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We present a lattice Boltzmann model to simulate multiphase viscoplastic fluid flow. It is an extended
model based on the free-energy-based lattice Boltzmann method (LBM) for multiphase fluids with pos-
sible high-density and high-viscosity ratios by applying the Herschel-Bulkley constitutive relationship to
account for the variable viscosity. The model shows good agreements between the simulation results and
the corresponding theoretical solutions for different cases. Furthermore, the capability and effectivity of
this model is tested by examples, including droplet(s) falling and interaction in Bingham fluid, and sessile
viscoplastic droplet motion. The results illustrate that our model is able to catch the yield behavior well,
and to distinguish various kinds of viscoplastic fluids effectively.
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1. Introduction

Viscoplastic materials, or viscoplastic fluids, represent one of
the most important categories of non-Newtonian fluids. Their most
important feature is the existence of a critical stress value, known
as the yield stress [1]. When the stress inside the material exceeds
this value, the material will yield and begin to flow as a fluid;
while if the inner stress is below this value, the material will be
un-yielded and behave like a solid. Hence viscoplastic fluids are
also termed as yield stress fluids [1]. Viscoplastic fluids are com-
mon in everyday life, such as toothpaste, mud, cements, food, etc.
Moreover, interaction of a viscoplastic fluid with another fluid is
of essential importance in fields like biotechnology [2,3], chemical
engineering [4], and petroleum industry [5,6].

For the general problem of multiphase viscoplastic fluid flow,
numerous studies have been carried out and summarized in a
comprehensive review [7]. Comparini & Mannucci [8] theoretically
solved the flow of a Bingham fluid (the simplest viscoplastic fluid)
in contact with a Newtonian fluid. Frigaard [9] derived a series of
non-dimensional theoretical solutions for parallel multiphase Bing-
ham flow. Experimentally, bubble(s) rising [10-12] and droplet(s)
motion [13,14] in a viscoplastic fluid, as well as formation [15-
17] and impact of viscoplastic droplet(s) [18] were widely inves-
tigated. Numerically, a variety of methods were applied, includ-
ing the finite volume method [19], the finite element method [20-
22|, the augmented Lagrangian method [23], the integral equation
method [24], and so on. However, there still remain many chal-
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lenges in simultaneously dealing with the complexity of interfacial
dynamics and the nonlinearity of viscoplastic fluids efficiently [25].

Since 1990s, the lattice Boltzmann method (LBM) has offered
an alternative powerful way for fluid dynamic simulations [26,27].
It is a mesoscopic method embedding kinetic features [28]. In com-
parison with the traditional CFD methods, the greatest strength of
LBM is the capability of efficiently solving various kinds of com-
plicated fluid transport phenomena coupled with electro-kinetics,
magnetics, thermodynamics, etc. [29-34]. Several LBM models
have been developed for multiphase flow and interfacial dynam-
ics [35]. The color-fluid model [36-39] was first proposed in 1988
by using a compulsive “recolor” step to separate different phases.
In 1993, Shan & Chen proposed the pseudo-potential model [40] by
introducing an inter-particle potential force to guarantee the phase
separation. Later, the free-energy model [41] and the mean-field
model [42,43] were proposed in 1995 and 1998 respectively. How-
ever, because of the challenges in dealing with the sharp density
transition across the interface, all of these early models suffer from
the small density-ratio limit. In order to remove this drawback, a
number of improved models emerged. Major parts of these models
introduced the phase-field method [44-46] to capture the inter-
face, which adopted the concept of free-energy that assures ther-
modynamic consistency and offers deeper physical understand-
ings [47,48]. By using the projection method to decouple the ve-
locity and pressure fields, Inamuro et al. [49] proposed a model
that allows density-ratios up to 1000. However, multiple sets of
lattice Boltzamnn equations induced by the projection procedure
made the Inamuro’s model lose the efficient feature of LBM. Lee
& Lin [50] introduced a model based on the mean-field model,
and it was further improved to account for wetting boundaries
[51,52]. This model was available to accurately capture the large
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density-ratio multiphase fluid dynamics; however, the numerous
exact differential schemes in this model reduced the efficiency
significantly. Zheng et al. [53] presented another model applica-
ble for large density ratios (ZSC model) by using the mean den-
sity for hydrodynamic evolutions. This model has been developed
to study the evaporation of a droplet [54]. Compared with the
former models, it is of higher efficiency. Since the mean density
was used, it could not correctly catch the momentum exchange in
multiphase systems [55,56]. This drawback was removed by Shao
et al. [56] recently with preserved efficiency.

Meanwhile, many efforts have been made to account for non-
Newtonian behaviors [57]. Gabbanelli et al. [58] employed a trun-
cated power-law model to simulate power-law flow between paral-
lel plates. Boyd et al. [59] improved the accuracy of LBM model for
power-law fluids to the second order. Pontrelli et al. [60] proposed
an unstructured power-law LBM model by using a cell-vertex
finite-volume technique. Chen et al. [61] investigated electro-
kinetic flow of power-law fluids in porous media. Ispolatov & Grant
[62] and Lallemand et al. [63] developed 2D and 3D LBM models
for viscoelastic fluid respectively. Ohta et al. [64] studied viscoplas-
tic fluid flows through complex channels with circular obstacles.
Vikhansky [65] and Derksen [66] applied LBM models to describe
the yielded region of Bingham fluid. It is worth mentioning that
most of the above LBM approaches only need the local-lattice in-
formation to calculate the shear rate, which avoids the complex
differential processes in usual CFD methods.

