
1 
 

Lattice Boltzmann modeling of thermal conduction in 

composites with thermal contact resistance 

 

Chiyu Xie
1
, Jinku Wang

2
, Dong Wang

3
, Ning Pan

4
, Moran Wang

1,3†
 

1Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084, China; 

2National Institute of Metrology, Beijing 100084, China 

3 School of Materials Science, Wuhan Textile University, Wuhan ,Hubei 430200, China 

4Nanomaterials in Environment, Agriculture & Technology (NEAT), University of California, Davis, CA 95616, 

USA 

Abstract: The effective thermal conductivity of composite materials with thermal 

contact resistance at interfaces is studied by lattice Boltzmann modeling in this work. 

We modified the non-dimensional partial bounce-back scheme, proposed by Han et al. 

[Int. J. Thermal Sci., 2008. 47: 1276-1283], to introduce a real thermal contact 

resistance at interfaces into the thermal lattice Boltzmann framework by re-deriving 

the redistribution function of heat at the phase interfaces for a corrected dimensional 

formulation. The modified scheme was validated in several cases with good 

agreement between the simulation results and the corresponding theoretical solutions. 

Furthermore, we predicted the effective thermal conductivities of composite materials 

using this method where the contact thermal resistance was not negligible, and 

revealed the effects of particle volume fraction, thermal contact resistance and particle 

size. The results in this study may provide a useful support for materials design and 

structure optimization. 
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1. Introduction 

It is well known that the thermal contact resistance (TCR) is caused by the 

low-conductivity interfacial gap between two contact surfaces, which has significant impact 

in many engineering applications, such as electronic packaging [1, 2] and composite materials 

manufacture and design [3, 4]. Because of the often tiny scale and complex shape involved, 

experimental investigation is often cumbersome and even impossible, many efforts have been 

made in developing theoretical model to investigate the TCR, based on two basic surface 

contact modes: the conforming rough surfaces mode [5] and the nonconforming rough 

surfaces mode [6, 7]. However, in practical issues there are always a lot surfaces with 

irregular shapes in contact, such as the particle-particle contact in particle-reinforced 

composites. Thus comes many difficulties in predicting the thermal properties of these 

composites when the inner TCR is concerned. To the best of our knowledge, few remedies are 

available to deal with this thorny problem, and numerical methods have therefore become the 

alternative. 

In recent years, the lattice Boltzmann method (LBM) has been developed into a 

successful numerical scheme for fluid flow simulation [8, 9]. Compared with the traditional 

CFD methods, LBM has advantages especially for applications involving large number of 

interfaces or/and complex geometries. Besides for hydrodynamics, efforts have also been 

made to apply LBM to solving various fluid transport problems coupled with electrokinetics, 

magnetic, thermodynamics or even chemical reactions [10-17]. Attempts have been made in 

using LBM to study the interfacial heat transfer process, and a few models have been 

developed in the lattice Boltzmann method for simulation of the thermo-hydrodynamics since 

1993 [18-25].  More specifically, a single distribution function model was introduced into 

the lattice Boltzmann method to simulate the Rayleigh-Bénard convection. It was however 

admitted that with severe numerical instability, the applicable temperature range is limited to 

a narrow scope [18-20]. To overcome the drawback, a double distribution function model was 

developed [21-23], in which a density distribution function is introduced to simulate the 

hydrodynamics (fluid flow), while an internal energy distribution function to tackle the 

thermodynamics (heat transfer). He et al. [23] proved that such double distribution model can 

appropriately treat the viscous heat dissipation and compression work done by the pressure. 

However, He’s method is too complicated to use so that several simplified versions have been 

subsequently developed. For instance, Peng et al. [24] proposed a simple internal energy 

function evolution method for cases with negligible heat dissipation and compression work. 

Wang et al. [25] developed a general scheme for fluid-solid interfacial conjugate heat transfer 

process. Consequently, this type of method has gained wide application in predictions of 

effective thermal properties of engineering multiphase materials, with results validated by 

experimental data [26-30].  

