4C ′Kn


−

λ

2Kn


∆

D

 
C ′

+ α′Kn

. (114)

In Eq. (114), Kn = l/R, ∆ and D denotes respectively the root-mean-square value of the roughness fluctuations and the
average distance between adjacent roughness peaks on the wall. It has been reported that the predictions by Eq. (114) agree
well with experimental results in a wide range of nanowire diameters and ambient temperatures [243,245].

A similar situation to rough nanowire is the porous nanostructures [260–263], where the roughness (pores) stay inside
the structures rather than at the boundary. Based on the abundant models in gas flow through porous media [264], phonon
hydrodynamics has been applied to study the influences of porosity and pore size on the effective thermal conductivity of
porous silicon, exhibiting good agreement between theoretical predictions and experimental results [209,265]. For instance,
the resistance force exerted by a sphere of radius a in viscous fluid flow is given by the Stokes formula F = 6πµav, with v
the relative velocity between the sphere and fluid. In phonon hydrodynamics, Eq. (84) has an identical form to the Stokes
equation for fluid flow, with the temperature gradient playing the same role of pressure gradient, the coefficient l2/λ the
role of dynamic viscosity. As the average resistance force (per sphere) exerted by a random array of spheres in viscous fluid
flow is given by F =

6πµa
1+A′(Λ/a)


1 +

3
√
2

√
φ


v, the thermal resistance of N randomly-distributed pores to the heat flow is
thus written as [209]:

FN = 6πN
l2

λ

a
1 + A′ (l/a)


1 +

3
√
2


φ


Qh = A∇T , (115)

where A′ is a numerical function of Kn, and A is the cross-section area of the heat conductor, φ being the porosity. Through
adding Eq. (115) to the normal diffusive thermal resistance [f (φ) λ]−1 Qh = A∇T with f (φ) = (1 − φ)3, the effective
thermal conductivity of porous nanostructure dependent on both the porosity and pore size is obtained [209]:

λeff = λ
1

1
f (φ)

+
9
2φ

(l/a)2

1+A′(l/a)


1 +

3
√
2

√
φ
 . (116)

Moreover, the frequency dependence of the effective thermal conductivity of nanowires is studied [246] by adding a
relaxation term to the heat flux boundary [244,246]. Here we do not go into the details of these applications because they
follow almost the same line as in modeling the nano thin films and nanowires with smooth walls. The reader could refer to
the comprehensive review [87] about them.

The extensive practical applications in nano thin films, nanowires and porous nanostructures indicate that the phonon
hydrodynamic model is a promising tool in modeling thermal transport properties of nanostructures. This method holds at
least three advantages: clear physical picture of phonon gas flow; relatively small amount of computation in comparison to
the kinetic modeling approach; its implementation can adopt the existing models in classical hydrodynamics.

4.4. Difference between phonon and fluid flow

The developments and applications of phonon hydrodynamics aremainly inspired by the similarity between phonon and
fluid flows. Nevertheless, there are still some differences between them, which are the focus in this part. In the continuum
regime, fluid flow is governed by Navier–Stokes equation with non-slip boundary while heat transport is described by
Fourier’s law. Thus fluid flowbetween twoparallel plates under a pressure gradientwill have aparabolic velocity distribution
as is shown in Fig. 10(a). In contrast, phonon gas flow under a temperature gradient has a uniform heat flux distribution
as is shown in Fig. 10(c). In the slip regime, velocity slip occurs at the wall and the velocity distribution in the bulk stream
smoothens, as is shown in Fig. 10(b). In contrast, in phonon gas flow, boundary confinementmakes the heat flux distribution
depart from a uniform profile to a non-uniform one, as is shown in Fig. 10(d). These are actually distinct features of phonon
gas and fluid flows: different trends of variation of the flux profile versus Kn from continuum regime to slip regime. This
distinctionmay be caused by R process which destroys the quasi-momentum in phonon transport. The velocity distribution
of microscale gas flow have been extensively studied, while there is only few work [266–268] on the heat flux distribution
in nanoscale phonon gas flow. Further investigations should be made about this topic in the future.

4.5. Comparison of phonon hydrodynamics to thermon gas model

The principles of thermon gasmodel have been introduced in Sections 1.2.3 and 4.3.2.WhenNewton’s equation is capable
of describing the dynamics of thermon gas flow, the heat transport equation is derived [68,100]:

τT
∂q
∂t

+ q + λ∇T = −τT∇ ·

qq
E


, (117)
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Fig. 10. Comparison between fluid and phonon gas flow.