Nevertheless, contributions on combinations of multiphase flow
and non-Newtonian fluids in the LBM framework are still rare.
Some early models were developed for multiphase viscoelastic
fluids: Frank & Li [67,68] employed the free-energy model; On-
ishi’s model [69] originated from the pseudo-potential model, and
Yoshino’s model [70] was based on Inamuro’s model. Later, droplet
formation in power-law fluids [71] and fluid displaced by power-
law fluids in porous media [72] were investigated, respectively.
However, the LBM model considering yield stress or viscoplastic
fluids has seldom been reported, until very recently, Swain et al.
[73] embedded the yield stress fluids model into the mean-field
multiphase LB model proposed by He et al. [42,43] to study the
liquid-liquid interaction with limited density ratios and the dis-
placements of a viscoplastic material by a Newtonian fluid.

The objective of this work is to develop a robust multiphase LB
model for any viscoplastic fluids with possible high density ratio
or high viscosity ratio. It is worth mentioning that we happened
to find Swain’s work after our work was done, with similar strat-
egy but different methods. In this paper, the LBM scheme is based
on the phase-field method for multiphase flow modeling with the
capability to cover high density or viscosity ratios. The Herschel-
Bulkley model is adopted for the description of viscoplastic fluids.
Several cases will be proposed to validate the numerical frame-
work strictly and to examine the accuracy and robustness for any
combination of non-Newtonian fluids or density ratios. The paper
is organized as follows. Section 2 introduces the fundamental mul-
tiphase LBM scheme as well as the phase-field method, and then
the extended model to simulate multiphase viscoplastic flows. In
Section 3, the basic multiphase LBM code and the present model
are verified in a number of cases where exact analytical solutions
are available. Section 4 discusses the accuracy and effectivity of
this model further by various examples. Finally, we conclude our
work in Section 5.

2. Numerical methods
2.1. Multiphase LBM scheme based on phase-field method

For single-phase fluid flow simulation, the continuity equation
and the Navier-Stokes equations are sufficient to ensure the mass

and momentum conservation. When it comes to multiphase flow,
an additional equation is required to capture the interface evolu-
tion. The best known interface tracking methods include the vol-
ume of fluid method [74], the level-set method [75,76] and the
phase-field method [44-46]. Nowadays, the phase-field method is
gaining much popularity since it origins from the energy point of
view, and provides a better physical understanding. It is a diffuse
interface method [77], which looks upon those “discontinuous” in-
terface phenomena in a continuous way. An order parameter is in-
troduced to distinguish each phase; this parameter changes drasti-
cally at the interface while keeping the continuity, and leads to the
smooth transition of physical parameters. The Cahn-Hilliard equa-
tion is the governing equation of the phase-field method, which
drives the multiphase system toward its lowest free energy state
spontaneously. The general form is expressed as

0p+u-Vo =MV, (1)

where u is velocity vector and t is time, ¢ is the order parameter,
W is the chemical potential, and M is the mobility which controls
the diffusion rate of interface [78].

According to the ZSC model [53], the Cahn-Hilliard equation can
be solved by the LBM equation,

Gix+ GALE+ AL — gi(x, 1) = —Tlg(gxx, H-glx0), (@)

where x is lattice position, At is the time step, ¢; is the lattice ve-
locity with the discrete direction of i, and Ax = ¢;At is the lattice
size per unit; g; and gfq are, respectively, the distribution function
and the corresponding equilibrium distribution function related to
¢; 1g is the relaxation parameter of g. When a D2Q9 or a D3Q15
lattice velocity model is used, the equilibrium distribution function
g is given as

3¢;-u
gl = wi(B+9-5") (32)
3Mpu/c? =B, i>0
B; = . , 3b
! {[¢—(1 — wo)Bl/wo, =0 Gb)
where the parameter M is determined by M and g as
M = M/[(tg — 0.5) At]. (4)

Then, using the following correlation between the distribution
functions and macroscopic parameters, the Cahn-Hilliard Eq. (1) is
recovered with a second order of accuracy by Chapman-Enskog ex-
pansion procedure.

Yo=Y g&'=d=(p1—p)/2 (5a)
i i

&' ciaCip = Mpidop, (5b)
i

where §,g is the Kronecker delta, the subscripts «, 8 are the spa-

tial coordinates; p; and p, are the density of two fluids.

In the ZSC model, the order parameter related to density differ-
ence is adapted to capture the interface, and the mean density is
adapted to evolve for the fluid dynamics. Since the mean density
is used, this model is more efficient, but the momentum of either
fluid is not accurate.

In order to remove this drawback, Shao et al. [56] revised the
momentum equation in the original ZSC model as

fix+ At t+ At) — fi(x, t) = —rlf(f,-(x, t) — f(x, t)) + Qf

(6a)
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where F is the body force; p is the local density; f; and ffq are,
respectively, the distribution function and the corresponding equi-
librium distribution function related to the mean density po; 75 is
the relaxation parameter of f. In the framework of D2Q9 or D3Q15
lattice velocity model, the equilibrium distribution function f is
given as

[ =wi(po + pTy). (7)

The relationships between the distribution functions and
macroscopic parameters are

D 4 AtugVep/2 = po = (p1 + p2)/2 (8a)

1

T (6¢)

> e + (—pVie+ Fy)/2 = plg. (8b)

Thereafter, using the Chapman-Enskog expansion, the real con-
tinuous equation and Navier-Stokes equation for two-phase flow
are recovered as

V(pu) =0, 9)
and
d(pu) + V(puu) = -V (poc*/3) + pvAu— Vi +F (10)

where v is the local kinematic viscosity.

