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Direct simulation of electroosmosis around
a spherical particle with inhomogeneously
acquired surface charge

Uncovering electroosmosis around an inhomogeneously acquired charge spherical particle
in a confined space could provide detailed insights into its broad applications from biology
to geology. In the present study, we developed a direct simulation method with the effects
of inhomogeneously acquired charges on the particle surface considered, which has been
validated by the available analytical and experimental data. Modeling results reveal that
the surface charge and zeta potential, which are acquired through chemical interactions,
strongly depend on the local solution properties and the particle size. The surface charge
and zeta potential of the particle would significantly vary with the tangential positions on
the particle surface by increasing the particle radius. Moreover, regarding the streaming
potential for a particle-fluid tube system, our results uncover that the streaming potential
has a reverse relation with the particle size in a micro or nanotube. To explain this
phenomenon, we present a simple relation that bridges the streaming potential with the
particle size and tube radius, zeta potential, bulk and surface conductivity. This relation
could predict good results specifically for higher ion concentrations and provide deeper
understanding of the particle size effects on the streaming potential measurements of the
particle fluid tube system.
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1 Introduction

The electrophoresis and electroosmosis of charged and polar-
izable particles have found promising applications in various
fields of science such as biology, environment, and geology.
As a matter of fact, the particles could possess electric charges
depending on their material properties and the medium in
which they are immersed. Considering the particle material
properties, one can categorize them into conducting and non-
conducting types. The conducting one in the presence of an
applied external electric field could be polarized and pos-
sesses inhomogeneous positive and negative charges [1–4].
For the nonconducting case, when a particle with chemically
reactive surface immersed in an aqueous solution, due to the
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chemical and physical adsorption or desorption of the ions
on the solid–liquid interfaces, the surface would acquire a
certain amount of negative or positive charges. This charge
is strongly dependent on the local solution properties such as
pH, ion concentration, and the particle surface material [5,6].
Based on the electrostatic theory, the acquired surface charge
attracts the counterions and repels the co-ions. As a result, a
polarized layer, which is so-called electric double layer (EDL),
induces at the vicinity of the solid–liquid interface [7]. By ap-
plying an external electric field, the counterions at the EDL
start to move along the electrical field. However, the ions
within the aqueous medium experience the superposition of
the applied external electric field and the internal electric field.
The internal electric field is a result of the electrical field of
ions themselves as charged particles.

Basically, the ionic transport within the EDL could
be explained by such coupled convection, diffusion, and
electromigration transport phenomena [8]. Although the
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aforementioned transport phenomena bring complexity to
analyze the ionic transport through straight surfaces, for
curved surfaces, one can expect great complexity since the
tangential electric field varies with the tangential positions
on the particle surface. Though a very large body of literature
assumed the uniform zeta potential [9–16], in real world, the
surface charge could not be uniform [17, 18]. To this aim,
few attempts have been conducted to consider particles with
a random distribution of zeta potential [19], arbitrary zeta po-
tential [20–22], and arbitrary double layer thickness [23]. How-
ever, neither the prescribed uniform surface charge density
or zeta potential could represent the realistic electroosmo-
sis around the particle nor the random or other nonuniform
considerations of the surface charge and zeta potential.

To our best knowledge, no work has performed the realis-
tic electroosmosis around a spherical particle which the zeta
potential and surface charge density are acquired based on
the local solution properties i.e. pH and ion concentration. In
this contribution, for the first time, we perform a direct sim-
ulation of the electroosmosis around a spherical particle in a
confined space (i.e., tube) which is inhomogenously acquired
surface charge. In this particle-fluid-tube configuration, three
characteristic lengths as micro or nanotube radius, particle
radius, and EDL thickness could significantly influence the
electroosmosis around the particle. In order to fully take into
account the mentioned determinative factors, the coupled
Nernst–Planck, Navier–Stokes, and Poisson’s equations are
solved numerically in an iterative procedure by coupled lat-
tice Boltzmann methods to find out the ion distribution, flow
field, and internal electric potential field, respectively. How-
ever, determination of the local zeta potential as the boundary
condition for Poisson’s equation is a big challenge. To over-
come this challenge, the electrical triple layer (ETL) model
that involves the contribution from the salt–ion adsorption to
the chemically reactive mineral surfaces has been adopted for
numerous fields from geophysics and geochemistry [24,25] to
electrokinetic transport in microfluidics or nanofluidics [26].
In this contribution, we modified the standard ETL model [5]

which the local surface charge density and zeta potential could
obtain based on the local solution properties. It should be
noted that the proposed modified ETL model could also be
employed when the EDLs are overlapped. By using the pre-
sented numerical framework, we investigated the electroos-
mosis around the particle in confined medium for different
solution pH and particle sizes.