Furthermore, in analyzing macroscopic engineering materials, an important assumption 

is the continuity held at interfaces, i.e., thermal contact resistance is negligible. One result this 

assumption led to is that the effective thermal conductivity of granular porous materials 

increases with the decreased pore size for a given porosity [31], which agreed well with 

experimental data from both natural and engineering materials [32, 33]. However, some 

recent measurements for nanoporous materials have shown some contradictory results that the 
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effective thermal conductivity actually decreases with the reduced pore size [34] or particle 

size as in silica aerogels [35]. It is now known that the impact of all interfacial mechanisms 

become more significant at smaller, especially nanoscale [36, 37]. Growing importance of the 

thermal contact resistance and the increased number of interfaces in finer particles were 

ascribed to cause the conflicting predictions. Again for more accurate prediction, the thermal 

contact resistance has to be considered, however tough and challenging. Wang et al. [38] 

tackled the problem by assuming that the thermal contact resistance layers between the 

particles forming a network frame in a composite system so as to take the thermal contact 

resistance into account. However this method is limited by this assumed uniform contact 

resistance. Very recently, Yoshida et al. [39] proposed a prospective boundary scheme for 

two-phase interface: using two simple modifications of the collision and streaming process, 

the continuities of the physical variable and its flux are simultaneously satisfied in a transient 

analysis. However, the actual interfacial thermal contact resistance between two phases is still 

ignored. To take the thermal contact resistance into consideration more explicitly, Han et al. 

[40] proposed a partial bounce back (PBB) scheme for the LBM framework. Han's strategy 

seems promising; however, their derivation of TCR expression is dimensionally 

inhomogeneous and hence wrong, as discussed in detail later.    

Therefore in this work, the PBB scheme will be revisited and re-derived to obtain its 

correct dimensional formula for TCR. After discussing its applicability, we validate the new 

scheme for some simple cases by comparisons with the corresponding theoretical resolutions. 

Furthermore, we will apply this modified scheme to predict the effective thermal conductivity 

of particle-reinforced composites where the TCR is non-negligible, so as to explore the major 

factors that influence the effective thermal properties of the materials. 

2. Numerical methods 

2.1  LBM scheme for thermal conduction 

Consider a pure thermal conduction in a composite material without any heat source. The 

general governing equation (Poisson equation) for heat transfer is 

   
  

  
                                                                                                                                     

where T is the temperature, ρ the density, λ the thermal conductivity which may depend on 

position, and    the specific heat capacity. To solve Eq. (1) in such multiphase system with 

high computational efficiency, a simplified thermal lattice Boltzmann method has been 

proposed [24, 25]. Accordingly the energy evolution equation can be generally given as 

                         
 

  
           

                                                          

where    and   
  
 are respectively the internal energy distribution function and corresponding 

equilibrium distribution function with discrete lattice velocity    along the i-th direction; 

   is the time step and    is the relaxation time for   . For a two-dimensional nine-speed 

(D2Q9) model, there are 
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while for a three-dimensional fifteen-speed (D3Q15) model, there are instead 
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where c is the lattice speed that theoretically can take any positive value only to insure the 

   value within (0.5, 2) [25, 41]. According to Ref. [42], the temperature and the heat flux can 

be calculated as 

  
 

   
   
 

                                                                                                                                       

        
 

 
      

  
                                                                                                                    

Finally, the effective thermal conductivity      can be determined by the solved 

temperature field: 

     
      

     
                                                                                                                               

where q is the steady heat flux through the cross section area dA between the temperature 

difference    with a distance L.  

Thus the unsteady heat conduction described by Eq. (1) can be described and solved 

through such a form of energy evolution in the framework of Eqs. (2-10), termed as thermal 

lattice Boltzmann method (TLBM). Then, steady-state heat conduction can be simply treated 

as a special case when the time-dependent term vanishes.  

The critical issue here however is the ambiguity which one is the solved property, 

thermal conductivity ( ) or thermal diffusivity (a =     ). An expedient solution for this 

problem was to assume     = 1 [26, 43], so that     is numerically equal to  . This 

assumption     = 1 has been adopted widely and works well for cases with negligible 

thermal contact resistance [26-30, 44]. However when the temperature and heat flux at 
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interfaces have to be considered, the assumption (     ) may lead to conflict so that the 

entire framework needs to be reformulated. 

