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Thermodynamic analysis, especially the second-law analysis, has been applied in engineering design and
optimization of microscale gas flow and heat transfer. However, following the traditional approaches may
lead to decreased total entropy generation in some microscale systems. The present work reveals that the
second-law analysis of microscale gas flow and heat transfer should include both the classical bulk
entropy generation and the interfacial one which was usually missing in the previous studies. An increase
of total entropy generation will thus be obtained. Based on the kinetic theory of gases, the mathematical
expression is provided for interfacial entropy generation, which shows proportional to the magnitude of
boundary velocity slip and temperature jump. Analyses of two classical cases demonstrate validity of the
new formalism. For a high-Kn flow and heat transfer, the increase of interfacial transport irreversibility
dominates. The present work may promote understanding of thermodynamics in microscale heat and
fluid transport, and throw light on thermodynamic optimization of microscale processes and systems.

� 2016 Elsevier Ltd. All rights reserved.
1. Introductions

In recent years, with the rapid development of micro- and
nanofabrication and nanotechnology [1] and micro-
electromechanical systems (MEMS) [2], there are increasing inter-
ests and studies on microscale gas flow [3–7] and heat transport
[8–11]. The thermodynamics at microscale has attached more
and more attentions in theory, such as the non-equilibrium
entropy [12–14], or in applications for optimization of thermal effi-
ciency of microsystems. The entropy generation minimization
principle [15] or so-called the second-law analysis [16], originated
in classical irreversible thermodynamics (CIT) [17], has been
extended from the conventional engineering field to microscale
systems. Hitherto the second-law analysis of microscale gas heat
convections in simple geometries (micro-channels, micro-pipes,
micro-ducts, etc.) has been widely performed via either analytical
approach [18–24] or numerical simulations [25–28]. All these
works followed the traditional methodology: ‘‘computing the
entropy generation after a resolution of velocity and temperature
field distributions” based on the entropy generation formula in
terms of velocity and temperature gradients [15,16]. The size
effects at microscale were incorporated in obtaining the velocity
and temperature distributions by solving the classical hydrody-
namic equations with velocity slip and temperature jump bound-
ary conditions. A common conclusion was made that the total
entropy generation decreased with the increase of Knudsen num-
ber (Kn, defined as the ratio of mean free path to characteristic
length) in microscale systems such as in the classical work [18,19].

However, the particular phenomena of velocity slip and tem-
perature jump occur at the gas–solid interface in microscale gas
flow [4]. The non-continuous velocity and temperature profiles
come from the in-sufficient interactions between gas molecules
and solid walls. In other words, the gas-surface interaction near
the solid wall cannot reach a local equilibrium state as a funda-
mental hypothesis in CIT [17]. Such a non-equilibrium effect,
non-doubtfully, will bring additional irreversibility and entropy
generation. Actually the entropy generation in rarefied gas systems
has been declared to consist of two parts [29]: one from the inter-
molecular interactions and the other from the gas-surface interac-
tions, which are denoted as the bulk and the interfacial entropy
generations, respectively hereafter. The study on interfacial
entropy generation originated earlier in formulating fluid–solid
interfacial boundary conditions in the frame of non-equilibrium
thermodynamics [30,31]. The boundary conditions were obtained
as bilinear phenomenological flux-force relations from the non-
negative interfacial entropy generation restricted by the second
law [30]. The kinetic theory foundations were also investigated
rooted in linearized Boltzmann transport equation (BTE) [32–34],
where both the boundary conditions and the Onsager reciprocal
relations for kinetic coefficients [29,35,36] have been derived.
These outstanding works laid a solid basis for interfacial boundary
conditions from both thermodynamic and statistical physical per-
spectives. But they mainly focus on the rarefied gas transport with
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Nomenclature

c (cx, cy, cz) molecular velocity [m/s]
u (ux) fluid velocity [m/s]
T thermodynamic temperature [K]
x, y, r coordinate components [m]
Pr Prandtl number [–]
Kn Knudsen number [–]
Br Brinkman number [–]
cp specific heat capacity at constant pressure [J/(kg�K)]
_m mass flow rate [kg/s]
Ac cross-sectional area [m2]
R radius of the micro-pipe [m]
H half of the height of the micro-channel [m]
k thermal conductivity of fluid [W/(m�K)]
P wetting perimeter [m]
Y dimensionless value of y [–]
q heat flux supply [W/m2]
A, B combinational parameters [–]
f molecular velocity distribution function [m�3(m/s)�1]
F external force on per unit mass of fluid [m/s2]
kB Boltzmann constant [J/K]
p thermodynamic pressure [Pa]
e specific internal energy [J/kg]
s specific entropy or specularity parameter of

wall [J/(K�kg)] or [–]
Js entropy flux [W/(K�m2)]
Sgen entropy generation rate [W/K]

