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The classical Fourier’s law of heat transport breaks down in highly nonequilibrium situations as in 
nanoscale heat transport, where nonlinear effects become important. The present work is aimed at 
exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models 
in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same 
qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear 
models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux 
limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the 
phenomenological generalized heat transport models. The present work provides deeper understanding 
and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Heat transport is usually described by the Fourier’s law which 
assumes a linear dependence of heat flux on temperature gradient: 
q = −λ∇T with the coefficient λ denoting thermal conductivity of 
a material. This linear transport law is rigorously valid in the near-
equilibrium region [1,2], where the characteristic size and time of 
the system are much larger than the mean free path (MFP) and 
relaxation time of the heat carriers respectively. In recent years, 
with the rapid development of micro- and nanofabrication and 
nanotechnology, more and more attention is focused on microscale 
and nanoscale heat transport [3–8] when the system size decreases 
to be comparable to or even smaller than the carrier MFP and the 
process temporal scale shortens to be close to the carrier relax-
ation time. The situation becomes far from equilibrium states, thus 
the classical Fourier’s law becomes no longer available to model 
heat transport in this region [9].

Nanoscale heat transport includes both temporal aspects and 
spatial aspects. And there are usually three kinds of non-Fourier 
features [10]: relaxation, nonlocal, and nonlinear effects. Various 
generalized heat transport models involving relaxation, nonlocal 
and/or nonlinear terms have been proposed to tackle the issue. The 
first such model is the Cattaneo–Vernotte (C–V) law [11,12] which 
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incorporates the relaxation term of heat flux into the Fourier’s law 
to capture the temporal microscale heat transport or the so-called 
heat wave propagation [13,14]. The C–V law is a single-phase-lag 
model, which is later extended to a dual-phase-lag model [15,16]
including also the relaxation term of temperature gradient. Besides 
the relaxation (memory) effect, several other models are developed 
to describe nonlocal effects in spatial microscale heat transport as 
well, mainly including the phonon hydrodynamic model [17] and 
thermon gas model [18,19], both of which have been widely ap-
plied in modeling thermal transport in nanostructures [8,19–21]. 
Nevertheless, the nonlinear effect, which would play an impor-
tant role in nanoscale heat transport, is only taken into account in 
few works [22–26]. One interesting nonlinear phenomenon is the 
flux-limited behavior [25], where the heat flux will not increase 
infinitely with the temperature gradient. Instead, there exists an 
upper bound for the heat flux in the limit of infinite temperature 
gradient. This case may be met in nanostructures where a finite 
temperature difference (for instance, ∼1 K) is established over an 
extremely small-scale length (for instance, ∼100 nm). This kind 
of nonlinear behavior may have important effect, for instance, on 
the effective removal of heat generated in microelectronics, which 
is a current hot topic and big challenge [27,28]. Therefore it is 
of practical significance to investigate the flux-limited behavior in 
nanoscale heat transport.

The flux-limited behaviors were studied earlier in radiation hy-
drodynamics [29,30], mass diffusion [31–33], and general transport 
phenomena [34,35]. The existence of an upper bound of the flux 
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of transported quantity (radiative energy, mass, etc.) is attributed 
to the limited velocity of the carriers (for instance, the speed of 
light for photons). Thus the maximum flux must be smaller than 
the product of the limited velocity and the volumetric density of 
the transported quantity. There were also few works [36,37] on 
heat flux limiters based on transport laws in relativistic gas ob-
tained from information theory. In recent years, the flux-limited 
behaviors are explored in nanostructures (e.g. silicon nanolayer in 
Ref. [38]), with heat flux saturation phenomenon obtained. In spite 
of these works, there still lacks a systematical investigation and 
comparison of flux-limited behaviors in different kinds of nonlin-
ear heat transport models, especially in recent generalized laws in 
nanoscale heat transport. On the other hand, previous work in this 
field is more often phenomenological and a solid physical basis for 
the flux-limited behavior remains to be clarified.