At this point, combing Eq. (2) and Eq. (6), one can simulate
two-phase Newtonian flows. However, what if one or both phases
are viscoplastic?

2.2. Extension to viscoplastic fluids

In this section, the multiphase LBM scheme is developed to deal
with viscoplastic fluids. Among the constitutive relations for vis-
coplastic fluids, the Herschel-Bulkley model [79] is probably the
most common and widely used because of its simplicity and flexi-
bility:
T<Ty:

y=0 (11a)

T>7: T=1+K-y", (11b)
where 7 is the shear stress, y" is the shear rate; 7, is the yield
stress, K is the consistency index, and n is the flow index. As a spe-
cial case, when n = 1, the model reduces to the simplest viscoplas-
tic fluid (Bingham fluid); while for n =1 and 7, = 0, it reduces to
the Newtonian fluid, and K equals to the dynamic viscosity, corre-
spondingly.

By using Eqgs. (11), one can easily derive the apparent kinematic
viscosity v as

T<Ty.: U=00 (12a)
Ty K .4
T>T: U= 2 4 —. (12b)
Y oy P

The apparent kinematic viscosity v is closely related to the re-
laxation parameter 7 in LBM. For the commonly used lattice ve-
locity models, one can write
oLy 3v

F= 27" cAx

Since infinite values of viscosity are not realistic [80], here a
maximum value of 7y (r}im“) is set to limit the viscosity. In Section
3 below, some supplementary explanations about the choice of
‘(}imi[ are provided.

In addition, according to references [61,81], the shear rate y is
directly calculated by the distribution functions in LBM as

1/2
. 1/2 3 1
¥ = (SapSap) = 207, (Zfi( )Cia%) : (14)
i

where S,z is the shear rate tensor, fi(l) is first order component of
fi in the Chapman-Enskog expansion; here, this term is approxi-
mated by the non-equilibrium part of f; as

fi(l) ~ fineq — fl _fieq' (15)

Note that in this numerical approach only local distribution
functions are used, which avoids the complex differential processes
in traditional CFD methods and improves accuracy.

Combing Egs. (6, 12, 13, 14 and 15), viscosity in LBM is obtained

(13)

as
A imic 1
T<Ty. U= 637)‘ . (-[jl]mzt _ 5) (16a)
K Bl
T>1: v= Ty = (SupSap) ” - (16b)

= —_—— +
p(saﬁsaﬂ)l/z P

It should be noted that in order to evaluate the local shear
stress, T, the kinematic viscosity at the last time step v_4) is used,
that is

T=pVe_ny. (17)

So far, the kinematic viscosity of a single phase viscoplastic
fluid has been obtained; however, when it comes to multiphase
system, special treatment at the interface is necessary. In this pa-
per, the interface viscosity was assumed to be linearly proportional
to the weight of ¢ as

¢ — ¢
$2 — ¢
where the subscripts 1 and 2 here refer to two locations close to
the interface, one on each side of it; this treatment ensures the
continuity of viscosity across the interface.

Therefore, substituting the viscosity calculated by Egs. (16) and
(18) into Eq. (13) allows one to determine the relaxation parameter

T in Eq. (6), and consequently to include viscoplastic effects into
the multiphase LBM scheme.

UV ="+

(V2 —vy), (18)

3. Benchmarks
3.1. Validation of the LBM code for multiphase flow

The multiphase LBM code in this work is validated primarily by
using parameters with exact dimensions. Here, two typical bench-
mark problems for two-phase flow are adopted: one is the steady
droplet test, as shown in Fig. 1; and the other is a two-phase co-
current flow problem, as shown in Fig. 2.

In the first case, we consider a fluid droplet with radius R sur-
rounded by another fluid in equilibrium conditions. According to
the Young-Laplace law for a 2D case, the pressure difference AP
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Fluid 2

Fig. 1. Sketch of a steady droplet (Fluid 1) surrounded by another fluid (Fluid 2).

Fluid 1 -Fl =

=Y

ROTHDAD DAL

Fig. 2. Sketch of two-phase co-current flow.

across the interface is proportional to the curvature, 1/R, when the
interface tension, o, is assigned:

AP =0 /R. (19)

Periodic boundary conditions are applied on all sides in our
computation, and the fluid domain is 22 mm x 22 mm, with a lat-
tice system of 221 x 221. Density of fluid 1 is p; = 1000 kg/m3,
for fluid 2 is p, =50 kg/m3; kinematic viscosities of two flu-
ids are both set as v; = v, = 0.001m?2/s; interface tension is o =
0.03 N/m; mobility is M =0.01 kg-s/m3; and lattice velocity is
¢ = 100 my/s. The radius R varies from 2 mm to 6 mm, and the cor-
responding results are shown in Fig. 3, which confirms that the
simulation results well satisfy the Young-Laplace law.