Therefore, for steady-state heat conduction in a multi-component system, the 

time-dependent term vanished and Eq. (1) reduces into the simple Laplace-like equation, 

                                                                                                                                             

To proceed within the thermal lattice Boltzmann framework, it can be treated as the 

temperature "diffusing" through the multiphase lattice system. The position-dependent 

temperature diffusivity,   , has the same value as the real thermal conductivity, but with a 

different dimension (m
2
/s). We rebuild a temperature evolution equation 

                               
 

   
             

                                                           

The equilibrium distribution functions and the relaxation times in the temperature 

evolution equations for D2Q9 are: 
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for D3Q15, we have 
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It is worth mentioning that the dimensions of these two sets of equilibrium distribution 

functions, Eq. (4) vs. Eq. (14) and Eq. (7) vs. Eq. (16), are different. As a result, the local 

macroscopic potential (T) and the flux (F) to the temperature diffusivity (    at each node are 

statistically calculated by 

      
 

                                                                                                                                             

         
 

 
       

   
                                                                                                                   

while the heat flux (q) in real space should be calculated by 

            
 

 
       

   
                                                                                                           

Note that the formula of heat flux differs from the previous works [40] as it depends not 

only on the temperature distribution function but also on the heat capacity of local phase. We 
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may have to calculate the heat flux at the interface to ensure continuous heat flux from both 

sides. After calculating the potential and the flux on each node, the effective temperature 

diffusivity       can be determined by: 

      
      

     
                                                                                                                           

which is equal to the effective thermal conductivity demanded. 

2.2  Revisit of PBB formulation for TCR 

To account for the TCR within the LBM framework,  a PBB scheme [40] was proposed 

by introducing a non-dimensional parameter   whose value is within [0, 1], representing the 

bounced-back fraction of temperature distribution when trying to stream through the phase 

interface. Fig. 1(a) illustrates its simple idea that, at the interface only a fraction (   ) of the 

evolution quantity on a boundary node I of object    can be propagated to the boundary node 

J of object   . Clearly, the adjacent boundary of two phases is completely insulated if    ; 

while the TCR is negligible if      Logically, if the TCR at an interface is non-negligible, 

then      . Thus, all the complicities in dealing with intricate interfacial contact are 

condensed into determining this single parameter  . 

       

(a)                                (b) 

Fig. 1  (a) The schematic of the partial bounce-back scheme at interface: only a fraction (1- ) of the streamed 

function can be propagated from one object (Ω1) to the other (Ω2). Rc is the thermal contact resistance. (b) A 1D 

heat conduction problem without thermal contact resistance, heat flows from the node I to node J. 

The connection between this PBB parameter,   , and the effective TCR,    , at two 

contacting phases was established by Han et al [40] using the continuity of heat flux at the 

interface as  

   
  

   
                                                                                                                                          

This correlation looks simple and easy, and has been used for qualitative analysis of TCR 

effects on materials properties [40]. However, it is noticed that such a non-dimensional 

formula is hard to connect the predictions with practical applications, and as a result the 

quantitative investigation of TCR effects is unavailable. Therefore a reconsideration of this 

PBB scheme becomes necessary and demanded. 

2.3  A corrected PBB scheme for dimensional TCR 

Here, we are to correct the formula of dimensional TCR based on the PBB scheme. As 

no heat source is considered there, the existence of TCR may change the local temperature but 

not the continuity of heat flux. Considering the contact interface of two objects with the same 
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heat capacity (   ), we re-derived and obtained the dimensional TCR as  

   
  

         
                                                                                                                            

where the dimension of Rc is correctly      . Two main reasons might lead to the 

incorrect dimensionless formula of TCR in the previous work [40]: one was the incorrect 

expression of heat flux, and the other was the non-dimensional LBM framework used in Ref. 

[40] which led to the lattice speed c missing in the formula. 

Further, if the heat capacities (   ) of the two contact objects are different, we obtained a 

new dimensional TCR as 

   
         

       
         

         
                                                                                         

where the subscripts “1” and “2” correspond to objects    and    respectively, the 

superscripts "I" and "J" correspond to the adjacent nodes I and J shown in Fig. 1(b). Detailed 

derivation process for Eq. (22) is presented in the Appendix.  