The aim and organization of the present work is as below. In 
Section 2, we give an overview of previous nonlinear heat trans-
port models and summarize them into three categories in terms 
of their theoretical foundations: phonon hydrodynamic model, 
nonequilibrium thermodynamic models, and phenomenological 
models. In Section 3, the flux-limited behaviors of nonlinear heat 
transport models are explored and carefully compared. In Sec-
tion 4, further discussions are given on a credible physical basis 
and standard based on phonon kinetic theory for all the heat flux 
limiters. Finally, concluding remarks are made in Section 5.

2. Nonlinear heat transport models

In this section, an overview of existing nonlinear heat transport 
models is given. For further study and discussions of flux-limited 
behaviors, the nonlinear models are categorized into three types 
based on their theoretical origin: phonon hydrodynamic model 
from phonon kinetic theory, nonequilibrium thermodynamic mod-
els from irreversible thermodynamic theory, and phenomenological 
models from intuitive or mathematical perspective. They will be 
introduced respectively as below.

2.1. Phonon hydrodynamic model

Phonon systems can be described at three different levels: 
microscopic, mesoscopic, and macroscopic ones, with different 
governing equations respectively: Schrödinger’s equation, phonon 
Boltzmann equation, and phonon hydrodynamic equations [8]. 
Thus phonon hydrodynamics denotes a macroscopic statistical de-
scription of phonon transport, and could be derived from a solu-
tion of phonon Boltzmann equation in phonon kinetic theory. Here 
the zeroth-order solution to phonon Boltzmann equation under 
Callaway’s relaxation approximation by maximum entropy princi-
ple is considered [39,40]:

τR
∂q

∂t
+ q = −λ∇T − τR∇ · 3vg 〈qq〉

2vg E +
√

4v2
g E2 − 3q2

, (1)

with τR the relaxation time of phonon resistive scattering, λ the 
thermal conductivity of bulk material, vg the average phonon 
group speed and E the phonon energy density. 〈 〉 denotes the de-
viatoric part of tensor qq. The order of solution represents different 
degrees of approximation around the equilibrium distribution (dis-
placed Planck distribution) [8]. Eq. (1) is a highly nonlinear heat 
transport equation, in which the heat flux could be very large, i.e. 
far from equilibrium state [39]. Eq. (1) can be also derived from 
phonon Boltzmann equation by Grad’s type moment method [41]
and Chapman–Enskog method [42], as is thoroughly summarized 
in Ref. [8]. Note that the phonon energy density E in Eq. (1) is in-
tegrated from the phonon distribution function f as: E = ∫

h̄ω f dk, 
with h̄ω and k being respectively the energy quanta and wave 
vector of phonons [8,39]. The thermodynamic temperature T is de-
fined from E = CV T , which is assumed still valid in nonequilibrium 
situation, with CV the heat capacity per unit volume of bulk mate-
rial [4]. The thermal conductivity is derived as λ = 1

3 CV v2
gτR, being 

exactly the value of bulk material. In the nonequilibrium situation 
analyzed throughout the present work, the energy density E and 
thermodynamic temperature T may depend on the heat flux, as is 
already well discussed and formulated in Refs. [1,8], whereas the 
heat capacity CV and thermal conductivity λ in these nonlinear 
heat transport models adopt the values of bulk materials.

2.2. Nonequilibrium thermodynamic models

Thermodynamics has a close relation to heat transport model, 
since Fourier’s law was derived in classical irreversible thermo-
dynamics (CIT) [43]. Recent development of generalized laws in 
nanoscale heat transport has fostered further progress of irre-
versible thermodynamic theories and branches [5], one of which is 
known as extended irreversible thermodynamics (EIT) [1,44]. Here 
three nonlinear heat transport models obtained in the frame of or 
in the spirit of EIT will be introduced.

The first one is termed as Lagrange multiplier model, which 
is obtained by an identification of the coefficients in the Gibbs 
relation for an information-theoretical description of nonequilib-
rium steady state through a comparison to the generalized Gibbs 
relation in EIT, where the heat flux is elevated as an additional in-
dependent state variable. The heat flux is related to the Lagrange 
multiplier conjugate to the heat flux in information theory, which 
results in a nonlinear heat transport equation [37]:

q = −1

2

⎡
⎣1 − 3

2

(
q

vgC V T

)2

+
√

1 − 3

4

(
q

vgC V T

)2
⎤
⎦λ∇T . (2)