In the second case, illustrated schematically in Fig. 2, the paral-
lel, co-current flow inside an axisymmetric 2D channel is consid-
ered: fluid 1 in the center driven body force F, while fluid 2 in
the two sides driven body force F,. The channel width is 2H, with
interface coordinates of +Y;. When the system reaches the steady
state, the following theoretical solution for the cross-sectional ve-
locity distribution can be established as [82]

O<y<Y: u=Ay’+qG (20a)
Yi<y<H: u=Ay +By+G, (20b)
where

Ay =-F/(2p1v1) (21a)
Ay =-E/(2pav2) (21b)
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Fig. 3. Validation results of the Young-Laplace law.
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Fig. 4. Validation result of the two-phase co-current Newtonian flow.

By = —2A,Y; + 2A1Yi(p1v1)/(p2V2) (21¢)
G = (A —A)Y? —Bo(H-Y;) — AH? (21d)
C, = —A,H? — ByH. (21e)

In the present computation, periodic boundary conditions are
applied on the inlet and outlet, while for the solid boundaries
at top and bottom, bounce-back rules are adopted; the fluid do-
main is set as 100 mm x 200 mm on 101 x 201 lattices with Y; =
50mm. Fluid densities are p; = 1000 kg/m3 and p, = 50 kg/m3;
kinematic viscosities are v; = v, = 0.01667m?2/s; interface tension
is 0 = 0.03 N/m; mobility is M = 0.01 kg-s/m3; and lattice veloc-
ity is c = 100 m/s. When applying body forces of F; = 15 Pa/m and
F, =0, one gets the velocity profile in Fig. 4, which matches the
theoretical solution well.

The above benchmark cases provide a validation of the basic
multiphase LBM code ability to capture the interface dynamics and
to evolve the multiphase fluid hydrodynamics.

3.2. Validation of the viscoplastic multiphase LBM model

Then, the proposed viscoplastic multiphase LBM model was val-
idated by comparison with the problem of a two-phase co-current
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Fig. 5. Sketch of two-phase co-current Bingham flow.

Bingham flow, as shown in Fig. 5; this sketch is similar to the
configuration of Fig. 2, however, the two fluids are both Bingham
fluids with a same density and driven by a same pressure gradi-
ent of dp/dx, but different yield stress, 7y, and ty,, respectively,
(Ty, < Ty,). If the fluids are both partially yielded, there exist two
different yield surfaces. Assuming the system is stable (i.e. the two
fluids do not penetrate into each other), one can derive analytical
formulations of the theoretical velocity profiles when the system is
at steady-state (see the Appendix for detailed derivation).

3.2.1. LBM results versus theoretical results

In these simulations, boundary conditions were set as the same
as the second case in Section 3.2 with a fluid domain of 10 mm x
50 mm on 101 x 501 lattices (H =25mm and Y; = 12.5mm). The
physical properties of fluid 1 are: density p; = 1005 kg/m3, con-
sistency index, K; =0.0015 Pa-s, flow index, n; =1, while fluid
2 has the following properties: density, p, = 1000 kg/m3, consis-
tency index, K, = 0.0075 Pa-s, flow index, n, = 1. The interface
tension between two fluids is o = 0.001 N/m; mobility is M =
1.0 x 1076 kg-s/m3; pressure gradient is dp/dx = 100 Pa/m; lat-
tice velocity is ¢ = 100 m/s; and the limiting relaxation parameter
is r}”"“ = 20. Note that the densities of the two fluids are not ex-
actly the same, to avoid a null value of the order parameter, ¢,
in the whole domain. Afterwards, different values of 7y, and ty,
were selected in order to validate the three types of velocity pro-
files mentioned above.

(a) Both partially yielded

Selecting 7y, =0.75 Pa and 7y, =2 Pa, then the condition
Ty, < Y,-‘é—ﬁ <Ty, < Hﬁ—f is satisfied, and both fluids will be partially
yielded. The steady state velocity profile is displayed in Fig. 6a,
which shows the simulation result matches well with the theoret-
ical profile.

(b) Only fluid 1 partially yielded

Selecting 7y, = 0.75 Pa and ty, = 3 Pa, then the condition Ty, <

Yi‘é—g < H% < Ty, is satisfied, and only fluid 1 is partially yielded.
The steady state result is given in Fig. 6b, and is in good agreement
with the theoretical velocity profile like in the previous case.

(c) Only fluid 2 partially yielded

Selecting 7y, = 1.5 Pa and ty, = 2 Pa, then the condition Y,-Z—i’ <

Ty, < Ty, < H% is satisfied, and only fluid 2 is partially yielded.
The corresponding result is shown in Fig. 6¢; in this case one can
notice a small deviation at the interface between the two fluids,
which is mainly caused by the small difference of the given fluid
densities.

On the whole, the above comparisons provide a validation of
the viscoplastic multiphase LBM model.
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10 F s
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o
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Fig. 6. Validation results of the two-phase co-current Bingham flow. (a) Both of the
fluids are partially yielded. (b) Only fluid 1 is partially yielded. (c) Only fluid 2 is
partially yielded.