This is an implicit scheme for TCR because Rc and the temperatures adjacent to the 

interface (     ) influence each other. For two contact particles with different heat capacities, 

Eq. (22) indicates that the interface temperature cannot be eliminated from the formula as 

before. This is a bad news for us which brings much trouble for applications, and we are still 

putting efforts to find a better way to embed the dimensional TCR in the thermal LBM 

framework.  

Therefore, in the present study hereafter, we are still focusing on the particle-reinforced 

composites with only one type of particles. Even though the liquid-solid interfacial thermal 

resistance exists, it is generally negligibly small compared with the solid-solid thermal contact 

resistance in composite systems. This work will demonstrate how the solid-solid TCR 

influences the effective thermal conductivity of the composite materials. 

3. Results and discussion 

Furthermore our simulation is confined in a domain with top and bottom as the 

isothermal boundaries and the surrounds as the insulated boundaries. For such given domain 

boundaries, we can follow the non-equilibrium bounce-back rule proposed by Zou and He [45] 

for the isothermal ones, and the Neumann method [24, 25] for the insulated ones, 

respectively. 

3.1 Benchmarks 

To validate the new dimensional PBB scheme, we compare the results for some simple 

cases already with known theoretical solutions. Consider pure steady-state heat conduction 

between two rectangular contacting solids with the same properties shown in Fig. 2 (a). 

Thermal conductivities of the solids are                 , and the width      . 

The top and bottom of the domain are isothermal at         and      , and the left 

and right sides are insulated. Thence, the heat flux q and the effective thermal conductivity 

     have analytical solutions for a given TCR   . 

In our simulations, we used 100 lattices in the vertical y direction, and the lattice space 

was 0.01 m consequently. To insure the value of    within (0.5, 2), we set the lattice speed at 
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           . For these given parameters, the PBB parameter   can be calculated by Eq. 

(20) for any given   . Fig. 2 (b) shows the vertical temperature profiles for five different   . 

The temperature is continuous when      at the interface and no heat flux go through the 

interface when    = ∞. For finite   , the modeling results are compared with the analytical 

solutions in Table 1. Excellent agreements validate the derived dimensional PBB scheme 

within the thermal LBM framework. 

       

(a)                                              (b) 

Fig. 2  Validations of the modified PBB scheme. (a) Sketch of a pure steady state heat conduction problem 

between two rectangular contacting solids; (b) Temperature profiles in the y-direction for given different 

dimensional   . 

Table 1  Comparisons between simulation results and analytical solutions for different   . 

Parameters 

 

Results 

     
        

                        

Analytical 

values 

Present 

simulations 
 

Analytical 

values 

Present 

simulations 

0 0  5000 5000  100.00 100.00 

0.001 
  

  
  4761.9 4761.9  95.238 95.238 

0.01 
   

   
  3333.3 3333.3  66.667 66.667 

0.1 
    

    
  833.33 833.33  16.667 16.667 

1 
     

     
  98.039 98.039  1.9608 1.9608 

∞ 1  0.0000 0.0000  0.0000 0.0000 
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3.2 Applications for particle-reinforced composites 

After validation, we use this scheme to predict the effective thermal property of 

particle-reinforced composites. Considering the random distribution and arbitrary geometry 

characteristics of particles in composites, we used the quartet structure generation set (QSGS) 

algorithms [26] to generate microstructures of the composites. Some generated structures with 

various particle volume fractions are shown in Fig. 3. Different from the previous work which 

used 0 or 1 to only recognize particle or matrix materials [38], we here assign each generated 

particle a unique number to distinguish it from others, so that we can recognize the interfaces 

between particles. 

       
(a)                       (b) 

       

  (c)             (d) 

Fig. 3  Generated microstructures of particle-reinforced composites with different particle volume fractions φ by 

QSGS. (a)        (b)        (c)        (d)        The gray area represents particles and the pure 

black represents matrix phase. Each particle is given a number to be recognized. The domain is 2 mm×2 mm and 

the grid is 200×200. The averaged diameter of particles is d=10 μm.  