The second one is termed as hierarchy moment model, which is 
developed by incorporating an infinite hierarchy of moments (en-
ergy density, heat flux, flux of heat flux, etc.) of phonon distribu-
tion function into the state variable space in the frame of EIT. It is a 
generalization of the hierarchy model already proposed in Ref. [1], 
and takes the additional effect of external force field (temperature 
gradient, electrical field, etc.) into the constitutive equations. Based 
on a continued-fraction technique, it finally gives rise to a nonlin-
ear heat transport law as [35]:

q = − λ∇T

1
2 +

√
1
4 + l2 (∇ ln T )2

, (3)

where l is the MFP of heat carriers.
The third one is termed as nonlinear phonon hydrodynamic 

model derived by a dynamical nonequilibrium temperature method 
[22,23] that could be treated as a derivative of EIT. It is not treated 
as phonon hydrodynamic model in Section 2.1 since it was got 
from mathematical formulations of thermodynamics, rather than 
rooted in phonon kinetic theory. The combination of the evolu-
tion equation of a semi-empirical dynamical temperature and an 
extended Fourier’ law leads to a nonlocal and nonlinear heat trans-
port equation [23]:

τR
∂q

∂t
+ q = −λ∇T + 2

T

τR

C V
q · ∇q + l2

[
∇2q + 2∇(∇ · q)

]
. (4)

2.3. Phenomenological models

Phenomenological models are usually derived by incorporating 
additional nonlinear terms into the classical Fourier’s law in an 
intuitive mathematical expression. It has sometimes a qualitative 
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interpretation but often lacks a rigorous quantitative physical foun-
dation. One typical such model is a tempered diffusion equation 
as a balance between “driven force” and “resistance force” in heat 
transport process [34]:

α
∇E

E
+ v√

1 − v2/v2
g

= 0. (5)

In Eq. (5), α is the thermal diffusivity of a material, and v is the 
phonon drift velocity with v = q/E . At small temperature gradi-
ents, thus at small heat flux, Eq. (5) just reduces to the linear 
Fourier’s law. With the increase of temperature gradient and heat 
flux, the drift velocity increases as well. Since the drift velocity 
cannot increase to an infinite value, a nonlinear term 

√
1 − v2/v2

g

is included to put an upper bound vg for it, inspired from the 
relativistic dynamics. Reformulating Eq. (5) as a heat flux form, a 
nonlinear heat transport equation is achieved:

q = −
√

1 − (
q/vgC V T

)2
λ∇T . (6)

Another phenomenological approach holding the similar idea of 
force balance is the thermon gas model proposed in recent years. 
The concept of thermomass is introduced as the equivalent mass 
of thermal energy based on Einstein’s mass-energy relation. Thus 
the heat transport process is treated as a thermon gas flow [18,45]. 
The fluid mechanic equations are assumed to describe the dynam-
ics of thermon gas, and a nonlinear heat transport equation is thus 
derived [19]:

τT
∂q

∂t
+ q + λ∇T = −τT∇ ·

(qq

E

)
, (7)

with τT the relaxation time of thermon gas and τT = ρτR v2
g/

6γ CV T , γ being the Grüneisen constant of a dielectric material.
Recently, in order to explore potential nonlinear effects of heat 

transport in nanostructures (nanotube, nanowires and nano thin 
layers), a generalized nonlinear heat transport equation is written 
as a combination of several previous non-Fourier models [25]:

τR
∂q

∂t
+ q = −λ

(
1 + βq2

)
∇T + μq · ∇q + μ′∇q · q

+ l2
[
∇2q + 2∇(∇ · q)

]
, (8)

where β , μ and μ′ are phenomenological coefficients, which have 
to be determined by comparing Eq. (8) to existing heat transport 
equations. A generalized heat transport equation similar to Eq. (8)
is also given in Ref. [26], where an extended EIT framework is es-
tablished for such nonlinear models.