Table 4
Comparison between phonon hydrodynamics and thermon gas model.

Quantities Phonon hydrodynamic model Thermon gas model

Dynamic equation
ρ


∂v
∂t

+ (v · ∇) v


= ρf − ∇p + µ∇
2v

+


ς +

1
3
µ


∇(∇ · v)

ρT


∂uT
∂t + (uT · ∇)uT


=

−∇pT + fT

Pressure p =
1
3 E pT = γ ρTcV T = γ ρc2V T

2/c2

Mass density ρ =
E
v2g

ρT =
ρcV T
c2

=
E
c2

Drift velocity v =
q
E uT =

q
ρcV T =

q
E

Momentum density P = ρv =
q
v2g

PT = ρTuT =
q
c2

Resistive force f = −
q

τRv2g
fT = −

6γ cV T
c2

q
τRv2g

Heat transport equation
τR

∂q
∂t

+ q + λ∇T = −τR∇ ·

qq
E


+ µτRv

2
g∇

2 q
E

+


ς +

µ

3


τRv

2
g∇


∇ ·

q
E

 τT
∂q
∂t + q + λ∇T = −τT∇ ·

 qq
E


Relaxation times τT =

v2g
6γ cV T τR

Note: c is the speed of light.

where τT denotes the relaxation time of thermon gas with τT = τRv
2
g/6γ cV T , γ being the Grüneisen constant of dielectric

solid, cV being the specific heat capacity. Eq. (117) is a generalized heat transport equation beyond Fourier’s law and bears
similarity to the G–K equation, Eq. (77), except a slight difference on the spatial non-local term of heat flux. Meanwhile,
the thermodynamic foundation of the thermon gas model was developed, which [269,270] had no-surprisingly very similar
forms to those in extended irreversible thermodynamics for G–K equation [271–273]. The similarities in bothmathematical
and physical aspects of the two hydrodynamic approaches deserve a further comparison.

The phonon hydrodynamic formalism used in Refs. [196,274] is adopted to make a comparison with the thermon gas
model. Many quantities including the pressure, mass density, drift velocity, momentum density, resistance force term and
relaxation time of phonon and thermon gas are compared carefully, as is summarized in Table 4. For determination of the
relaxation time in both models, the kinetic expression of thermal conductivity λ = CV τRv

2
g/3 is used. The heat transport

equation in phonon hydrodynamics is a generalized one beyond the G–K equationwith an additional nonlinear term usually
neglected. Similarity between thermon gasmodel and phonon hydrodynamicmodel is explicit. Furthermore, there is usually
a ratio between the quantities in the twomodels, such as v2

g/c
2 betweenmass densities and betweenmomentum densities.

The current analysis contributes to deeper understanding of both models and their relationship.

5. Discussions and perspectives

5.1. Current limitations and possible extensions

All the phonon hydrodynamic models developed based on the kinetic theory are limited to low temperature situation,
where N process dominates over R process. Only under this circumstance, could the limit of integration be extended to the
whole wave vector space in obtaining the explicit expressions of the macroscopic variables. On the other hand, it is feasible



30 Y. Guo, M. Wang / Physics Reports 595 (2015) 1–44

to use the ratio of relaxation times of N process and R process as the small parameter in the Chapman–Enskog solution in
Section 3. From the historical perspective, the classical phonon hydrodynamics is originated in seeking second sound, which
is possible to be detected only at extremely low temperature and in very pure crystals [81,145]. However, from a physical
perspective, the concept of phonon hydrodynamics can be extended beyond its classical definition. In the framework of
transport theory shown in Fig. 4(b), phonon hydrodynamics representsmore accurately themacroscopic level of description
for phonon systems, whereas the G–K equation is merely a special case of hydrodynamic descriptions when N process
is the dominated phonon scattering. Another special case is Fourier’s law, which is indeed a macroscopic heat transport
equation when Umklapp-type R process is dominant. That is to say, there is still a large room for hydrodynamic descriptions
in cases where neither N process nor Umklapp-type R process dominates, such as in cases where N process is comparable to
Umklapp-type R process, and in nanoscale heat transport where interfacial phonon scattering occurs mainly [38]. We term
all thesemacroscopic models, besides the G–K equation and Fourier’s law, as generalized phonon hydrodynamics. Under such
a new framework, a truly universal hydrodynamic model can be established, and of course, there remains a lot to be done
towards that goal. One challenging problem for instance is the integration in a finite range of wave vector space instead
of the aforementioned infinite one. Also, a more accurate and detailed understanding and modeling of interfacial phonon
transport in nanoscale [34,60] is crucial.