2 Materials and methods

2.1 Problem definition

In this study, we consider a silica spherical particle in an
aqueous solution within a tube that is coated by silica. The
tube is initially filled with the aqueous solution. The solution
was prepared by dissolving KCl with CKCl = 3.6 × 10−4 M
in deionized water at the room temperature. Considering the
acidity of the solution, by adding the HCl and KOH, one can
control the pH of the solution. In order to retain the initial
electroneutrality, the molar concentration of the counterions
(K+) and co-ions (Cl−) should be equal to [K+] = [KCl] +
[KOH] and [Cl−] = [KCl] + [HCl], respectively. The bulk pH
and pOH of the solution could also be obtained from the
concentration of hydronium and hydroxyl as [H+] = [HCl]
and [OH−] = [KOH], respectively. Since this work aims to
study the electroosmosis around a spherical particle, it is as-
sumed that the particle is fixed at the middle of the tube and
let the aqueous solution flow around it by applying an exter-
nal pressure gradient or electric field. In addition, because
of the symmetrical boundary conditions around the � direc-
tion (in spherical coordinate (r, �, �)), it allows people to solve
this defined problem in a 2D fluid channel configuration as
in the previous work [27–29]. Fig. 1 illustrates our particle-
fluid-tube configuration. The walls of the tube and the par-
ticle acquire surface charge due to the chemical interactions
with the electrolyte. This surface charge might be inhomoge-
neous while the local properties of the solution (i.e., pH and

Figure 1. Schematic illustration of a particle fluid tube configuration in which the spherical particle placed at the middle of the tube. The
tube contains multispecies ions as K+, Cl-, H+, and OH−. The solid–liquid interface of the tube and particle acquire surface charge due to
the chemical interactions. �p(�) denotes the acquired zeta potential on the particle surface that could be changed by tangential position
(�) and �t(r, �) denotes the zeta potential on the tube–liquid interface.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com



582 A. Alizadeh and M. Wang Electrophoresis 2017, 38, 580–595

Figure 2. The iteration procedure to solve the coupled lattice
Boltzmann methods for Poisson, Nernst–Planck, and Navier–
Stokes equations. The METL model solving in each iteration to
figure out the updated zeta potential for the solid–liquid inter-
faces. In this contribution, the tolerance is equal to 10−8.

counterion concentration) at the solid–liquid interfaces de-
termine the surface charge. It is well realized that three main
transport phenomena as diffusion, electrochemical migra-
tion, and convection govern the ion transport. In our system,
the ions start to move by applying the external electric field
or the pressure gradient. For the fluid flow, it would be gen-
erated by connecting pressurized chamber (pressure-driven
flow) or nonzero voltage electrode (electroosmotic flow) to the
inlet reservoir while the outlet reservoir would be left open
to a nonpressurized chamber (atmosphere) or grounded. The
dimensions of the tube are chosen as the diameter H = 2b =
0.14 �m, the length L = 1 �m. It should be mentioned that
the inlet of the tube is connected to a reservoir with a refill-
ing solution to make sure that the reservoir could provide
our system with bulk concentration. It is assumed that the
diffusion coefficients of the ions, kinetic viscosity, and solu-
tion temperature would be constant everywhere in the solu-
tion and equal to: DK+ = 1.95 × 10−9, DCl- = 2.03 × 10−9,
DH+ = 9.31 × 10−9, DOH

− = 5.27 × 10−9 m2/s, � = 8.89 ×

10−7 m2/s, and T = 293.15 K, respectively. The vacuum elec-
trical permittivity and the ratio of the electrolyte solution
permittivity to vacuum permittivity would be ε0 = 8.854 ×
10−12 C/V � m and εr = 78.54, respectively. Since the pH
of the solution plays a key role to determine the local surface
charge on such mineral surfaces, we considered two pH 4 and
6 to investigate the influence of the pH on the electroosmosis
around the particle.