3.2.2. Effect of the limiting relaxation parameter »
The effect of the limiting relaxation parameter ‘(}"mt is dis-

cussed. As an example, the case of both fluids yielded (Fig. 6a) is
recalculated for different values of r}’m", as shown in Fig. 7. The
figure shows that once /M s not too large (<100), the numeri-

cal results agree pretty well with the theoretical solution, and that
when t}'"“t is larger than 2, the deviation is almost invisible.
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Fig. 7. Effect of limiting relaxation parameter t}”"“ by comparisons with the theo-

retical solution. When tlmit — 20~60, the numerical results are overlapped by the
theoretical solution and not recognizable.

These results indicate that t!™t has a significant influence on
the accuracy of this model, accurate results can be obtained only
if this parameter falls within an appropriate range of values. Ac-
cording to Eq. (16), whenever the lattice velocity c is specified, the
maximum viscosity, as well as the maximum viscosity ratio, are
determined by t}”"”, and larger values of r}””” imply larger vis-

cosity ratios. Therefore, if /M is too small, the viscosity ratio is

quite small too, which can't reflect adequately the inﬁnite—viscosjty
behaviour and leads to wrong results. On the other hand, if tj’c“"’t

is too large, the stability of LBM is affected. In Fig. 7, r}fmff =2 cor-
responds to a maximum viscosity ratio of 132.7:1; this ratio is too
small to ensure the uniform velocity distribution in the unyielded
region caused by infinite viscosity, and also brings a small error at
the interface. However, although 7!imt — 100 corresponds to a suf-
ficiently large viscosity ratio, the LBM algorithm needs a long com-
puting time to reach steady state, and cannot return the correct
result in time of relatively the same order of magnitude. On the
contrary, a value of r}fmi‘ in the range between 20 and 60 corre-
sponds to a maximum viscosity ratio ranging between 1000:1 and
6000:1, which is able to capture adequately the infinite viscosity
effect, and at the same time keeps the stability of LBM, thus lead-
ing to accurate results.

In conclusion, the guideline for choosing an appropriate value
of the limiting relaxation parameter, r}im"‘ , is to select a large value

of r}‘""“ to make the maximum viscosity ratio as large as possi-
ble, upon ensuring the stability of LBM. As for numerical stability
and conservation in complex geometries with a variable relaxation
time, a multiple-relaxation-time model [83] will be considered in
future work.

4. Results and discussion

In this section, the capability of the proposed model is fur-
ther investigated, with focus on three test cases: (i) single droplet
falling in Bingham fluid, (ii) interaction of two droplets in Bingham
fluid, (iii) sessile droplet movement in a water channel. In the first
two examples, the bulk phase is viscoplastic Bingham fluid, and
the results are compared with the CFD results by Potapov et al.
[21]. In the last example, the droplet is viscoplastic fluid, and three
droplets with different rheology are compared with each other as
well as with a Newtonian droplet.

| |

T [

Fluid 2 | Fluid 2 |
(Bingham)| 3R (Bingham)| 3R

| \

> ‘

2R

I~

Fig. 8. Physical model of Newtonian droplet(s) falling in Bingham fluid. (a) single
droplet. (b) double droplets.

4.1. Single droplet falling in Bingham fluid

The gravity-driven fall of a Newtonian droplet in a Bingham
fluid medium is investigated in this section. The initial-state con-
figuration is shown in Fig. 8a. A closed rectangular column is filled
with fluid 2 (Bingham fluid of density p,, consistency index K, and
yield stress 7). In addition, an initially circular droplet (fluid 1,
Newtonian fluid of density o, kinematic viscosity v;) with radius
R is placed on the centerline. The spacing between the upper edge
of the column and the droplet is 3R. This system is driven by grav-
ity with acceleration F; = 9.806 m/s?.

Potapov et al. [21] employed traditional CFD tools to solve this
problem, with special attention to the droplet shape and to the
yielded domain in the bulk fluid. Their results are used as a refer-
ence for comparison with the present calculations, although there
are two differences: (i) the geometry of the column is cylindrical;
(ii) results are presented in a non-dimensional form, while in the
present work all parameters are dimensional. Nevertheless, if the
governing non-dimensional parameters are the same, these differ-
ences will not affect significantly the shape of the yielded domain,
which is the most important point for testing the present model.

The characteristic quantities used for in [21] are: V*=
FR?(p1 — p2)/K for velocity, and t* = K/[ER(p1 — py)] for time;
in addition, p* = p1/p, is the density ratio, A = p;v1/K is the
viscosity ratio, Re = poFR3(p1 — p2)/K> is the Reynolds num-
ber, Bn=1y/[FR(p1 — p2)] is the Bingham number, and Ca=
FR?(p1 — p2)/o is the Capillary number.

In the present calculations, bounce-back conditions are applied
to all the boundaries, with the domain containing 201 x 1201 lat-
tices. The values of physical parameters are chosen to match non-
dimensional parameters used in [21], as shown in in Table 1, Fig.
9 displays the steady-state shape of the falling droplet and the
yielded domain in the bulk phase, comparing the present results
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Table 1

Parameters for simulations of a single droplet falling in a fluid medium.

Simulation parameters (present work)

Converted parameters (present work)

Simulation parameters (Ref. [21])

AXx = 32.48355 um
R =20 Ax

p1 = 1000 kg/m? p*=1.54
2 = 649.35 kg/m?

v = 1.0 x 106 m?/s A =0.07

K =0.0142857 Pa-s Re=3

7y = 0.129565 Pa

o =2.79147 x 10> N/m Bn = 0.058
M =0.01 kg-s/m?

c=50m/s Ca =51.99
r}xmzt —50

p* =154

A =007
Re=3

Bn = 0.058

Ca =52

(a)

Fig. 9. Steady-state shapes of a falling droplet and the yielded domain in Bingham fluid (a) by the present simulation; (b) from the reference by Popatov et al. [21].