Another limitation in developing phonon hydrodynamic models is the linear approximation. In deriving the G–K
equation, nonlinear terms such as the product of heat flux and temperature gradient are neglected. However, nonlinear
effects are expected to be very important in nanoscale cases where the heat flux could be extremely high due to the
miniature heat flow passage, or in cases under high temperature gradient where the flux-limiter behaviors [275,276] may
take place. Some theoretical attempts have beenmade to investigate the nonlinear effects; for instance, a nonlinear phonon
hydrodynamic model [235,277] was developed based on nonequilibrium thermodynamic method, and an exploration was
done of the physical consequences of nonlinear terms in a generalized heat transport equation [278]. Nevertheless, to our
best knowledge, successful realistic applications of nonlinear phononhydrodynamics in nanoscale heat transport are seldom
reported, and a systematical kinetic derivation of a more general nonlinear theory is still lacking.

5.2. Analysis of N and R process in phonon transport

In modeling micro- and nanoscale phonon transport, the kinetic expression of thermal conductivity tensor is usually
given as [14,38,39]:

λ =


ν


τ (ω) }ω

df eqR

dT
vg (ω) vg (ω)

dk
(2π)3

, (118)

with ν denoting the phonon branch. Eq. (118) could be derived from phonon Boltzmann equation (14) with SMRT
approximation which valued the collision term by C (f ) =


f − f eqR


/τ (ω). In the neighborhood of equilibrium, phonon

distribution function is obtained approximately as f ≈ f eqR − τ (ω)

df eqR /dT


vg (ω) · ∇T . Substitution of this approximate

solution into the kinetic expression of heat flux (such as Eq. (28) in the isotropic case) gives rise to Fourier’s law and the
thermal conductivity expression Eq. (118). To resolve the thermal conductivity, both phonon group velocity and relaxation
time must be provided for Eq. (118). The former is computed from the dispersion relation based on (15), whereas the latter
is usually obtained in two ways. The popular way is through empirical expressions shown in Table 2, where the empirical
parameters are adjusted to fit the bulk thermal conductivity of materials. Different categories of phonon scattering are
treated independently and the total relaxation time is derived using the Matthiessen rule [14,44,279]:

1
τ (ω)

=
1

τa (ω)
+

1
τi (ω)

+
1

τb (ω)
, (119)

where ‘a’ denotes the anharmonic phonon scattering [58,121,280,281] (or Umklapp three-phonon scattering process
[76,119,120,122]). The other way is through ab initio calculation, such as lattice dynamic simulation [58,59] and computing
phonon scattering rates from Fermi’s golden rule in the first-principle method [71,124].

In summary: (1) the current attempts inmodeling size-dependent thermal conductivity of nanostructures are still within
the framework of classical Fourier’s law, through incorporating the boundary scattering effect by adding an independent
contribution to the total relaxation time; (2) there are no unified expressions for the frequency-dependent relaxation times
of different kinds of phonon scatterings; (3) N process is often neglected in kinetic modeling of nanoscale phonon transport,
or is inappropriately treated as having the same role as R process, as shown in Eqs. (118) and (119).

The treatment of N process is further emphasized because more and more attention is drawn on this issue in last
few years. A kinetic-collective model is proposed [114,116,117] to predict lattice thermal conductivity in a wide range of
temperature and size. This model is based on two distinct phonon behaviors in kinetic regime at low temperature and
in collective regime at elevated temperature, dominated by R process and N process respectively. From our perspective,
it is questionable to categorize the collective regime at high temperature where in fact N process is usually scarce in
most materials. In microscopic methods: N process and R process are simultaneously taken into account naturally when
computing phonon scattering rates by the first-principle calculation [71,72,124]; in lattice dynamics [282] and in molecular
dynamics simulation [283], N process is treated as an additional origin of thermal resistance from altering the phonon
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frequency spectrum. Recent reports [284,285] based on first principle calculations and iterative solutions of linearized
phonon Boltzmann equation indicate the dominance of N process and occurrence of hydrodynamic phonon transport
even at room temperature in two-dimensional nanomaterials (graphene and so on). This particular phenomenon is mainly
attributed to the extremely large anharmonicity and densities of states of long-wavelength phonons characterized by
the two-dimensional materials [284], which leads to strong and dominant normal phonon scatterings in a wide range
of temperature. An updated review [34] on nanoscale thermal transport also indicated the necessity to go beyond the
SMRT approximation and to deal with N process in an appropriate way. As a result of still ambiguous understanding in
microscopic and mesoscopic aspects, there is still lacking a widely applicable hydrodynamic model which considers both N
and R processes. A rational treatment of N process will be a key point for the advance of generalized phonon hydrodynamics.