Regarding the presence of a surface charge on the solid–
liquid interfaces, based on the electrostatic theory, the counte-
rions are attracted and co-ions repelled due to the electrostatic
forces. Consequently, a polarized layer with a higher amount
of counter-ions concentration formed near to the charged sur-
face. The combination of these two layers is so-called the EDL.
Based on the classical electrokinetic theories [8], the thickness
of the formed layer near to the solid surface could be char-
acterized by a characteristic length named Debye length and

calculated as �−1 =
√

ε0εr KBT
2Z2e2n0

.

2.2 Mathematical models

As mentioned before, the ion and hydrodynamic transport
phenomena in this problem are modeled by employing the
Nernst–Planck and Navier–Stokes equations, respectively.
For the Nernst–Planck equation, the three main ion transport
mechanisms (convection, electrochemical migration, and dif-
fusion) have been considered. In addition, to perform the di-
rect simulation of the electroosmosis around the particle, the
electric potential due to the ions themselves should be solved.
Thus, the Poisson’s equation that governs the internal elec-
tric potential field will be solved coupled with the NP and NS
equations. For the applied external electric field, the Laplace’s
equation also should be solved by considering the silica sur-
faces as ideal dielectric. In this section, we present a gen-
eral multi-ion mass transport model that is coupled with the
incompressible Navier–Stokes equations and the Poisson’s
equation. To solve the system of Poisson + Nernst–Planck +
Navier–Stokes equations, the coupled lattice Boltzmann
methods are solved in an iterative procedure (Figure 2) (for de-
tails see the Supporting Information). The grid system in our
simulation is based on the Cartesian coordinate (x,y). Thus,
it would be essential to construct the spherical particle curve
surface in this coordinate system and solve the equations in
this system.

2.2.1 For hydrodynamics (Navier–Stokes equations)

For a multicomponent constant-property Newtonian fluid
flow in a domain with no mass source, the governing equa-
tions for laminar flow are [30, 31]:

(a)
∂�

∂t
+ ∇ · (�u) = 0,

(b)
∂ (�u)

∂t
+ u · ∇ (�u) = −∇ p + ∇ · (�∇ (�u)) + F , (1)
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where � (kg/m3) is the density of the electrolyte, u (m/s)
the flow velocity vector, t (s) the time, p (Pa) the fluid
pressure, � (m2/s) the kinematic viscosity, and F (N/m3)
the body force density that may include all the implemented
body forces such as electrical field force or pressure gradient.
Equation (1) is subjected to the nonslip boundary condition at
the solid–liquid interfaces. For the inlet and outlet boundary
conditions, if the fluid flow is generated by electrical force due
to the free bulk charges (electroosmotic flow), the inlet and
outlet of the channel will subject to atmospheric pressure. If
the fluid flow would be a pressure-driven scenario, the inlet
pressure is equal to the chamber pressure while the outlet is
left to atmospheric pressure.

2.2.2 For ion transport (Nernst–Planck equations)

The mass conservation equation that governs the transport
phenomena and includes the advection–diffusion with a
source term could describe the ion transport in an aqueous
solution. It is worth point out that the source term for the
ion transport represents the electrochemical migration phe-
nomenon. One can propose the mass conservation equation
for the ith ion species in an electrolyte [32, 33]:

∂Ci

∂t
+ ∇ · J i = 0, (2)

where Ci demonstrates the ith ion concentration and J i de-
notes the species flux. J i consists of advection, diffusion and
dispersion terms. Neglecting the dispersion, one can denote
the flux of ions in the form of [33]:

J i = −
(

e Zi Di

K T

)
Ci∇	 − Di (∇Ci) + Ciu, (3)

where the first term on the right-hand side denotes the elec-
trochemical migration, the second term to ions diffusion,
and the last term to advective transport. This is the famous
Nernst–Planck equation. At Eq. (3), e, Zi, Di, K , and T de-
note as the absolute charge of electron, valance number for
ith ion, diffusion coefficient for ith ion, Boltzmann constant,
and the absolute temperature, respectively. By introducing
Eqs. (3) to (2) and considering is othermal electrolyte solu-
tion, the ions electrodynamic transport equation would be
as [34]:

∂Ci

∂t
+ u · ∇ Ci = Di ∇2Ci + e Zi Di

K T
∇ · (Ci∇	 ). (4)

Since in this work the equilibrium state is still available,
the Boltzmann ion distribution equation could be employed
to find out the boundary conditions for ith ion species at the
solid–liquid interfaces. However, the electric potential in the
Boltzmann equation should be determined yet. In the next
section, we will propose a model that could predict the local
surface charge based on the solution properties. Eventually,
the boundary conditions for Eq. (4) are as:

For solid-liquid interfaces :

Ci,
 = ni,0 exp
(

− Zie	


KB T

)
,

for inlet and outlet:

x = 0 → Ci = ni,0

x = L → ∂Ci

∂x
= 0, (5)

where ni,0 denotes the ith ion bulk number density concen-
tration and 	
 denotes the solid–liquid interface electric po-
tential.