3. Flux-limited behaviors

In this section, a systematical investigation is made of the flux-
limited behaviors in the nonlinear heat transport models summa-
rized in Section 2. For mathematical simplicity and clear physical 
illustration, the one-dimensional (1D) steady-state heat conduction 
under a temperature gradient dT /dx is considered. In this case, the 
energy balance equation of heat transport reduces to:

∂qx

∂x
= 0. (9)

Eq. (1) in the phonon hydrodynamic model of Subsection 2.1
reduces to:

qx = −
(

5 − 4√
1 − M2

)
λ

dT

dx
, (10)

where the dimensionless parameter denotes fully M = √
3qx/

2vgCV T . As the deviatoric tensor becomes 〈qq〉xx = 2q2
x/3 in 1D 
situation, the second term on the rightside of Eq. (1) reduces to 
when combined with Eq. (9):

−τR
∂

∂x

⎡
⎢⎣ 2vgq2

x

2vgC V T +
√

4
(

vgC V T
)2 − 3q2

x

⎤
⎥⎦

= −4λ
dT

dx

⎡
⎢⎣1 − 1√

1 − 3q2
x/4

(
vgC V T

)2

⎤
⎥⎦ . (11)

Substitution of Eq. (11) into Eq. (1) exactly gives rise to Eq. (10).
Eqs. (2)–(4) in the nonequilibrium thermodynamic models of 

Subsection 2.2 reduce respectively to the following equations:

qx = −1

2

⎡
⎣1 − 3

2

(
qx

vgC V T

)2

+
√

1 − 3

4

(
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vgC V T

)2
⎤
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dx
,

(12)

qx = − λ

1
2 +

√
1
4 + l2

T 2

(
dT
dx

)2

dT

dx
, (13)

qx = −λ
dT

dx
. (14)

Eqs. (6)–(8) in the phenomenological models of Subsection 2.3
reduce respectively to the following equations:

qx = −
√

1 − (
qx/vgC V T

)2
λ

dT

dx
, (15)

qx = −
(

1 − ρq2
x

2γ C3
V T 3

)
λ

dT

dx
, (16)

qx = −
(

1 + βq2
x

)
λ

dT

dx
. (17)

In Eq. (17), one has β < 0 since otherwise it will result in non-
physical infinite heat flux by increasing the temperature gradient 
[25].

In the limit of small heat flux (small temperature gradient), 
Eq. (10), Eqs. (12)–(17) reduces to the Fourier’s law qx = −λdT /dx, 
as the nonlinear terms on the right side of them are negligible. 
In contrast, in the limit of large heat flux (large temperature gra-
dient), the nonlinear terms will be important and can no longer 
be neglected. Furthermore, there exists an upper bound for the 
heat flux in all the nonlinear heat transport equations except in 
Eq. (14) corresponding to the nonlinear phonon hydrodynamic 
model Eq. (4). This saturation heat flux is obtained by comput-
ing the mathematical limit of qx at infinite value of dT /dx, which 
is trivial in Eq. (13); in Eq. (10), Eq. (12), and Eqs. (15)–(17), the 
mathematical limit is achieved by making the heat flux-dependent 
coefficients before the bulk thermal conductivity vanishing, since 
only in this way could a finite heat flux be obtained as a product 
of a vanishing term and an infinite large term. Different saturation 
heat fluxes are obtained in these nonlinear heat transport models, 
which are summarized thoroughly in Table 1. Note that in deriving 
the saturation heat flux of hierarchy moment model, the kinetic 
expression of phonon thermal conductivity λ = 1

3 CV vgl is used.
For an intuitive understanding, a practical example of 1D 

steady-state heat conduction in silicon sample around 300 K is 
provided. The thermophysical properties of silicon at 300 K are 
listed in Table 2, and constant properties are assumed in the 
present work. The flux-limited behaviors determined by Eq. (10), 
Eq. (12), Eq. (13), Eq. (15) and Eq. (16) in the nonlinear heat 
transport models are calculated and compared in Fig. 1. These 
nonlinear algebraic equations of heat flux are solved by iteration 
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Table 1
An overview and comparison of saturation heat fluxes in nonlinear heat transport models.