5.3. LBM implementation of phonon hydrodynamics

Lattice Boltzmann method (LBM) is widely applied in classical hydrodynamics mainly because of its advantages
[155,168]: (1) its natural kinetic foundation based on Boltzmann transport equation; (2) its local computational
characteristics making it easy to realize parallelization; (3) its simple treatment of complex boundary conditions. With
these advantages, LBM will be a promising solver for generalized phonon hydrodynamics in tackling the nanoscale phonon
transport problems. Because such problems usually involve multiscale interfaces and complex geometries as in porous
nanostructures [260–263] and nano-polycrystalline [286,287] which are potential thermoelectric and thermal barrier
materials [288].

Hitherto there are mainly two branches of lattice Boltzmann schemes for phonon transport: one is for the solution of
phonon Boltzmann equationwith Callaway’s relaxation approximation [179] corresponding to hydrodynamics governed by
G–K equation; the other is for the solution of phonon Boltzmann equation with SMRT approximation [79,80] corresponding
to Fourier’s law. The two branches could be unified in the generalized phononhydrodynamics since the SMRT approximation
is a special case of Callaway’s relaxation approximation in the limit of τN → ∞. By giving different magnitude of relative
values to τN and τR, LBM will display its robustness in modeling a wide range of phenomena, including those G–K equation
and Fourier’s law could deal with, and the cases where N process is comparable to R process.

To illustrate the LBM implementation of phonon hydrodynamics, here a brief introduction is given to the LBM scheme for
the phonon Boltzmann equation with SMRT approximation. For convenience, the phonon Boltzmann equation is rewritten
as the energy density form [79]:

∂E
∂t

+ vg · ∇E = −
E − Eeq

τR
, (120)

with E ≡

f }ωD (ω) dω, and Eeq

≡

f eqR }ωD (ω) dω, D(ω) being the phonon state density function. Thus the phonon

lattice Boltzmann equation is obtained as a discrete form of Eq. (120):

Ei (x + ci∆t, t + ∆t) − Ei (x, t) = −
Ei (x, t) − Eeq

i (x, t)
τ

. (121)

In Eq. (121), the non-dimensional relaxation time is τ = τR/∆t , ∆t being the time step, and the subscripts ‘‘i’’ denote the
directional components of a specific lattice structure (for instance D2Q9), with ci the lattice velocities in each direction.
In this way, phonon transport could be analyzed through an iterative solution of Eq. (121) based on a streaming process
and a relaxation process. The macroscopic field variables (temperature, heat flux, etc.) are then obtained through a discrete
statistical averaging of the energy density distribution solution Ei.

The field of lattice Boltzmann modeling of phonon transport is still not fully developed. The related fundamental work
to be done includes the following aspects: (1) a systematical derivation of the lattice Boltzmann formulation with realistic
dimension and clear physical meaning, by bridging themesoscopic numerical scheme and themacroscopic hydrodynamics;
(2) development of practical lattice structures for 2D and 3D cases to avoid the paradox of fictitious phonon speed by
capturing more accurately the phonon dynamics; (3) to seek a relatively simple and economic approach to deal with the
phonon dispersion spectrum and frequency-dependent relaxation time; (4) to devise proper schemes to treat the interfacial
phonon transport, though some attempts were made in Refs. [180,181] but no realistic applications have been reported.

5.4. Perspectives and open questions

5.4.1. Thermal rectification in phononics
Thermal rectification is an interesting phenomenon where the thermal transport behaviors depend on the sign of

temperature gradient [289], viz. the magnitude of heat flux in one direction is different from that in reversed direction.
Although such directionality actually exists in conventional heat transport process if we rigorously consider the temperature
dependent thermal conductivity of a medium. However, this effect is usually small in macroscale and thus often neglected.
With rapidly increasing focus on nanoscale heat transport and artificial manipulation of phononic material properties [290],
thermal rectification becomes a hot topic due to its appreciable effect and potential applications in thermal management of
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micro- and nanoelectronics [289], and in nanoscale phononic devices including thermal diodes, thermal transistors, thermal
logic gates and thermalmemories potentially used in information processing [291,292]. Actually, thermal rectification holds
the similar idea to the current developing field of thermal control by means of heat metamaterials [293], where many
interesting phenomena could be designed and applied such as the thermal cloaking [294,295] and thermal camouflage [296].