Greek symbols
k molecular mean free path [m]
l dynamic viscosity of fluid [kg/(m�s)]
q mass density of fluid [kg/m3]
c specific heat ratio [–]
s molecular relaxation time [s]
h dimensionless temperature [–]
g dimensionless value of r [–]
r entropy generation rate per unit volume [W/(K�m3)]
Uq dissipation function [s�2]
U, / deviational part of velocity distribution function [–]
a, b dummy index [–]

Subscripts
s variables of gas at the wall
w variables of the wall
m mean value of variables
1 parameters of micro-pipe
2 parameters of micro-channel
eq equilibrium state
b bulk region
i interface region

Acronyms
CIT classical irreversible thermodynamics
BTE Boltzmann transport equation
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a finite Kn resulting from enhanced mean free path. Theoretical
foundation of the entropy generation is seldom explored in micro-
scale gas flow and heat transport, where the reduced system size
contributes to the finite Kn. It will be shown that the interfacial
entropy generation obtained in rarefied gas transport is not avail-
able directly to analysis of microscale gas flows due to a finite por-
tion of Knudsen layer (a thin layer with a thickness about one
mean free path near the wall) across the microchannel. On the
other hand, the interfacial entropy generation has never been
incorporated into the second-law analysis of microscale gas heat
convections in the previous work [18–28], to the authors’ best
knowledge. With the miniaturization of system and increase of
Kn, the entropy generation at the interface may become compara-
ble to or even dominant over that in the bulk region. The thermo-
dynamic performance of microscale system will thus be
inadequately or erroneously evaluated when neglecting the inter-
facial irreversibility. It will be shown that the total entropy gener-
ation may increase with increasing Kn when both the bulk and
interfacial entropy generations are counted.

Therefore, the present work aims at a systematic second-law
analysis of microscale gas flow and heat transport with special
attention on the role of interfacial entropy generation. Two classi-
cal cases are taken for demonstration: heat convections in micro-
pipe [37] and in micro-channel [38]. The remainder of this article
is organized as: in Section 2, the mathematical expressions of bulk
and interfacial entropy generation are derived respectively in the
frame of CIT and gas kinetic theory, as the theoretical foundation
of second-law analysis. In Section 3, the analytical solutions and
then the specific entropy generation formulations of heat convec-
tions in micro-pipe and micro-channel are presented. In Section 4,
we provide the results of second-law analysis of the two cases of
microscale heat convection in Section 3, with the role of interfacial
irreversibility to be illustrated and discussed. Concluding remarks
are finally made in Section 5.
2. Theoretical foundation of second-law analysis

The theoretical evaluation of thermodynamic irreversibility in
microscale gas flow is intimately related to its hydrodynamic mod-
eling, as is shown in Fig. 1. The microscale gas flow within the slip
regime (0.001 6 Kn 6 0.1) is considered throughout the present
work, modeled by the Navier–Stokes equation (or Fourier’s law)
with a velocity slip (or temperature jump) boundary condition
[4]. Although in principle the gas behaviors within the Knudsen
layer should be described through a solution of BTE, the present
modeling has been proved to yield sufficiently accurate results
within the slip regime [4,7]. Accordingly, the total entropy genera-
tion includes twofold shown in Fig. 1(b): the bulk part in the
microchannel due to the fluid flow (or heat transport) and the
interfacial part at the wall induced by velocity slip (or temperature
jump). The interfacial entropy generation has been calculated for
rarefied gas transport based on kinetic theory of gases, as the dif-
ference between the entropy fluxes at the gas side and the solid
one [32–34]. The velocity distribution function of gases obtained
by the Chapman–Enskog solution to BTE in the bulk region (outside
the Knudsen layer) was used to evaluate the entropy flux at the gas
side. From the authors’ perspective, the obtained entropy genera-
tion is actually that within the Knudsen layer, as shown in Fig. 1
(c). As the Knudsen layer is modeled approximately by continuum
equation, the entropy generation within this layer has been
accounted in the bulk part, as indicated in Fig. 1(b). Direct applica-
tion of previous interfacial entropy generation here will duplicate
the entropy generation in the Knudsen layer. Thus in the present
work, the interfacial entropy generation is derived as the difference
between entropy flux of gas at the wall and entropy flux in the
solid wall. The former one is evaluated based on the velocity distri-
bution functions of incident gases (f�) and reflecting gases (fþ) at
the wall, which are related by the Maxwell gas-surface interaction
model, as shown in Fig. 1(d). The obtained interfacial entropy



Fig. 1. Hydrodynamic modeling and thermodynamic irreversibility of microchannel gas flow in slip regime: (a) Modeling by Navier–Stokes equation with slip boundary
condition, with also a comparison to the BTE solution in Knudsen layer (dashed line); (b) The total entropy generation including the bulk part rs

b and interfacial part rs
i ; (c)

Kinetic theory foundation of rs
i in previous work, as the difference between entropy flux of gases in the bulk region near the wall (Jsg) and entropy flux in the solid wall (Jsw),

with Jsg computed based on the Chapman–Enskog distribution function outside the Knudsen layer f g ¼ f CE; (d) Kinetic theory foundation of rs
i in the present work, as the

difference between entropy flux of gas at the wall (Jss) and entropy flux in the solid wall (Jsw), with Jss computed based on the distribution functions of incident gas (f�) and
reflecting gas (fþ) which are related by the Maxwell gas-surface interaction model.
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generation in the present work is lower than that for rarefied gas
transport. The detailed derivation of bulk and interfacial entropy
generations is given below in the frame of CIT and kinetic theory
of gases separately.