2.2.3 For electric fields (Poisson’s and Laplace’s

equations)

Following the classical electrostatic theory [35], the electric
potential at each point of space could be a linear superposition
of the applied external electric field and the electric potential
due to the ions themselves, which should satisfy the Poisson’s
equation as [27, 28] follows:

∇· (εrε0∇�) = − �e, (6)

where � denotes the total electric potential in space as
� = � + 	 . It is noteworthy that Eq. (6) could be demon-
strated as a linear superposition of the Laplace’s and Pois-
son’s equations to describe the applied external and internal
electric field, respectively. Since in this contribution the elec-
trolyte permittivity is assumed to be constant everywhere, as a
result, Eq. (6) could be redefined for internal electric potential
field as follows:

∇2	 = − �e

ε0εr
, (7)

where �e denotes the free bulk charge and is equal to∑n
i = 1 e ZiCi Equation (7) is subjected to zeta potential on

the particle surface (�p) and zeta potential on the tube sur-
face (�t). Determination of �p and �t are challenging since
this contribution aims to study the realistic electroosmosis
around a spherical particle that acquires charge from the
solution around. One well-known model is so-called ETL
model [5]. In this model, it is assumed that the solid–liquid
interface acquires electric charge when it is isolated whereas
for overlapped EDLs the isolated surface assumption would
not be physically available anymore. Wang and Revil [26] pre-
sented a theoretical framework based on the ETL model in
which the influence of the EDLs overlap studied in a nar-
row channel. However, as we know, in narrow channels,
the concentration of counterions would be enriched due to
the EDLs interaction. As a result, the standard ETL mod-
els could not fully consider the EDL interactions. To tackle
this bottleneck for the present work, we introduced the en-
richment model as modified bulk ion concentration [36] to
the ETL model. Therefore, a modified ETL (METL) model
has been presented that not only obtained the local surface
charge acquirement at the solid–liquid interfaces but also
takes into account the charge regulation due to the EDLs
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interaction (see the Supporting Information for the details of
METL model).

Regarding the external electric field, the solid–liquid
interfaces are assumed to have zero permittivity for the
external electric field. As a result, based on the mentioned as-
sumptions, the electric potential associated with the applied
external electric field must satisfy the Laplace’s equation [27]:

a) ∇2� (r, �) = 0

b)
∂�

∂r
= 0.0 at all solid surfaces,

�in = 0 ,�out = 0, (8)

where � denotes the applied external electric potential which
is subjected to the boundary conditions of Eq. (8b) where
�in and �out denote the inlet and outlet electric potential,
respectively. In this work, we applied the inlet external electric
potential as 0= 5 V.

3 Results and discussion

3.1 Benchmarks

In order to examine our theoretical and numerical framework
proposed in the last section, in this section, first we valid our
METL model with the available experimental data for the
measured streaming [37] and electrical conductance [38] in
a straight microchannel. Second, a uniform charged particle
in a noncharged tube with thin EDLs is considered. In this
scenario, the fluid flow is driven by an applied external electric

field. For more simplicity, the particle charge considered to
be small and homogeneous to meet the assumptions claimed
by Smoluchowski for rigid electrically insulating particles of
any shape [28]. Based on the mentioned assumptions, one
can propose analytical solutions for internal electric potential
field and ion distribution around a spherical particle in a tube.

Fig. 3A shows the streaming conductance, Sstr, predic-
tions by the present work framework (PNP + NS) for the
microchannel fabricated by Heyden et al. [37]. In this study,
the streaming conductance is calculated as follows:

Sstr = 1

� P

∫
�e (y) u (y) d A. (9)

It is shown that for a wide range of the background KCl
concentration from 10−6 to 1.0 M, the results have good
agreement with experimental measurements. Moreover, it
is demonstrated that the present numerical framework could
predict more accurate streaming conductance for nonover-
lapped EDLs (CKCl � 10−3 M) compared with the overlapped
EDLs (CKCl � 10−3 M). The solution pH is prescribed equal to
8.0. Fig. 3B proves that our framework could predict electrical
conductance, Sek, which is calculated as:

Sek = 1

� V

(∑
i

Zie
∫

J id A

)
(10)

in good agreement with the experimental measurements per-
formed by Karnik et al. [38]. In accordance to what mentioned
for Fig. 3A, the presented framework could predict more accu-
rate results when the EDLs interaction would be weak which
derived from higher ionic strength.
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Figure 3. The benchmarks for streaming and elec-
trical conductance. (A) Streaming conductance, Sstr

(pA/bar), for a silica microchannel with 140 nm
height, 4.5 mm length, and 50 �m width, applied
pressure gradient �P = 4 and background solution
pH 8; (B) Electrical conductance, Sek (nS), for a sil-
ica microchannel with 35 nm height, 120 �m length,
and 1 �m width, applied external electric field E =
41667 V/m and the deionized background solution with
pH 7; as a function of KCl concentration.
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As the second benchmark, we assume a homogeneously
charged particle with radius r = a in a tube with diameter H
= 2b whereas a/b = 0.1. As mentioned above, the tube does
not possess electrical charge in contact with aqueous solu-
tion. As a result, one can denote the boundary condition for
internal electric potential as 	 (a) = �p , 	 (b) = 0. In order
to make sure that the EDLs would not interact, we choose
the molar concentration for KCl equal to 3.6 mM that makes
the tube diameter to EDL thickness as �b = 40. Considering
the facts that for this benchmark the EDLs thickness is thin
and the thermodynamic equilibrium state is available, one
can denote that the concentration of ions could be determined
by the Boltzmann distribution equation:

Ci (r ) = n0 exp
(

− e Zi	 (r )

KbT

)
. (11)

However, the internal electric potential is still unknown
and it should be determined. Based on the above assumptions
and boundary conditions, one can simply obtain an analytical
solution for Eq. (7) as [27]:

	 (r ) = a�p

r
cosh (� (r − a))

+b
(−��p cosh (� (b − a))

)
r sinh (� (b − a))

sinh (� (r − a)), (12)

where � = a/b and r is the radius from the center of the par-
ticle. Fig. 4 demonstrates the predicted results by the present
work framework compared with the analytical solutions men-
tioned above. As it is shown, our proposed numerical frame-
work could predict well agreement results with the analytical
solution for internal electric potential, counterion, and co-ion
concentration.

To examine the hydrodynamic part of our numerical
framework, Zydney [27] proposed an analytical solution for a
stationary spherical particle in which the fluid around it will
start to move due to the electrokinetic phenomena induced
by the presence of the charged sphere while the tube does
not gain any surface charge. It is assumed that the sphere has
zeta potential, �p, and the strength of the external electric field
is Ez. So, the fluid flow velocity far from the sphere could be
obtained as follows:

UE =
(

1 − 2.5�3 + 1.5�5

(1 − �3) (1 − �5)

)
UHS, (13)

where UHS denotes the Helmholtz–Smoluchowski veloc-
ity UHS = −ε0εr Ez�p

�
. Equation (13) demonstrates that when

� → 0, UE = UHS. Fig. 5 shows the present work prediction
versus the analytical solution which proposed by Eq. (13) as
a function of the ratio of the sphere to the tube radius. As
it is shown, for � ≤ 0.1, the present work framework could
predict the non-dimensional velocity in good agreement with
the analytical solution.

3.2 Effects of solution pH and particle radius

According to what mentioned in Section 2.2.2, it is well under-
stood that the inhomogeneously acquired surface charge of a
solid–liquid interface is strongly depend on the local solution
properties specifically the solution pH. The higher solution
pH does not only increase the zeta potential on the edge of the
diffuse layer (	d) but also increase the surface charge of the
solid–liquid interface due to the higher concentration of the
hydroxyl ions (OH−) [26]. This acquired surface charge has a
key role for ion transport in micro and nanoscale. Physically,
a higher amount of surface charges will attract more counte-
rions to the EDL in order to retain the electroneutrality of the
double layer. However, sometimes due to the very low ionic
strength and small channel height, the EDLs may overlap and
as a result the whole electroneutrality of the system does not
retain. In order to study the effects of the particle and tube
EDL interactions on the surface charge and zeta potential of
the particle, we considered two particle sizes where the ratio
of the particle radius to the tube radius would be � = 0.2 and
0.48. The concentration of the KCl in the background solution
is assumed to be 3.6 × 10−4 M with two solution acidity as
pH 4 and 6. It is worth mentioning that the tube radius to the
EDL thickness would be �b = 4.97. By applying an external
electric field, the nonzero net charges in the vicinity of the
particle and tube walls make a fluid flow which is so-called
electroosmotic flow.