The usual mechanisms responsible for nanoscale thermal rectification include: nonlinear (anharmonic) lattice chain
[297,298], asymmetric nanostructures (such as the graphene [299,300] and silicon [301] ribbons with variable widths,
the carbon nano-cone [302]), surface roughness at contacts and interfaces, and hetero-junctions [303]. Different physical
explanations have been proposed in literature, such as the overlapping of phonon state density in nonlinear lattice
[297,298], phonon lateral confinement effect [300] and phonon transmission characteristic [301] in asymmetric nano
ribbons. A sufficient understanding is still lacking though. From our perspective, the generalized phonon hydrodynamics
provides an alternative to offer an intuitive explanation. For instance, in heat transport through asymmetric nano ribbons,
phonon gas flow, from a hydrodynamic viewpoint, will endure different resistance from the confined boundary in converse
directions. Similar analysis can be applied to study the effect ofwall roughness or internal pores on the rectification efficiency
of nanostructures. It opens a new outlook for investigating the thermal rectification phenomena, and lots of explorations to
be done in the future.

5.4.2. Heat waves in temporal microscale
If G–K equation (77) is combined with the energy balance equation (55), a temperature differential equation is obtained:

∇
2T +

9τN
5

∂

∂t


∇

2T


=
3

τRv2
g

∂T
∂t

+
3
v2
g

∂2T
∂t2

. (122)

When N process dominates and R process is negligible (τN → 0, τR → ∞) in low temperature dielectric solid, Eq. (122)
reduces to a pure wave equation:

∇
2T =

3
v2
g

∂2T
∂t2

. (123)

Eq. (123) predicts a wave propagation of temperature disturbance (the second sound) with the speed of vg/
√
3. Such an

ideal heat wave without damping has never been observed in actual experiments. Instead, the observation window for the
second sound is [81,109]: τN ≪ 1/ω ≪ τR, withω the frequency of external heat pulse.Within thiswindow, N process and R
process coexist with few R processes but sufficient N processes. Therefore, heat waves in low temperature crystal aremainly
attributed to N process. Another similar case is the second sound in superfluid helium made up of a viscous normal fluid
and an inviscid superfluid. Its propagating speed is


Ts2ρs/cpρ [133], where s is the entropy function, ρ is the total mass

density and ρs is the mass density of superfluid. The second sound speed vanishes when ρs = 0 at the so-called λ-phase
transition point [133] where all the superfluid transforms into normal fluid. In contrast, at lower temperature below the
λ-phase transition point when the superfluid dominates, the second sound with rare damping propagates with a speed
about vg/

√
3 [133]. Thus the heat waves in low temperature superfluid helium are mainly attributed to the superfluid

component.
Moreover, a hot topic has been extensively reported about heat waves in temporal microscale at ambient tempera-

ture [88,304–306], when the characteristic time of heat transport is comparable to or smaller than the carrier relaxation
time. The C–V equation is a typical model which tries to capture this heat wave behavior by adding a relaxation term of
heat flux into Fourier’s law. Combination of C–V equation with energy balance equation results in a hyperbolic temperature
differential equation, which in turn predicts a propagation of damping temperature wave. However, numerical simulations
by MD [307–309] and LBM [310] demonstrate that the C–V equation is unable to describe the short-pulsed laser heating
process both in bulk materials and nanostructures (carbon nanotube in Ref. [308] and graphene in Ref. [309]). Experimental
attempt [311,312] to seek such heat waves and verify the C–V equation in inhomogeneous medium fails as well, and subse-
quently, more accurate experiments [313–315] show that Fourier’s law could actually explain the results. By contrast, the
temporal microscale temperature response behaviors obtained in experiments [305,316] and MD simulation [308,309] fit-
ted reasonably well to the DPL model by adjusting the two phase lags τq and τT . In spite of this success, the DPL model gives
rise to a parabolic temperature differential equation [37], with no supportive evidence of heatwaves in temporalmicroscale.