2.1. Bulk entropy generation

The entropy generation in the bulk region is derived in the
frame of CIT. The balance equations of mass and energy for heat
and fluid flow are [39]:

dq
dt

þ qr � u ¼ 0

q
de
dt

¼ �r � q� P : ru
; ð1Þ

with e the specific internal energy of fluid, q and P the heat flux vec-
tor and pressure tensor, governed by the Fourier’s law and Newton’s
shear law respectively [39]:

q ¼ �krT

P ¼ pI� l ruþ ðruÞT
h i

þ 2
3
lðr � uÞI

; ð2Þ

with I the unit tensor, the superscript ‘T’ in roman denoting the
transpose of a tensor, distinguished from the normal T in italics
denoting the temperature. Here the bulk viscosity of fluid has not
been considered. The fundamental relation in CIT is the Gibbs equa-
tion [17]:

T
ds
dt

¼ de
dt

� p
q2

dq
dt

: ð3Þ

Substitution of Eqs. (1) and (2) into Eq. (3), with an identifica-
tion to the entropy balance equation [17]:
q
ds
dt

¼ �r � Js þ rs
b; ð4Þ

gives rise to the expressions of entropy flux and entropy generation
respectively:

Js ¼ q=T; ð5Þ

rs
b ¼ k

T2 ðrTÞ2 þ l
T

ruþ ðruÞT
h i

: ru� 2
3
l
T
ðr � uÞ2: ð6Þ

For an incompressible flow (r � u ¼ 0) considered in the present
work, the bulk entropy generation Eq. (6) reduces to:

rs
b ¼ k

T2 ðrTÞ2 þ l
T

ruþ ðruÞT
h i

: ru: ð7Þ

Eq. (7) evaluates the thermodynamic irreversibility induced by
bulk heat conduction and viscous flow.

2.2. Interfacial entropy generation

The interfacial entropy generations induced by the velocity slip
and temperature jump in microscale gas flow and heat transport
are derived based on the kinetic theory of gases. For mathematical
simplicity and clear physical interpretation, the coupling effect is
assumed negligible between fluid flow and heat conduction, as to
be separately discussed below in Sections 2.2.1 and 2.2.2, shown
in Fig. 2(a) and (b). The assumption of negligible coupling between
gas flow and heat conduction may be acceptable in the slip regime
where the non-equilibrium effect is moderate.

In the gas kinetic theory, the transport process is described by
BTE [40]:



Fig. 2. Derivation of interfacial entropy generation in microscale gas flow and heat transport: (a) isothermal microscale gas flow with velocity slip; (b) microscale gas
conduction with temperature jump. Steady states are considered for both cases.
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@f
@t

þ c � @f
@x

þ F � @f
@c

¼ Cðf Þ; ð8Þ

where f = f(x,c, t) is the velocity distribution function, with fdxdc
denoting the probabilistic number of gas molecules within spatial
interval (x,x + dx) and molecular velocity interval (c,c + dc), and F
is the external force on per unit mass of gases. C(f) is the molecular
collision term, which is extremely complicated and usually
assumed the BGK relaxation approximation [41]. Thus Eq. (8) with-
out external force reduces to:

@f
@t

þ c � @f
@x

¼ � f � f eq
s ; ð9Þ

with s denoting the molecular relaxation time, the equilibrium dis-
tribution function feq being the local Maxwell–Boltzmann distribu-
tion [40]:

f eq ¼ q
m

m
2pkBT

� �3=2

exp �mðca � uaÞ2
2kBT

" #
; ð10Þ

where kB is the Boltzmann constant. Hereafter the Einstein’s sum-
mation convention [39] is applied for elegance. Through a Chap-
man–Enskog expansion of f around feq within zeroth order, first
order and higher order, different hydrodynamic equations are
recovered respectively: Euler equation, Navier–Stokes equation
and Burnett or super-Burnett equation [42]. In the present work,
as the bulk fluid flow is described by the Navier–Stokes equations,
the first-order expansion solution of Eq. (9) is adopted for further
analysis [43]:

f ¼ f eq�
m2 f eq
qðkBTÞ2

ðca�uaÞðcb�ubÞl@ua
@xb

� m2 f eq
3qðkBTÞ2

ðca�uaÞðca�uaÞl@ub
@xb

� m2 f eq
qðkBTÞ2

ðca�uaÞk @T
@xa

þ m3 f eq
5qðkBTÞ3

ðca�uaÞðca�uaÞðcb�ubÞk @T
@xb

2
64

3
75:

ð11Þ
The entropy balance equation Eq. (4) can be derived from the

BTE Eq. (9) by multiplying ‘�kBlnf’ on both sides and integrating
over the whole molecular velocity space [9]:

@

@t
�kB

Z
f ln fdc

� �
þ @

@x
� �kB

Z
cf ln fdc

� �

¼ �kB

Z
ð1þ ln f ÞCðf Þ dc: ð12Þ

Therefore, the kinetic definitions of entropy density and entropy
flux are obtained as:

qs ¼ �kB

Z
f ln fdc

Js ¼ �kB

Z
ðc� uÞf ln fdc:

ð13Þ
2.2.1. Interfacial entropy generation of velocity slip
For the fully-developed micro-channel isothermal gas flow

shown in Fig. 2(a), the gas flow near the lower wall is taken to cal-
culate the interfacial entropy generation. From Eq. (11), the distri-
bution function of gases near the wall reduces to:

f� ¼ f�eq 1� m2

qðkBTÞ2
cx � usð Þcyl @ux

@y

� �
s

" #
; ð14Þ

where us is the gas slip speed at the wall and the local equilibrium
distribution function becomes:

f�eq ¼ q
m

m
2pkBT

� �3=2

exp �ðcx � usÞ2 þ c2y þ c2z
2kBT=m

" #
: ð15Þ

The main idea to derive the interfacial entropy generation has
been proposed as the difference between the entropy fluxes at
the gas side (Jsg) and at the solid side (Jsw) [29]:

rs
i ¼ Jsg � Jsw; ð16Þ

where Jsw ¼ qn=T , with qn the normal heat flux at the solid side and
assumed equal to the normal heat flux at the gas side [34]. For the
isothermal gas flow (qn = 0), Eq. (16) reduces to [29,44]:

rs
i ¼ Jsg ¼ �kB

Z
cyf

� ln f�dc: ð17Þ

The distribution function of gases can be rewritten as
f� ¼ f 0ð1þUÞ, with the global Maxwell–Boltzmann distribution

f 0 ¼ q
m

m
2pkBT

� �3=2
exp � mc2

2kBT

h i
. After some mathematic operations,

the interfacial entropy generation Eq. (17) becomes [32–34]:

rs
i ¼ �1

2
kB

Z
cyf 0U

2 dc: ð18Þ

In this work, according to the analysis at the beginning of Sec-
tion 2, the interfacial entropy generation is instead derived from
rs

i ¼ Jss � Jsw ¼ Jss with Jss the entropy flux of gases at the wall:

rs
i ¼ �kB

Z
cyf s ln f sdc: ð19Þ

In Eq. (19), the distribution function of gases at the wall is:

f s ¼
f�; for cy < 0
fþ; for cy > 0

�
; ð20Þ

where the distribution function of reflecting gases f+ is related to
that of incident gases f� through the gas-surface interaction model.
The most common Maxwell model [44] is used here: the gas
molecules collide with the wall, and experience diffuse or specular
scatterings, the portion of them given by (1 � s) and s respectively.



Y. Guo, M. Wang / International Journal of Heat and Mass Transfer 103 (2016) 773–782 777
Thus the distribution function of reflecting gases is formulated as
[44]:

fþ ¼ sf�ðcx;�cyÞ þ ð1� sÞf 0ðTwÞ: ð21Þ
Substituting Eqs. (20) and (21) into Eq. (19), we get the full

expression of interfacial entropy generation:

rs
i ¼ � kB

Z 1

�1

Z 0

�1

Z 1

�1
cyf 0ð1þUÞ ln½f 0ð1þUÞ� dcxdcydcz

�

�
Z 1

�1

Z 0

�1

Z 1

�1
cyf 0ð1þ sUÞ ln½f 0ð1þ sUÞ� dcxdcydcz

�
: ð22Þ

The integration in Eq. (22) is too complicated for a general case
(arbitrary value of s). The fully diffuse wall (s = 0) is considered
throughout the present work, such that Eq. (22) reduces to:

rs
i ¼ � kB

Z 1

�1

Z 0

�1

Z 1

�1
cyf

� ln f� dcxdcydcz

�

�
Z 1

�1

Z 0

�1

Z 1

�1
cyf 0 ln f 0 dcxdcydcz

�
: ð23Þ

Similar to the analysis from Eq. (17) to Eq. (18), the following
approximation is made (with f� ¼ f�eqð1þ /Þ):

f� ln f� � f�eq ln f�eq þ ð1þ ln f�eqÞf�eq/þ 1
2
f�eq/

2: ð24Þ

Substituting Eq. (24) into Eq. (23) and integrating over molecu-
lar velocity space, we obtain the explicit expression of interfacial
entropy generation:

rs
i ¼

l
pT

k
@ux

@y

� �
s

� �2
; ð25Þ

where the molecular mean free path k has been related to the

dynamic viscosity l through l ¼ 1
2q�ck ¼ qk

ffiffiffiffiffiffiffiffi
2kBT
pm

q
[40]. With the

expression of slip speed in the Maxwell model: us ¼ k @ux
@y

� �
s
[4],

Eq. (25) is slightly reformulated as:

rs
i ¼

l
pT

us
@ux

@y

� �
s
: ð26Þ

Eq. (26) implies that the interfacial entropy generation is pro-
portional to the gas slip speed (or velocity gradient) at the wall.
For gas flows in the continuum regime, the slip speed is negligibly
small, with a nearly vanishing rs

i . It is thus reasonable to neglect
the entropy generation at the gas–solid interface and merely con-
sider that in the bulk region, as in the traditional second-law anal-
ysis [15,16]. However, for gas flows in the slip regime where
appreciable slip speed exists, Eq. (26) gives a finite value of rs

i .
The interfacial entropy generation is no longer negligible, but
may become comparable to or even dominant over that in the bulk
region, as to be demonstrated below.
Fig. 3. Schematic of fully-developed microscale gas heat convections: (a) in circular mic
The deviation part (of distribution function) / in Eq. (24) rather
than U in Eq. (18) is used in present work, since it makes the
analytical integration in Eq. (23) much simpler. The former is a per-
turbation from the local equilibrium distribution f�eq (Eq.(15))
whereas the latter is a perturbation from the global equilibrium
distribution f 0. They are related through the identity
f� ¼ f�eqð1þ /Þ ¼ f 0ð1þUÞ and a linearization of f�eq around f 0
[33,34]:

U ¼ dpð0Þ
p

þ dTð0Þ
T

mc2a
2kBT

� 5
2

� �
þmcauað0Þ

kBT
þ /; ð27Þ

where the temperature and pressure jumps dTð0Þ, dpð0Þ are pertur-
bations from the global equilibrium state at the gas–solid interface
and vanish for the present isothermal flow. In this way, Eq. (27)
reduces to:

U ¼ mcxus

kBT
þ /: ð28Þ

Substitution of Eq. (28) into Eq. (18) produces the interfacial
entropy generation obtained in the previous work [33,34]:

rs
i ¼

l
T
us

@ux

@y

� �
s
: ð29Þ

The interfacial entropy generation Eq. (26) derived in the present
work is lower than the previous one in Eq. (29), although they have
the same mathematical form. The reason has been elucidated in
Fig. 1,whereEq. (29) signifiesactually the entropygenerationwithin
the Knudsen layer while Eq. (26) is the entropy generation at the
interface needed for second-law analysis. One should note that the
Knudsen layer correction is sometimes taken into account for the
distribution function of gases near the wall [33], which will slightly
improve theaccuracy througha sacrificeof simplicity. Since anaccu-
rate analytical modeling of Knudsen layer remains still an open
question [7,42], the correction is not considered for the moment.

2.2.2. Interfacial entropy generation of temperature jump
For the microscale gas heat conduction shown in Fig. 2 (b), the

gas conduction near the wall is considered. From Eq. (11), the
distribution function of gases near the wall reduces to:

f� ¼ f�eq 1þ k

qðkBTs=mÞ2
@T
@y

� �
s
cy 1� ðc2x þ c2y þ c2z Þ

5kBTs=m

" #( )
; ð30Þ

with the equilibrium distribution function:

f�eq ¼ q
m

m
2pkBTs

� �3=2

exp � c2x þ c2y þ c2z
2kBTs=m

" #
: ð31Þ

In principle, the interfacial entropy generation of temperature
jump could be derived through similar procedures for that of
velocity slip in Section 2.2.1. However, it is nontrivial to obtain the
entropy flux in the non-equilibrium solid side near the interface
ro-pipe; (b) in parallel micro-channel. For both cases, isoflux walls are considered.
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Fig. 4. Entropy generation number versus Kn for heat convection in micro-pipe:
(a) bulk entropy generation number; (b) interfacial entropy generation number
induced by temperature jump; (c) interfacial entropy generation number induced
by velocity slip. Pr = 0.7, c = 1.4, hw = 1. Three different Brs are considered:
Br = 0.001 (black square-line), Br = 0.005 (blue circle-line), Br = 0.01(green
diamond-line). The dashed lines with symbols represent the bulk entropy
generation number whereas the solid lines with symbols represent the interfacial
entropy generation numbers. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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because of the distinction between kinetic theories of solids and
gases. Therefore the interfacial entropy generation is approximately
estimated as a difference between entropy fluxes at the gas side and
at the solid side assuming the classical form (cf. Eq. (5)):

rs
i ¼ Jsw � Jss ¼

qn

Tw
� qn

Ts
: ð32Þ

A deeper microscopic exploration is still needed of the interfa-
cial irreversibility of heat conduction across the gas–solid interface,
as a current important topic.