Theoretical foundation Heat transport models References Saturation heat flux

Phonon kinetic theory Phonon hydrodynamic model Eq. (1) [39] qs,PH = 2
√

3
5 vgC V T

Nonequilibrium thermodynamics Lagrange multiplier model Eq. (2) [37] qs,LM = vgC V T
Hierarchy moment model Eq. (3) [35] qs,HM = 1

3 vgC V T
Nonlinear phonon hydrodynamic model Eq. (4) [22,23] –

Phenomenological Tempered diffusion model Eq. (6) [34] qs,TD = vgC V T
Thermon gas model Eq. (7) [18,45] qs,T = √

2γ C V T /ρC V T
Generalized nonlinear model Eq. (8) [25] qs,GN = 1/

√|β|
Table 2
Thermophysical properties of bulk silicon at 300 K.

Property λ ρ C V γ vg

Unit W/(m K) kg/m3 J/(m3 K) – m/s
Value 148 2330 1.66 × 106 1.5 6400

Fig. 1. A comparison of flux-limited behaviors in different nonlinear heat transport 
models (cf. Table 1): the heat flux versus the temperature gradient.

method and found to have one positive root or two roots (a posi-
tive one and a negative one) under a given temperature gradient. 
Because negative heat flux under exerted negative temperature 
gradient contradicts the second law of thermodynamics and is a 
non-physical result, the positive roots are merely kept and plotted. 
The parameter β in Eq. (17) has to be specified by comparing to 
other models (for instance, the thermon gas model), therefore the 
generalized nonlinear model is not included in Fig. 1. Further dis-
cussions about the flux-limited behaviors in generalized nonlinear 
models will be given in the following section.

The results in Fig. 1 show that heat flux increases linearly with 
temperature gradient at small temperature gradients, i.e. in the 
near-equilibrium region. At larger temperature gradients, in the 
far-from-equilibrium region, a nonlinear dependence of heat flux 
on temperature gradient is obtained. Finally, the heat flux approx-
imates asymptotically a constant maximum value with increasing 
temperature gradient. The qualitative tendency of heat flux versus 
temperature gradient is the same, but the saturation heat flux is 
different in different nonlinear heat transport models. The satura-
tion heat flux obtained in thermon gas model is about one order of 
magnitude smaller than those obtained in other nonlinear models. 
The Lagrange multiplier model has an identical saturation heat flux 
to that in the tempered diffusion model, but in the latter model 
heat flux approaches faster to the saturation value.
4. Discussions

As is seen in Section 3, diverse flux-limited behaviors are ob-
tained in different nonlinear heat transport models. Thus it is es-
sential to clarify the physical standard to evaluate the heat flux 
limiters, which is the main objective of the present section.

From our perspective, the phonon hydrodynamic model de-
rived from phonon kinetic theory could act as a credible physi-
cal standard, since it is the most natural and direct result from 
phonon Boltzmann equation as the fundamental general transport 
law [8]. In contrast, phenomenological models are often lacking a 
rigorous physical foundation, because they are usually obtained by 
adding mathematical terms based on intuitive qualitative interpre-
tations, such as the ‘force balance’ in tempered diffusion model; 
the nonequilibrium thermodynamic models cannot be an alterna-
tive as well, since the irreversible thermodynamic theory is hardly 
capable of producing novel transport equations although it pro-
vides a beautiful theoretical frame for the existing constitutive 
relations of transport process.

Therefore, the flux-limited behavior in phonon hydrodynamic 
model is separately compared with those in nonequilibrium ther-
modynamic models and those in phenomenological models, as is 
shown in Fig. 2(a) and Fig. 2(b) respectively. The nonequilibrium 
thermodynamic models have comparable flux-limited behaviors to 
the phenomenological models, both of which deviate from the 
phonon hydrodynamic model. The difference provides a credible 
standard to evaluate the phenomenological models or irreversible 
thermodynamic theories through a comparison to phonon hydro-
dynamic model. For instance, the thermon gas model holds a 
saturation heat flux (3.9877 × 1011 W/m2) almost one order of 
magnitude smaller than that (2.2082 × 1012 W/m2) in phonon hy-
drodynamic model; in terms of the relation τT = ρτR v2

g/6γ CV T
between relaxation times of thermon gas and phonon gas, the 
saturation heat flux in thermon gas model is rewritten as qs,T =√

3
3

√
τR
τT

vgCV T . The ratio of saturation heat fluxes in both models 

are thus correlated to the ratio of relaxation times: qs,T
qs,PH

= 5
6

√
τR
τT

. 
Actually there is usually a ratio between the quantities in phonon 
hydrodynamic and thermon gas models, as is carefully compared 
in Ref. [8], which indicates some fundamental distinction between 
the concept of “thermomass” and “phonon”.