To sum up, besides the second sound observed in superfluid system and in dielectric solid at low temperature, no
experimental reports have been made about the heat waves in temporal microscale at ambient temperature. In fact, the
situations are different at low temperature and at ambient temperature, where the key point lies in the local equilibrium
hypothesis [219] from a thermodynamic perspective. In the former situation, such as during heat wave propagation in
dielectric solid, themean free path of N process ismuch smaller than the sample dimension. Thus there are sufficient phonon
normal scatterings through the solid from the hot side to the cold side [139], which ensures the local thermal equilibrium.
As is also shown in Section 3, the local equilibrium hypothesis is implicitly valid in the derivation of G–K equation, which
can explain the heat waves satisfactorily. In the latter situation, the characteristic time is too short to allow sufficient time
for heat exchange and thermalization between phonons. Thus the local equilibrium hypothesis is no longer valid [39]. As
C–V equation is derived from the phonon Boltzmann equation under local equilibrium, it fails to describe the temporal
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Fig. 11. Theoretical systems of fluid transport (a) and phonon transport (b).

microscale heat transport [317,318]. The existing strong thermal nonequilibrium makes it difficult to find an appropriate
macroscopic model to describe the heat transport behavior in this situation.

Finally, from our perspective, the above divergence could be taken as two extreme cases in the generalized phonon
hydrodynamics. The second sound observed in low temperature corresponds to N process dominated situation; whereas
heat transport in temporal microscale at ambient temperature corresponds to R process dominated one. Further
investigation is highly desirable about the temporalmicroscale phononheat transport,where amacroscopicmodel is needed
to describe the temperature response behavior. The important question remains to be answered: whether heat waves exist
in very short time scale.

5.4.3. Compatible irreversible thermodynamics
Classical irreversible thermodynamics (CIT) has been well developed under the local equilibrium hypothesis. The

linear phenomenological thermodynamic force-flux relation ensuring non-negative entropy production gives rise to
Newton’s shear law. Substitution of the shear law into the momentum balance equation results in the Navier–Stokes
equation [219]. That is, CIT provides a solid thermodynamic framework for classical hydrodynamics. In addition, the first-
order Chapman–Enskog expansion to Boltzmann transport equation can also yield the Navier–Stokes equation [154]; the
entropy balance equation and expressions of entropy flux in CIT can be derived from the kinetic theory of gases [40,219].
Therefore, the gas kinetic theory forms a mesoscopic foundation for both the thermodynamic theory and hydrodynamics.
The theoretical system of fluid transport is summarized in Fig. 11(a).

In comparison, compatible irreversible thermodynamics for generalized phonon hydrodynamics is not fully accom-
plished yet. Although the two extreme cases of Fourier’s law and G–K equation have been derived from CIT and extended
irreversible thermodynamics (EIT) respectively, they have not essentially gone beyond the near-equilibrium region. It is still
an open challenge to establish a thermodynamic formalism valid for far-from-equilibrium region. For processes where the
local equilibrium hypothesis is no longer valid, usually the case in nanoscale heat transport such as the heat waves in tem-
poral microscale, the theoretical system of phonon transport shown in Fig. 11(b) provides a future solution, to be finished
through further work on both the phonon hydrodynamic models and the thermodynamic formulations.

6. Conclusions

Understanding the laws of heat transport and conversion is a critical task since most of human’s activities are pertinent
to thermal energy utilization. Heat transport theory is a relatively abstract and obscure branch in physical science because
heat could only be felt rather than directly observed. This situation especially worsens when it comes to microscale and
nanoscale, where traditional concepts and laws may not be valid. The phonon hydrodynamics provides a potential avenue
for heat transport modeling due to its simple and intuitive nature and solid statistical physical roots. A comprehensive
introduction is provided in the present work regarding the theoretical foundation and credible application of this model.

A phonon can be treated as a quasi-particle by applying the Boltzmann transport equation a priori, and the coarse
graining of the phonon distribution function governed by the Boltzmann equation results in the hydrodynamic heat
transport equations. This constitutes a formal theoretical frame for phonon transport in view of microscopic, mesoscopic
and macroscopic descriptions. A unified kinetic framework is established through a Chapman–Enskog solution to the
phonon Boltzmann equation with Callaway’s relaxation approximation. Different orders of expansions and sub-order
approximations give rise to different levels of heat transport equations, including both the well-known C–V equation and
G–K equation. Previous hydrodynamic models obtained by Eigen-value analysis method, Chapman–Enskog method and
moment method can be incorporated into our present framework as special cases. In terms of applications, the essential
heat flux boundary is originated from a heuristic analogy to velocity slip boundary in microscale gas flows. In the line
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of extended irreversible thermodynamics, the hydrodynamic equation and heat flux boundary can also be derived as the
constitutive relations in the bulk and boundary region, respectively. Inmodeling the size-dependent thermal conductivity of
nanostructures, the phonon hydrodynamics displays not only a clear qualitative physical picture, but also good quantitative
predictions in agreement with experimental results.