To sum up, the expressions of interfacial entropy generations
induced by velocity slip and temperature jump are derived as
Eqs. (26) and (32) respectively. Their dimension is slightly different
from the bulk entropy generation Eq. (7): the former denotes
entropy generated in unit interfacial area while the latter denotes
the entropy generated in unit volume. The present Section 2 pro-
vides a theoretical ground for the second-law analysis of the two
cases of microscale heat convection introduced in next section.

3. Physical and mathematical models

The microscale heat convection in parallel micro-channel and
circular micro-pipe in the near-continuum and slip regimes are
taken for a demonstration of second-law analysis in this section.
The analytical solutions of the two classical cases shown in Fig. 3
are obtained as a first step, after which the specific formulations
of entropy generations are provided respectively. The following
assumptions are made [19,37,38]: (i) Steady-state incompressible
laminar gas flow; (ii) Both hydrodynamically and thermally fully-
developed; (iii) Neglected axial heat conduction; (iv) Constant
properties. The analytical solutions of these two problems have
been indeed obtained in the classical work [37,38]. But slightly dif-
ferent trains of thought in the solution such as the used dimension-
less parameters will lead to different expressions of the final result,
as shown in Ref. [19]. Therefore, the present work follows the gen-
eral lines in analytically solving the conventional heat convection
in any classical heat transfer textbook [45], with the microscale
effect taken into account through the boundary conditions.

Microscale gas flow in the slip regime can be modeled by the
Navier–Stokes equations supplemented with non-continuous
boundary conditions [4]. The first-order velocity slip and tempera-
ture jump boundary conditions at the fully-diffuse wall are respec-
tively [4]:

us � uw ¼ k
@u
@y

� �
s
; ð33Þ

Ts � Tw ¼ 2c
cþ 1

k
Pr

@T
@y

� �
s
; ð34Þ

with c the specific heat ratio and Pr the Prandtl number. Zero wall
velocity (uw = 0) is considered.

The rigorous condition for thermally fully-developed heat con-
vection is [45]:

@

@x
TsðxÞ � Tðy; xÞ
TsðxÞ � TmðxÞ

� �
¼ 0; ð35Þ

with x denoting the axial coordinate of the channel or pipe, y (or r)
the normal (or radial) coordinate. The cross-sectional mean temper-
ature is defined based on the energy flow rate [19,45]:

Tm ¼
R
Ac
qucpTdA
_mcp

; ð36Þ

where the mass flow rate of gas is _m ¼ qumAc, with Ac and um being
respectively the cross-sectional area and mass mean velocity. For an
isoflux-wall case considered here, Eq. (35) reduces to [45]:
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@T
@x

¼ dTs

dx
¼ dTm

dx
: ð37Þ
3.1. Heat convection in micro-pipe

The velocity distribution is obtained through a solution of
Navier–Stokes equation with the first-order slip boundary condi-
tion Eq. (33) [4]:

u ¼ 2um
1þ 4Kn� ðr=RÞ2

1þ 8Kn
; ð38Þ

with the Knudsen number defined as Kn = k/2R. The temperature
differential equation including the viscous dissipation heat,
becomes [45]:

qcpu
@T
@x

¼ k
r

@

@r
r
@T
@r

� �
þ l Uq; ð39Þ

where Uq is the dissipation function [39], and in the present case
reduces to:

Uq ¼ @u
@r

� �2

: ð40Þ

The energy balance equation for a specific cross section of the
pipe is [19]:

dTm

dx
¼ 1

_mcp
qP þ

Z
Ac

l Uq dA
� �

; ð41Þ

with the total mass flow rate of gas through the cross section
_m ¼ qumpR2, the wetting perimeter P = 2pR, and the differential
area element dA = 2prdr. Substitution of Eqs. (37), (38), (40) and
(41) into Eq. (39) gives rise to a dimensionless temperature differ-
ential equation:

d
dg

g
dh
dg

� �
¼ 4g

1þ 4Kn� g2

1þ 8Kn
1þ 8Br

ð1þ 8KnÞ2
" #

� 32Brg3

ð1þ 8KnÞ2
;

ð42Þ
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where the dimensionless temperature and coordinate are intro-
duced respectively as: h = kT/qR, g = r/R. The Brinkman number is
defined as the ratio of viscous dissipation heat to the external heat
supply [37]: Br ¼ lu2

m=2Rq.
The dimensionless forms of symmetrical boundary conditions

and temperature jump boundary conditions for Eq. (42) are:

g ¼ 0;
dh
dg

¼ 0

g ¼ 1; h ¼ hs ¼ hw � 4c
cþ 1

Kn
Pr

: ð43Þ

Solution of Eq. (42) with the boundary conditions Eq. (43)
results in the analytical radial temperature distribution:

h ¼ hw � 4c
cþ 1

Kn
Pr

þ B1ðg2 � 1Þ þ A1ð1� g4Þ; ð44Þ

where the combinational parameters A1, B1 are defined as:

A1 � 1þ 16Brð1þ 4KnÞ
ð1þ 8KnÞ2

" #
1

4ð1þ 8KnÞ

B1 � 1þ 8Br

ð1þ 8KnÞ2
" #

1þ 4Kn
1þ 8Kn

: ð45Þ

It is trivial to validate that the present analytical solutions of
velocity and temperature distributions are consistent with those
in previous work [19,37]. Therefore, the velocity and temperature
fields are reliable for an accurate evaluation of entropy generation
in the next step.

The source of entropy generation in microscale heat convection
contains four parts: (i) viscous flow and (ii) heat conduction in the
bulk region; (iii) velocity slip and (iv) temperature jump at the
gas–solid interface. Thus the total entropy generation is formu-
lated as:

Sgen ¼ Sgen; H þ Sgen; F þ Sgen;V þ Sgen;T; ð46Þ
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s article.)
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with the subscripts ‘H’, ‘F’, ‘V’, ‘T’ represent ‘heat conduction’, ‘fluid
flow’, ‘velocity slip’ and ‘temperature jump’ respectively. Taking a
volume element dV = Acdx across the pipe at (x, x + dx), each part
of the entropy generation is computed as below:

Sgen;H ¼
Z
V
rs

HdV ¼
Z
V

k

T2 rTð Þ2dV ¼ dx
Z
Ac

k

T2

@T
@r

� �2

dA; ð47Þ

Sgen;F ¼
Z
V
rs

FdV ¼
Z
V

l
T

du
dr

� �2

dV ¼ dx
Z
Ac

l
T

du
dr

� �2

dA; ð48Þ

Sgen;V ¼
Z
R
rs

VdR ¼
Z
R

l
pTs

us
du
dr

� �
s
dR ¼ Pdx

l
pTs

us
du
dr

� �
s
; ð49Þ

Sgen;T ¼
Z
R
rs

TdR ¼
Z
R
q

1
Ts

� 1
Tw

� �
dR ¼ Pdxq

1
Ts

� 1
Tw

� �
; ð50Þ

where R = Pdx being the area of surface element along the pipe
wall. Substituting Eqs. (47)–(50) into Eq. (46), we obtain the total
entropy generation in the volume element dV:

Sgen ¼ dx
Z
Ac

k

T2

@T
@r

� �2

dAþ dx
Z
Ac

l
T

du
dr

� �2

dAþ Pdx
l
pTs

us
du
dr

� �
s

þ Pdxq
1
Ts

� 1
Tw

� �
: ð51Þ

A dimensionless entropy generation number is introduced as:

Ns ¼ Sgen
k
R2
Acdx

¼ Sgen
pkdx

: ð52Þ

Eq. (52) consists of two parts: Ns = Ns,b + Ns,i, with bulk part Ns,b

representing the irreversibility induced by heat conduction and
fluid flow, interfacial part Ns,i the irreversibility induced by velocity
slip and temperature jump. When Ns,i is neglected, Eq. (52) reduces
to the classical definition of entropy generation number in previ-
ous work [19]. Ns,b is calculated through rectangular numerical
integration by putting the velocity distribution Eq. (38) and tem-
perature distribution Eq. (44) into Eq. (51), whereas Ns,i is analyti-
cally obtained:

Ns;i ¼ Ns;iT þ Ns;iV ¼ 2
1
hs

� 1
hw

� �
þ 128Kn

ð1þ 8KnÞ2
Br
phs

: ð53Þ
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3.2. Heat convection in micro-channel

The velocity distribution is obtained through a solution of
Navier–Stokes equation with the first-order slip boundary condi-
tion Eq. (33) [4]:

u ¼ 3
2
um

1þ 4Kn� ðy=HÞ2
1þ 6Kn

; ð54Þ

with the Knudsen number defined as Kn = k/2H. The temperature
differential equation in this case is [45]:

qcpu
@T
@x

¼ k
@2T
@y2

þ l du
dy

� �2

: ð55Þ

Through similar procedures in Section 3.1, the analytical solu-
tion of dimensionless temperature distribution is obtained:

h ¼ hw � 4c
cþ 1

Kn
Pr

þ B2ðY2 � 1Þ þ A2ð1� Y4Þ; ð56Þ

with the dimensionless temperature and coordinate respectively
introduced as h = kT/qH, Y = y/H, and Brinkman number:
Br ¼ lu2

m=2Hq. The combinational parameters A2, B2 are defined as:
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A2 � 1þ 18Brð1þ 4KnÞ
ð1þ 6KnÞ2