26 61
T
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| »
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67 68

(a) with Potapov’s (b). Viscosity is used as the contour variable for
the color map, with dark blue color representing the Newtonian
droplet shape. In the Bingham fluid, the unyielded region is col-
ored in red, while the rest is the yielded domain. From this com-
parison, one can observe both the characteristic “apple-like” shape
of the yielded domain, and a hollow region on top of the droplet;
although the relative sizes of the domains are somewhat different
due to the difference in geometry mentioned before, the present
model is clearly able to capture the information about the yielded
region.

4.2. Interaction of two droplets in Bingham fluid

In the second example, the interaction of two Newtonian
droplets during free fall in a Bingham fluid medium is studied. The
configuration of this problem is similar to the previous one, except
for an extra droplet with the same properties and size, as shown in
Fig. 8. The top of the second droplet is initially placed at the dis-
tance of 2 radii from the bottom of the first droplet. The interface
tension here is set as o = 1.4515644 x 10~3 N/m, which leads to a
Capillary number of Ca = 1. All the other settings are the same as
in the case of single droplet free fall.

Fig. 10 illustrates the temporal evolution of the two falling
droplets, and compares the present results (a) with Potapov’s (b).
The shapes and the yielded domains are described with the same
color code of the previous example. From this figure, one can ob-
serve that the morphology resulting from the two approaches is al-
most the same during the entire process: before the collision, both
of the upper droplets become prolate while the lower ones become
oblate; then, they both merge into one larger droplet with the
same shape. Simultaneously, both of the yielded domains coalesce
into one, and the unyielded regions between two small droplets
eventually disappear. Whilst some minor differences can still be

(b)

0.9
TN

b4
Q[

(a) (b)

Fig. 10. Evolution of shapes and yielded domains of two droplets falling in Bingham
fluid (a) by the present simulation; (b) from the reference by Popatov et al. [21].
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X

Fig. 11. Schematic of a sessile droplet movement in a straight channel filled with
water.

observed, this more complex example of twin droplets falling and
coalescence further demonstrates the capability of the present ap-
proach to depict the yield information in viscoplastic fluids.

4.3. Sessile droplet movement in a straight channel

Finally, the displacement of a sessile droplet in a channel filled
with water was simulated. Various kinds of droplets with differ-
ent rheology, including Newtonian (7, =0, n = 1), Bingham (7, >
0, n=1), Yield pseudo-plastic (ty >0, n < 1), and Yield dilatant
(ty > 0, n > 1) were compared with one another. This problem is
relevant in the petroleum industry, since oil usually adheres to the
rock surface, and water injection is often adopted to enhance oil
recovery. The schematic of this problem is illustrated in Fig. 11,
where fluid 2 is water, fluid 1 is the oil droplet with a lower den-
sity, 0 is the contact angle, d is the base diameter, and h is the
maximum height of the droplet during motion. Since gravity is
considered here along the negative y direction, the oil droplet will
stick to the upper wall of the channel. This system is driven by the
same pressure gradient —dp/dx along x direction.

To simulate this problem, we use a domain of 20 mm x 6 mm
on 201 x 61 lattices with both bounce-back boundary conditions
at the top and the bottom, while the left and right sides are peri-
odic. Initial shapes of the oil droplets are all set as the same hemi-
sphere with a diameter of 55Ax. The applied pressure gradient is
—dp/dx = 250 Pa/m, the density of the oil is p; = 850 kg/m3, the
density of the water is p, = 1000 kg/m3, with kinematic viscos-
ity v, = 1.006 x 10-% m?/s, interface tension o = 0.03 N/m, static
contact angle # = 90°, mobility M = 0.0001 kg - s/m3, lattice veloc-
ity c = 100 m/s, and the limiting relaxation parameter t}imif = 200.

Due to the complexity of its composition, the oil rheology may
exhibit peculiar features. For this reason, the four typical kinds of
oil droplets described above were compared, with values of the
rheological parameters taken from [84]. The yield stress and con-
sistency index were set as 7y = 1.921Pa and K = 0.302Pa - s", re-
spectively, the flow index was n =1 for Bingham oil, n = 0.7 for
Yield pseudo-plastic oil, and n = 1.3 for Yield dilatant oil. For the
sake of comparison with Newtonian oil, the kinematic viscosity
was set as vy = K/p; = 3.553 x 10~4 m?/s.