The validity should be emphasized of Eq. (1), which is the 
hitherto available nonlinear heat transport equation in phonon 
hydrodynamics obtained from phonon Boltzmann equation. It is 
originally derived in low temperature situation, and in prior ex-
tended to describe phonon transport in a wider scope [8]. Recent 
works [46,47] report hydrodynamic phonon transport taking place 
in two-dimensional nanomaterials (graphene, etc.) even at ambient 
temperature based on ab initio calculations. Thus a fully available 
phonon hydrodynamic model is disperately needed. A novel con-
cept of generalized phonon hydrodynamics has been proposed in 
a recent comprehensive article [8], and provides a possible av-
enue to describe the nonlocal and nonlinear heat transport in any 
range of temperature. Future exploration may be focused on the 
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Fig. 2. Comparison of flux-limited behaviors in phonon hydrodynamic models respectively to those in the nonequilibrium thermodynamic models (a) and those in phe-
nomenological models (b): the heat flux versus the temperature gradient.
flux-limited behaviors in the generalized phonon hydrodynamic 
models once they are well developed. On the other hand, Eq. (1)
is the result of zeroth-order solution to phonon Boltzmann equa-
tion; higher-order solution may give rise to more refined result. 
However, because of the complicacy of displaced Planck distribu-
tion, first-order and higher-order solutions provide no explicit heat 
transport equations and lack a clear physical interpretation [8]. 
One may make use of particle-based numerical method such as 
Monte Carlo scheme [48] for solving phonon Boltzmann equation 
to evaluate the heat flux limiters more precisely in future work.

Finally, the flux-limited behavior obtained in Eq. (8) yields fur-
ther indication about the effects of nonlinear and nonlocal terms 
in generalized heat transport equations. In Eq. (8), the nonlocal 
terms include both linear ones (∇2q, ∇(∇ · q)) and nonlinear ones 
(q · ∇q, ∇q · q), but all of them vanish in 1D steady-state conduc-
tion since the gradient term of heat flux becomes zero in steady 
state (Eq. (9)). Thus the nonlocal terms in Eq. (8) contribute noth-
ing to the flux-limited behavior, which, instead, comes from the 
purely nonlinear term (q2∇T ) [26]. The combination of purely 
nonlinear term with the Fourier’s term (λ∇T ) results in a heat 
flux-dependent effective thermal conductivity, which is obtained in 
Eq. (10), Eq. (12), Eq. (15) and Eq. (16) of other nonlinear models 
as well. The present discussion gives also an explicit interpretation 
why Eq. (4) in nonequilibrium thermodynamic model induces no 
flux-limited behaviors.

5. Conclusions

A systematical investigation is made of the flux-limited be-
haviors in nonlinear regime based on a classification of existing 
nonlinear heat transport models into three categories: phonon hy-
drodynamic model, nonequilibrium thermodynamic models, and 
phenomenological models. The same qualitative tendency of heat 
flux versus exerted temperature gradient is obtained, but different 
values of saturation heat flux are achieved in different models. The 
phonon hydrodynamic model developed in phonon kinetic theory 
has a more rigorous physical foundation, therefore could act as 
a standard to evaluate other heat flux limiters. The thermon gas 
model is thus found to have a saturation heat flux about one order 
of magnitude smaller than that in phonon hydrodynamic model, 
which infers possible conceptual difference between thermon gas 
and phonon gas. It is also shown that the nonlocal terms of heat 
flux in generalized heat transport equations have no contribution 
to the flux-limited behaviors. Another nonlinear effect that will af-
fect the flux-limited behaviors is the temperature-dependent mate-
rial properties, which may become important in large temperature 
difference situations and should be explored in future work. The 
current gray linear approximation made in deriving the phonon 
hydrodynamic model Eq. (1) could be generalized to include more 
realistic phonon dispersion relations. The phonon group speed will 
depend on the frequency, and influences the saturation value of 
heat flux, which makes the analysis of flux-limited behaviors a 
challenging task insufficiently explored up to now.
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