Unless specified, the following simulations were performed in a two-dimensional 0.2 × 

0.2 mm
2
 domain on a 200×200 grid. The boundary temperatures are         at the top 

and        at the bottom, respectively. The left and right sides are adiabatic. The other 

simulation parameters include: the average diameter of particles        , the thermal 

conductivities for matrix phase             and for particles              , 

the lattice speed            . We estimated the thermal contact resistance between 

particles at                by utilizing the Clausing and Chao's model [6], and 

neglected the thermal contact resistance between the particles and the low thermally 
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conductive matrix phase. 

We studied the impact of    on the effective thermal conductivity of composites,     , 

for a given    value,             at first, compared with the case without TCR, 

     as shown in Fig. 4 (a). TCR lowers the effective thermal conductivity and the TCR 

effect increases with the particle volume fraction. Significant deviations between the two 

cases are found once the particle volume fraction (φ) is higher than 0.5. The reason lies in the 

increased contact areas with rising φ value. When the particle volume fraction is very small 

(such as φ<0.3), the particle-particle contacts are quite rare, as shown in Fig. 3 (a), and 

therefore the effect of TCR is negligible. Fig. 4 (b) shows the temperature contours for the 

same geometry at φ=0.8 with or without TCR. When the TCR is not negligible (     

         ), the temperature contours are broken into finer pieces by the solid-solid 

contact interfaces and the temperature drop at each contact interface will reduce the overall 

thermal conductivity of the composite materials. 

 

(a) 

   

(without TCR)      (with TCR) 

(b) 

Fig. 4   Thermal conductions for different particle volume fractions with (              ) or without 

(    ) thermal contact resistance. (a) Effective thermal conductivities; (b) Temperature contours at      . 

For structure design of particle-reinforced composites, the size effect of particles on the 
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effective thermal conductivity is a significant issue. As stated before, the negligible TCR 

assumption, which is suitable for most macroscopic engineering materials [32, 33], leads to an 

increasing effective thermal conductivity with the decreased particle size at a given porosity 

[31]. However, for nanoporous materials such as in silica aerogels [35], experimental data has 

shown an opposite trend with the reduced particle size [34]. The increased number of 

interfaces for finer particles and thus non-negligible thermal resistance cause the conflicting 

results. By assuming the thermal contact resistance layers between particles as a gas layer 

network frame in the composite system, Wang et al. [38] obtained the same trend of particle 

size effect as the experiments of nanoporous materials. However assumption of uniform and 

constant contact resistance, equal to that of the matrix phase, limits the applicability of the 

method. Using the dimensional PBB scheme developed in this work, we can alter the value of 

TCR independently and the particle size, so as to re-examine the particle size effect on the 

overall effective thermal conductivity. The TCR value between particles varies from 0 to 

            , and we consider four statistically averaged diameters of particles of 

                  . The solid particle fraction is φ = 0.8. Fig. 5 shows the effective 

thermal conductivity against the particle size, and mixed trends are shown. With a low 

thermal contact resistance,   , between solid particles, the effective thermal conductivity of 

composites,     , decreases with the increasing particle size, which agrees with the reported 

results from the engineering macroscopic materials.  Conversely when    is beyond a 

certain level,      -8
       in our simulations,      increases with the particle size. 

This means that if the thermal contact resistance is not negligible, the smaller the particles, the 

lower the effective thermal conductivity of composites for a given particle volume fraction. 

This trend agrees with the observations for nanoporous materials. Smaller particles increase 

the chance of particle-particle contact, hence denser interfaces, and more significant impact of 

TCR: this may provide a useful insight for designs and structure optimizations for 

nanomaterials. 

 

Fig. 5  Effect of particle size on composite effective thermal conductivity for different    at      . 

4. Conclusions 

To study the effective thermal conductivity of composite materials with thermal contact 
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resistance at particle-particle interfaces, we developed the partial bounce-back (PBB) scheme 

to include the thermal contact resistance at interfaces into the thermal lattice Boltzmann 

framework by re-deriving the redistribution function of heat at the phase interfaces for a 

corrected dimensional TCR formulation. The mechanism of simplified lattice Boltzmann 

scheme for solving the stead-state heat conduction equation is re-examined and revealed. 