Fig. 6 demonstrates the contours for the internal electric
potential field, net charge density, and the fluid flow velocity
along the tube when all the solid–liquid interfaces acquired
surface charge locally based on the local solution properties.
It is shown that for the internal electric potential field (Fig. 6A
and B), qualitatively, one can denote symmetry even near to
the particle surface. Considering the net electric charge den-
sity (�e) (Fig. 6C and D), as we expected, the presence of the
particle with negative surface charge induces a nonzero net
electric charge on a region near to the particle. The net electric
charge is obtained as �e = ∑4

i=1 ZieCi, where the concentra-
tion of hydronium and hydroxyl ions also take into account.
Fig. 6E and F show the nondimensional velocity of the elec-
troosmotic flow in the x-direction. Comparing the small and
the big particles, it is revealed that the big particle influenced
wider region around itself and decreases the electroosmosis
velocity compared with the small particle.

Despite the general symmetry that was observed based
on the results of Fig. 6, a careful insight into the EDL around
the particle reveals the general asymmetrical distribution of
the zeta potential, ions concentration, and the surface charge
density. This asymmetrical behavior could be explained phys-
ically by considering the exerted forces on the ions due to two
different electrical field. These two forces are demonstrated
by the red and blue arrows in Fig. 7, which represent the elec-
trical forces due to the applied external electric field and the
negative acquired charge on the particle surface, respectively.
It is worth noting that the electrical forces originated from
the negative charge on the particle could be dependent on �

since the � is determined based on the solution properties
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Figure 4. The nondimensional (A) internal electric potential, (B) counterion concentration, and (C) the co-ion concentration predicted by
analytical solution (solid line) compared with the present work predictions (symbols).
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Current work prediction
Analytical solution

Figure 5. The nondimensional velocity of the
fluid far from a charged sphere at the non-
charged nanotube. The fluid flow is generated
due to the applied external electric field. � de-
notes the ration of sphere to nanotube radius
and UHS denotes the HS velocity by definition.
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Figure 6. The contours of the internal electric potential field, net charge density, and the flow velocity in the x-direction for two particles
when reservoir bulk solution properties are pH 4 and CKCl = 3.6 × 10−4 M. The particles are illustrated by a filled gray circle. �0 in (A)
and (B) represents the reference electrical potential which is obtained by solving the METL model based on the reservoir bulk solution
properties.

near to the solid–liquid interface. Considering the ions in
front of the particle, Fig. 7 shows that both aforementioned
forces are exerted to the positive ions in the x-direction since
they are in (–x)-direction for the negative ions. As a result, the
concentration of the counterions should be increased. Based
on our proposed METL model (see the Supporting Informa-
tion), we know that by increasing the concentration of the
counterions, the thickness of the EDL decreases and conse-
quently the zeta potential would be decreased. Besides, we
expect that the solution acidity, pH, should be decreased in
front of the particle since the H+ concentration increased by

the same reason we have mentioned for the counterions in-
crement. Thus, the zeta potential also should be decreased
due to the decrease in pH [26]. On the other hand, the exerted
forces in the rear of the particle (right-hand side) for both
positive and negative ions would have different directions
depending on the ion charge. As shown in Fig. 7, the positive
ions experience an electrical force from the applied external
electric fields in the x-direction since the electrical force ex-
erted from the negative charge of the particle would be in the
(–x)-direction. The exerted forces on the negative ions from
the external electric field and negative charges on the particle
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Figure 7. Schematic illustra-
tion of the electrical forces
which are exerted on the
ions with positive and nega-
tive charges in front (left-hand
side) and in rear (right-hand
side) of the particle. The red
and blue arrows represent the
electrical forces due to the ex-
ternal electric field and the
negative charge on the parti-
cle surface, respectively.

should be in opposite directions of what for positive ions.
Considering the bidirectional forces configuration, one can
state that the concentration of the co- and counterions, as well
as the solution pH, could be determined as a result of these
forces competition.