The evolution of the droplets mean velocity is given in Fig. 12.
Two different stages are observed for droplets: one is the accelerat-
ing stage at the beginning; the other is an oscillating regime when
the system reaches a relatively stable state. This may be mainly
caused by the change of the force balance during the movement.
In the horizontal (x) direction, the droplet is under the action of
the driving force induced by the pressure gradient, and of the drag
force caused by internal shear, viscous and interface resistance. Un-
der given conditions, the driving force is larger than the drag force
at the initial stage, and leads to the acceleration. But at a later
stage, the viscous and interface resistance grows with the increas-
ing velocity, thus the overall drag force increases and balances the
driving force, as the system reaches the stable state with oscilla-

0.025 T T T T T : T - T
—— Newtonian
—— Bingham (n=1)
0.020 | —— Yield pseudo-plastic (n=0.7) .
— Yield dilatant (n=1.3)
@ 0.015} i
E
=
8 0010 s
(]
>
0.005 s
0.000 E
1 1 1 1 1
0 1 2 3 4
Time (s)

Fig. 12. Comparisons of the mean velocity evolution of oil droplets with different
rheology.

tion. However, the stable state is only in a time-averaged sense, be-
cause of small periodic fluctuations, around a constant mean value
due to stick-slip motion [85]; this phenomenon is synchronous
with drop shape oscillations, as shown in Fig. 13. Such small pe-
riodic deformations of the drop shape in turn change the advanc-
ing and receding contact angles, which can be observed clearly in
Fig. 13c, for example. Because the interface tension is always tan-
gent to the drop-fluid interface, the change in dynamic contact an-
gles results into fluctuations of its component in the x direction;
consequently, the resultant force fluctuates, inducing the observed
stick-slip motion.

In the early stage, the Newtonian droplet accelerates immedi-
ately and reaches the largest velocity; however, for all viscoplastic
droplets the acceleration ramp is delayed, which is mainly caused
by the existence of yield stress. In fact, as the external flow begins
to exert a drag on the drop, the induced shear stresses are smaller
than the yield stress. Thus, the drop acceleration starts only when
the shear stress exceeds the yield stress.

The relative magnitudes of velocity change in the late stage, the
fastest being the yield-stress pseudo-plastic droplet, followed in
descending order by the Newtonian droplet, the Bingham droplet,
and the Yield dilatant droplet. This result seems quite reasonable
for the following reasons: in the Bingham droplet, although the
flow index is the same as in the Newtonian droplet, the apparent
viscosity is always larger under the same shear rate, according to
Eq. (12b), thus the drag force is larger and leads to a smaller ve-
locity; compared with the Bingham droplet, the flow index of the
Yield dilatant droplet is greater than one, thus viscosity and the
induced drag force increase when the drop velocity is increased,
and as a consequence this drop exhibits the smallest velocity; un-
like with Yield dilatant droplet, since n < 1, the viscosity of Yield
pseudo-plastic droplet decreases during the acceleration and the
extent may even neutralize the extra viscosity induced by 7, and
under such condition, the Yield pseudo-plastic droplet moves with
a speed higher than the Newtonian droplet. In summary, the ef-
fectivity of the proposed model for distinguishing various kinds of
viscoplastic fluids is well examined by this example.

5. Conclusions

In this paper, a LBM scheme based on phase-field method
for multiphase Newtonian fluids is extended to viscoplastic flu-
ids, by applying the Herschel-Bulkley constitutive relationship. The
multiphase LBM code and the proposed viscoplastic multiphase
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(a)

(b)

(c)

(d)

Fig. 13. Interface profile evolution of different droplets in the late stage. Droplets
move from left to right: (a) Newtonian droplet (t=2.6—3.95); (b) Bingham droplet
(t=3.8—5.05); (c) Yield pseudo-plastic droplet (t=2.4—3.45s); (d) Yield dilatant
droplet (t=2.4-3.95).

LBM model are initially validated against cases with exact analyti-
cal solutions. In all cases, the LBM results are in good agreements
with the theoretical data, which validates the accuracy of the pro-
posed model in simulating multiphase viscoplastic fluids with high
density ratios.

Thereafter, the proposed model is applied to three different ex-
amples of multiphase viscoplastic flows. In the first two exam-
ples, relative to droplet(s) falling in a Bingham fluid medium, the
present results are compared with a CFD simulation taken from
the literature; despite some minor differences in geometry, the
resulting shapes of the droplets and of the yielded domains are
quite similar. Finally, sessile droplets motion in a straight chan-
nel is simulated in the case of a Newtonian droplet, a Bingham
droplet, a Yield pseudo-plastic droplet, and Yield dilatant droplet.
The corresponding results indicate significant but reasonable dif-
ferences among the behaviors of these droplets. In conclusion, by
these three examples, the capability and effectivity of this model
is further illustrated. Although only 2D cases are presented in this
work for better demonstration, it is easy to extend to 3D problems.
The application to more complex geometries is also expected in fu-
ture work.
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Appendix. Theoretical solutions for the stable two-phase
co-current Bingham flow

Here we present the details of the derivation of theoretical ve-
locity profiles for the stable two-phase co-current Bingham flow.
Frigaard [9] has derived the analytical solution for this problem,
and pointed out that there exist three typical kinds of velocity pro-
files when given different shear conditions. These results were pre-
sented in a dimensionless form by using the steady state average
velocity. Since this velocity is unknown at the beginning of the nu-
merical modeling, establishing an accurate comparison is not easy.
As a consequence, we rebuild a group of dimensional results here.
Because of the problem symmetry, only the positive half of the y-
axis (y > 0) is considered in the following derivation.