" #
1

8ð1þ 6KnÞ

B2 � 3
4

1þ 6Br

ð1þ 6KnÞ2
" #

1þ 4Kn
1þ 6Kn

: ð57Þ

Again the velocity and temperature distribution solutions agree
exactly with those in previous work [19,38], and are then used to
calculate the entropy generation. Through similar procedures in
Section 3.1, the total entropy generation and the entropy genera-
tion numbers of heat convection in micro-channel are obtained.
The total entropy generation in the volume element dV = Acdx with
unit width of channel (P = 2) is:

Sgen ¼ dx
Z
Ac

k

T2

@T
@y

� �2

dAþ dx
Z
Ac

l
T

du
dy

� �2

dAþ Pdx
l
pTs

us
du
dy

� �
s

þ Pdxq
1
Ts

� 1
Tw

� �
: ð58Þ

The total entropy generation number is defined as:

Ns ¼ Sgen
k
H2

Acdx
¼ Sgen

2k
Hdx

¼ Ns;b þNs;i. The bulk part Ns,b is also computed

through rectangular numerical integration by putting the velocity
distribution Eq. (54) and temperature distribution Eq. (56) into
Eq. (58). The interfacial part Ns,i is analytically obtained:

Ns;i ¼ Ns;iT þ Ns;iV ¼ 1
hs

� 1
hw

� �
þ 36Kn

ð1þ 6KnÞ2
Br
phs

: ð59Þ
4. Results and discussions

4.1. Heat convection in micro-pipe

The bulk entropy generation number, interfacial entropy gener-
ation numbers are plotted versus Knudsen number in Fig. 4(a), (b)
and (c) respectively. The variation of total entropy generation
number versus the Knudsen number is shown in Fig. 5. Three typ-
ical Brinkman numbers Br = 0.001, 0.005, 0.01 are compared.
4.2. Heat convection in micro-channel

The bulk and interfacial, and total entropy generation numbers
versus Knudsen number at three different Brinkman numbers are
shown in Figs. 6 and 7 respectively.

The results in Figs. 4(a) and 6(a) show that the bulk entropy
generation in microscale heat convection decreases with increas-
ing Kn, which may be explained by more flattened profiles and
smaller gradients of velocity and temperature distributions. This
trend is consistent with the commonly accepted knowledge in
much previous work [18–28]. However, with increasing Kn, the
interfacial entropy generation increases due to temperature jump
and velocity slip, as shown in Figs. 4(b), (c) and 6(b), (c). The
discontinuous temperature and velocity profiles represent the
non-equilibrium effect at the gas–solid interface. Thus larger
temperature jump and velocity slip at elevated Kn induce more
irreversibility, resulting in more interfacial entropy generation.
The increase of interfacial entropy generation dominates over the
decrease of bulk entropy generation, giving rise to an increase of
total entropy generation when Kn increases. This is a totally
different trend from previous classical result as compared in
Figs. 5 and 7, and indicates the dominance of interfacial irre-
versibility in microscale heat convection. The evaluation of ther-
modynamic performance of microscale system will be much
distorted when the interfacial non-equilibrium effects are not
taken into account. It is also seen that larger Br results in more bulk
entropy generation, and more interfacial entropy generation
caused by velocity slip; in contrast, the interfacial entropy genera-
tion caused by temperature jump is independent of Br. Overall, the
total entropy generation increases with Br. In terms of the separate
effect of temperature jump and velocity slip in the present cases,
the former plays a main role and produces entropy generation
about one order of magnitude larger than the latter. Nevertheless,
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the entropy generation caused by velocity slip will become larger
at elevated Br as inferred from Eqs. (53) and (59).

5. Conclusions

The second-law analysis of microscale gas flow and heat trans-
fer is investigated in a systematical way. The total entropy gener-
ation includes twofold: the bulk part from velocity and
temperature gradients, and the interfacial part from velocity slip
and temperature jump. The bulk and interfacial entropy genera-
tions are derived in the frame of classical irreversible thermody-
namic and kinetic theory of gases respectively. The former part
decreases with increasing Kn, as consistent with the conclusion
in previous work. However, the latter part usually ignored in pre-
vious second-law analysis, is proportional to the magnitude of
velocity slip and temperature jump, and increases with increasing
Kn. The increase of interfacial entropy generation may dominate
over the decrease of bulk entropy generation, leading to an
increase of total entropy generation at elevated Kn. Our theoretical
formalism is demonstrated by two classical cases of heat convec-
tion in micro-pipe and micro-channel within slip regime. The
results infer that neglecting the interfacial irreversibility in evalu-
ating the thermodynamic performance of microscale systems may
lead to a contrary decision. The present work mainly aims at clar-
ifying the physical nature and mathematical formulation of
entropy generation in microscale heat and fluid flow. More work
will be considered in the near future on more complicated situa-
tions, such as the isothermal boundary, axial heat conduction,
other duct geometries and more realistic gas-surface interactions
beyond the fully diffuse walls.
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