After validation of the simulation results with the corresponding theoretical solution for a 

simple case, we applied this new method to the effective thermal conductivities of composite 

materials where the contract thermal resistance was not negligible, and demonstrated the 

effects of the particle volume fraction, the value of thermal contact resistance and the particle 

size. The results showed that (1) the existence of TCR lowered the effective thermal 

conductivity and the TCR effect increased with the particle-particle interfaces; (2) the 

connection between the effective thermal conductivity and particle size is complex. With a 

low thermal contact resistance, the effective thermal conductivity of composites decreased 

with the increasing particle size, which agreed with the facts in macroscopic engineering 

materials. However if the thermal contact resistance was not negligible, a smaller average size 

of particles led to a lower effective thermal conductivity of composites for a given volume 

fraction, which agreed with the observations for nanoporous materials. 
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Appendix: Derivation of the dimensional TCR 

Here we present the details in obtaining Eqs. (21) and (22) for the dimensional TCR. 

For the system shown in Fig. 1(a), the thermal contact resistance    can be obtained 

from subtraction of the total thermal resistance    between nodes I and J and the thermal 

resistance per lattice grid    as 

                                                                                                                                             

Since the thermal resistance is defined as  

  
  

 
 
     

 
                                                                                                                           

we need to find the relation between the temperature difference and heat flux from node I to J 

for    and    respectively. 

In order to get the lattice gird resistance   , we consider a 1D heat conduction problem 

as shown in Fig. 1(b). Heat flows from node I to J. For steady state, we can establish the 

following relations for the temperature distribution functions: 

           
  
 
 

 
                                                                                               

Based on Eq. (19), the axial heat flux is calculated as 

                  
  

       

   
                

  
       

   
                                  

Denoting   
              , we have 
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By using Eq. (A3), the temperature at node I is  

 

 
      

     
       

     
                                                                                                       

Combining Eqs. (A5) and (A6) gives 

 
 
 

 
    

      
  

 

 
   

 

 

  
 

       

   
      

  
 

 
   

 

 

  
 

       

                                                                                                    

Similarly, for node J : 

 
 
 

 
    

 
     

 
 
 

 
   

 

 

  
 

       

   
      

  
 

 
   

 

 

  
 

       

                                                                                                    

According to the evolution equation of the temperature distribution functions, we get 

 
 
 

 
           

 
           

  
 

   
    

  
 

 
    

          
 
           

  
 

   
    

  
 

  
    

                                                                           

By substituting Eq. (A9) into Eqs. (A7) and (A8), 

  
  

     

 
        

         
                                                                                            

and 

   
       

   
  
  

  

 
                  

         
                                                

Based on the definition, the thermal resistance per lattice grid    is 

   
  

  
 

        

                    
         

  
                                                                

Next, we need to obtain the total thermal resistance    between nodes I and J for the 

system shown in Fig. 1(a). Multiplying the temperature distribution function    by the heat 

capacity      , and based on the PBB scheme mentioned in Section 2.2, we recover the 

energy redistribution correlation as  

 
         

            
        

        
                                                                         

         
            

        
        

                                                                        
  

where 
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are the post-collision temperature distribution functions.  

Combining Eqs. (A14a) and (A14b) leads to 

   
      

     
 

   
     

      
   

  

    
                                                                                 

Similarly, for node J: 

   
 
     

 
    

 

   
     

 
     

 
  

  

    
                                                                                

 Summing Eqs. (A13a) and (A13b) and using Eq. (A7) give 

   
      

       
      

   
      
      

         
      

 
  

 

 
   

 

 

  
 

       

                

 Substituting Eq. (A15) into Eq.(A16), we have 

  
  

   

 

   

            
          

         
                                                          

and 

   
       

   
  
  

   

             
                  

         
                     

Based on Eq. (A2), the total thermal resistance    is 

   
         

              
         

  
 

        

                   
         

  
         

Finally, by substituting Eqs. (A12) and (A19) into Eq. (A1), the thermal contact 

resistance    is obtained, as the form of Eq. (22).  
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