Finally, a novel concept of generalized phonon hydrodynamics is proposed, covering the G–K equation and Fourier’s law
as two extreme cases. In this extended conceptual framework, possible advances are discussed in dealing with phonon N
process, developing phonon lattice Boltzmann schemes and exploring the thermal rectification phenomena in micro/nano-
phononics. Novel viewpoints are also given to a few open questions including whether the heat waves exist in extremely
short time scales at ambient temperature, and the compatible irreversible thermodynamic formulation. Many original
references are given throughout this work to reveal the historical logic and the indication for future development. Therefore
the authors hope the present work would contribute to the knowledge base about the nanoscale heat transport and its
macroscopic modeling.
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Appendix A. The sub-first-order approximation of zeroth-order expansion

A.1. Phonon energy density

E =


}ωf eqN

3dk
(2π)3

. (A.1)

Substitution of Eq. (51) into Eq. (A.1) results in:

E =

 
}ωf eqR + }ω

}k · u
kBT

f eqR


1 + f eqR

 3dk
(2π)3

=


}ωf eqR

3dk
(2π)3

+


}ω

}k · u
kBT

f eqR


1 + f eqR

 3dk
(2π)3

. (A.2)

The second term in Eq. (A.2) vanishes because the integrand is an odd function of wave vector k. Thus Eq. (A.2) reduces
to:

E =


}ωf eqR

3dk
(2π)3

=


}ω


exp


}ω

kBT


− 1

-1 3dk
(2π)3

. (A.3)

Combined with the linear dispersion relation (ω = vgk), Eq. (A.3) becomes:

E =
3

(2π)3


∞

0
}vgk


exp


}vgk
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− 1

-1
4πk2dk

=
3

2π2
}vg
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kBT


− 1

-1
k3dk. (A.4)

With the well-known Bose integral:
∞

0

x3

exp (x) − 1
dx =

1
15

π4, (A.5)

Eq. (A.4) finally gives rise to:

E =
4π5 (kBT )4

5

hvg
3 . (A.6)

A.2. Heat flux

q =


vg}ωf eqN

3dk
(2π)3

. (A.7)
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Substitution of Eq. (51) into Eq. (A.7) results in:

q =

 
vg}ωf eqR + vg}ω

}k · u
kBT

f eqR


1 + f eqR

 3dk
(2π)3
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vg}ωf eqR

3dk
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vg}ω
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1 + f eqR

 3dk
(2π)3

. (A.8)

Combined with Eqs. (25), (A.8) becomes after eliminating the phonon group velocity:

q = }v2
g
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3dk
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. (A.9)

The first term in Eq. (A.9) vanishes for the equilibrium distribution contributes nothing to the heat flux. Thus Eq. (A.9)
reduces to:

q =


}vg
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kBT
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. (A.10)

Based on the parity of the integrand, Eq. (A.10) becomes:
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With the following integral:
∞

0

x4 exp (x)
[exp (x) − 1]

dx =
4
15

π4, (A.12)

Eq. (A.11) finally gives rise to:

q =
16π5 (kBT )4

15

hvg
3 u. (A.13)

A.3. The flux of heat flux

Q =


vgvg}ωf eqN

3dk
(2π)3

. (A.14)

Substitution of Eq. (51) into Eq. (A.14), combined with Eq. (25), results in:
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The second term in Eq. (A.15) vanishes because the integrand is an odd function of wave vector k. Thus Eq. (A.15) reduces
to:

Q = }v3
g


kk
k

f eqR
3dk
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. (A.16)

Based on the parity characteristic and combined with Eqs. (A.3), (A.16) reduces to:
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Fig. B.1. Spherical coordinate in wave vector space.