According to Eq. (11), the constitutive equation of Bingham fluid
1is

T<T,: y=0 (Ala)

T>T7,: T=1,-Kvy. (A1b)
Similarly, for fluid 2

T<T,: y=0 (A2a)

T>T,: T=1,—-Ky. (A2b)

Since stable flow is assumed, the y-velocity component is zero,
then the shear rate y is only determined by x-velocity component
u as

. du

Consider a symmetrical control volume alone the centerline
with size of dx x 2y x 1, corresponding to the shaded area in Fig.
5. This control volume is subject to the shear stress T on top and
bottom, plus a normal stress along the flow direction; they are bal-
anced at steady state as

dp
21-dx~1_a-dx~2y-1. (A4)

Then the correlation between the shear stress T and coordinate
y is obtained as

dp
=& Y. (A5)
As it is well known, the shear stress increases from the center-
line to the wall for pressure driven flows, due to the shearing effect
of the solid wall. In addition with the assumption of 7y, < 7y,, the
relation of two yield positions is y; < y,, and

T

d

y=yi: 1T=T1, = Y1:TJ’1/(T£ (A6a)
d

y=y: 1T=7, = yzzryz/d—i. (A6D)

By using these two yield positions, we can divide three types
of cross-sectional velocity profiles and give the corresponding the-
oretical results as follows.
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(a) Both partially yielded

If0<y <Y<y, <H (ie. 1y, <Y,~% < Ty, <H%), y1 and y;
exist, and both of the fluids will be partially yielded.

By substituting Eq. (A3) into Egs. (A1 and A2), we get

du
yisy<y: r=ty1—1<1@ (A7a)
Y2 <y<H: T=T —Kd—u (A7b)
2=V = . Vo zdy

Integration of the above equations leads to
yisysY: u= —f@y2+t y+G )/K (A8a)

-0 = 2 dx N

1d

Y2<y<H: u= (—2dpy2+tyzy+C2>/K2, (A8Db)

where C; and G, are constants. Applying the boundary condition
u=0 at y=H to Eq. (A8b), G, is derived as

ldp,,
G = 3 i ——H* -1,H. (A9)

In the region of Y; <y <y, T < 7y,, and fluid 2 does not yield
with a uniform velocity of u,. Combing with Eq. (A8b) and using
the continuity at y = y,, u, is obtained as

2
Yi<y<y:: u=ip= (2{12 +Cz>/Kz~
dx

(A10)

Substituting Eq. (A10) into Eq. (A8a) and using the continuity at
y=Y;, C; is derived as

ldp,,
C =Ku Y -1
1=Kl + o 2 dx y
Accordingly, in the region of 0 <y <y;, T <7y, and fluid 1
does not yield with a uniform velocity of u;. Combing with Eq.
(A8a) and using the continuity at y = yq, uy is obtained as

Y. (A11)

1

-L-Z
O0<y<yi: u=1y :< ?p +Cl)/1<1.
2%

(A12)

To sum up, the theoretlcal veloc1ty distribution under the shear

condition of 7y, < Y,dx < Ty, < H— is

'L'2 1d p
O<y<y;: u=u = zdp+Ku2+2d -1,Y /K
dx
(A13a)
1d 1dp
yi<y<Yi: u= (—dpy2 + Ty + Kiup + jd—Yz rym>/l<1
(A13Db)
7} 1dp
Yi<ysy:u=u= 2“ 2dxH2 7,H ) /K, (A13¢)
1d 1d
Y2<y<H u= (—zdpyz + Ty + 5 ) de2 - Ty2H>/K2.
(A13d)

(b) Only fluid 1 partially yielded
IfO<y;<Yi<H<y, (ie. 1y, <Yl o <H‘é—§ < Ty,), ¥2 doesn’t
exist, and only fluid 1 will be partially yielded.

Likewise, in the region of fluid 1, Eqs. (A7a, A8a and A12) re-

main the same. While in the region of Y; <y < H, t < Ty,, thus the

whole fluid 2 does not yield. Using the boundary condition u =0
at y = H, we get

Yi<y<H: u=u,=0. (A14)
By substituting it into Eq. (A11), C; here is derived as
1d
G=5 din 1, Y. (A15)

Further substituting Eq. (A15) into Eqgs. (A8a and A12), the the-
oretical velocity distribution under the shear condition of 7y, <

Y,‘;f(’ < H < 1y, is obtained as
T, 1d
O<y=<yi: u:u1=< ‘yj‘p 2d£y2 Ty, )/Iq (A16a)
2%
1d 1d
yi<y<Yi: u= (-dpyz+fy1y4‘ dpyz Ty1Yi)/K1
(A16b)
Yi<y=H: u=u;=0. (A16¢)

(c) Only fluid 2 partially yielded

If0<Y <y <y, <H (ie. Yi%<fy1 <y, <H
exist, and only fluid 2 will be partially yielded.

Similarly, in the region of fluid 2, Eqs. (A7b, A8b, A9 and A10)
remain the same. While in the region of 0 <y <YV;, T < 7y,, thus

% ), y1 doesn’t

the whole fluid 1 does not yield. Using the continuity at y =Y;, we
get
72
O<y<Y: u=u=uy,= (-2 /K> (A17)
(2‘5,'; )

Therefore, the theoretical velocity distribution under the shear

dp ;
condition of Yldx <Ty, <Ty, <Hg is

ldeZ

U=u; =Uy = Tyzz
2dp Zd
dx

O<y=<y: )/Kz (A18a)

1dp 1dp
ya<y<H: u= ( 5 dxy2+ry2y+ > T Hz—ryzH)/Kz.
(A18b)
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