Appendix B. The full zeroth-order expansion

The following integration is conducted in the framework of a spherical coordinate shown in Fig. B.1.
The relations between the spherical coordinate variables and wave vector components are:

kx = k sinϕ cos θ, (B.18a)
ky = k sinϕ sin θ, (B.18b)

kz = k cosϕ. (B.18c)

The differential volume element is:

dk = k2 sinϕdϕdkdθ. (B.19)

B.1. Phonon energy density

The expression of phonon energy density in the whole zeroth-order expansion is:

E =


}ω


exp


}ω − }k · u

kBT


− 1

-1 3dk
(2π)3

. (B.20)

For the sake of simplicity, the drift velocity is set to be parallel to the kz axis as shown in Fig. B.1, since the integration is
invariable under the rotation operation of the coordinates. In this way, Eq. (B.20) reduces to:

E =
3

(2π)3
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Variable transformations are assumed:

m =
}vgk − }ku cosϕ

kBT
, (B.22)

x = cosϕ. (B.23)

With Eqs. (B.22) and (B.23), Eq. (B.21) simplifies into:

E =
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which finally results in:

E =
4π5 (kBT )4

15

hvg
3 χ2

+ 3
1 − χ2

3 , (B.25)

with the ratio of phonon drift speed to group speed χ ≡ u/vg.
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B.2. Heat flux

The expression of heat flux in the whole zeroth-order expansion is:

q =


vg}ω


exp


}ω − }k · u

kBT


− 1

-1 3dk
(2π)3

. (B.26)

Eq. (B.26) simplifies into the following components through variable transformations Eqs. (B.22) and (B.23):

qx = 0, (B.27a)
qy = 0, (B.27b)
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3
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Combined with Eqs. (A.5), (B.27c) becomes:
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3 1
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3 u. (B.28)

Thus the heat flux finally becomes:

q =
16π5 (kBT )4
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3 1
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3 u. (B.29)

B.3. The flux of heat flux

The expression of the flux of heat flux in the whole zeroth-order expansion is:

Q =


vgvg}ω
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−1 3dk
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. (B.30)

Eq. (B.30) simplifies into the following components through variable transformations Eqs. (B.22) and (B.23):

Qij = 0, for i ≠ j, (B.31a)
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Combined with Eq. (A.5), Eq. (B.31b) and Eq. (B.31c) becomes respectively:

Qxx = Qyy = v2
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Thus the flux of heat flux finally becomes:

Q = Qxx

1 0 0
0 1 0
0 0 0


+ Qzz

0 0 0
0 0 0
0 0 1


= QxxI + (Qzz − Qxx) ûû (B.33)

with û denoting a unit vector parallel to u. Substitution of Eqs. (B.32a) and (B.32b) into Eq. (B.33) finally gives rise to:
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2 I + 16π5 (kBT )4

15

hvg
3 1

1 − χ2
3 uu. (B.34)
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Appendix C. The sub-first-order approximation of first-order expansion

C.1. Derivation of Q1,I

Q1,I = −}v3
g


τNkk
k
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1
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∞
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− 1

2 dk. (C.35)

Combined with Eqs. (A.12), (C.35) results in:
Q1,I


mn =

1
3
v2
gτN

∂qi
∂x1i

δmn. (C.36)

C.2. Derivation of Q1,II

Q1,II = −}v3
g
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k
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. (C.37)

The following integration is performed:
kkkikj
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 3dk
(2π)3
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. (C.38)

Substitution of Eq. (C.38) into Eq. (C.37), combined with Eqs. (C.35) and (A.12), results in:
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C.3. Derivation of Q1,III

Q1,III = −}v3
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. (C.40)

The second term in Eq. (C.40) is resolved when combined with Eq. (C.38):

}2 v4
gτN

kBT 2

∂T
∂x1i

uj


kikjkk
k2

f eqR


1 + f eqR

 3dk
(2π)3


ijmn

=
1
5

v2
gτN

T


qi

∂T
∂x1i

δmn + qn
∂T

∂x1m
+ qm

∂T
∂x1n


. (C.41)

The first term in Eq. (C.40) is simplified into:
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where the following integration becomes:
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The following integral is conducted through integrating by parts:
∞

0

x5 exp (x) [exp (x) + 1]
[exp (x) − 1]3

dx =
4
3
π4. (C.44)

Substitution of Eq. (C.43) supplemented with Eq. (C.44), into Eq. (C.42), gives rise to the first term in Eq. (C.40):
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Finally, substitution of Eqs. (C.41) and (C.45) into Eq. (C.40) results in:
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