Fig. 8 demonstrates the nondimensional zeta potential
and surface charge density on the particle surface for two
solution acidity pH 4, 6 and for two particle sizes. As we
expected and described in the physics of the ion distribu-
tion at the presence of a negatively charged particle (Fig. 7),
Fig. 8A shows that the minimum nondimensional zeta po-
tential would be attributed to the front of the particle when
� = 180°. The changes of the nondimensional zeta potential
as a function of � shows the fact that the maximum amount
of it would be in the rear of the particle (� = 0° or 360°).
The modeling results indicate that by increasing the �, the
nondimensional zeta potential decreases up to � = 180°. By
further increasing of �, the zeta potential again increases.
Consequently, one can denote that the acquired charge par-
ticle in a solution induces asymmetrical distribution of zeta
potential around the tube length.

Studying the effects of the solution pH on the surface
charge density and zeta potential, Fig. 8A and B shows that
for both a/b = 0.2 and 0.48, the more basic solution induces
higher nondimensional zeta potential. It is revealed that the
higher pH solution would make the zeta potential of the
particle to be more sensitive to the variation of � (Fig. 8A).
However, Fig. 8B shows that the surface charge density does
not change significantly by � when pH 6. The interesting
point is that the results uncover the nondimensional zeta
potential and surface charge density would not change sig-
nificantly for different particle sizes when pH 6. In other
word, one can express that for a more basic solution, the
particle size would not have a significant impact on the ac-
quired surface zeta potential and charge density. However,
it should be noted that the surface charge density and zeta
potential still depend on �. On the other hand, for a solu-
tion with pH 4, it is shown that the predicted zeta poten-
tial and surface charge density are not only dependent on
the � but also the particle size influences them significantly
(Fig. 8).

As mentioned above, around the particle an EDL formed
in response to the acquired charge because of chemically

reactive surface of the particle. This double layer has two parts.
The first which form in the vicinity of the particle surface
contains mobile cations and so-called as the stern layer. The
second part is called diffuse layer that contains both cations
and anions. It is worth pointing out that the surface charge
on the solid–liquid interface could generate surface current
density that is defined as [39]:

J 
 = K 
 E , (14)

where J 
 denotes the surface current density (in A/m) and
E is the applied tangential electric field which is equal to
E = (−E sin �) e� where E represents the strength of the
applied external electric field. Here, we should note that the
J 
 is the surface current density through e� which illustrated
at Fig. 7. K 
 is the conductivity of the surface and in this
contribution we defined it as

K 
 = M 
, (15)

where 
 and M denote the surface charge density (in C/m2)
and the ionic mobility which is defined as M = UHS/E
(in m2/sV), respectively. Considering the pH solutions and
particle sizes mentioned in Fig. 8, by employing Eqs. (14)
and (15), one can calculate the surface current density
(Fig. 9). Fig. 9 demonstrates that the surface current density
significantly depends on � when the solution has the acidity
of pH 6. However, it is shown that the particle size does not
have considerable influence on the J 
 for a prescribed so-
lution pH. In addition, Fig. 9 reveals the fact that for lower
solution pH, solution with pH 4, the surface current density
could be roughly considered as � independent parameter.

In order to provide a detailed insight into the effects of
the presence of the inhomogeneously charged particle in mi-
cro or nanotube, Fig. 10 shows the nondimensional averaged
results for K+ concentration (Fig. 10A), Cl− concentration
(Fig. 10B), H+ concentration (Fig. 10C), and the velocity of
the fluid flow (Fig. 10D) in the x-direction for both particle
sizes in two prescribed solution pH. It is worth noting that the
applied external electric field is Ep = 104 V/m. Several inter-
esting results have been found from the averaged properties
of the aqueous solution. Regarding the K+ concentration, it
is shown that the higher solution pH induces higher K+ con-
centration. The main reason in favor of this fact could simply
due to the higher surface charge density on the solid–liquid
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Figure 8. The nondimensional surface electric
potential (A) and charge density (B) for particles
with � = 0.2 and 0.48 when the background so-
lution has two acidity pH 4 and 6 as a function of
� (the degree of surface points on the particle as
shown in (A)). The �0 denotes the reference zeta
potential that is obtained based on the reservoir
solution properties. So, for pH 4, �0 = −1.6 ×
10−2 V and pH 6, �0 = −7 × 10−2 V. In addi-
tion, 
0 denotes the reference surface charge
density similar to reference zeta potential ob-
tained based on the reservoir solution proper-
ties. The reference zeta potential for pH 4 and
6 are 
0 = −8 × 10−4 C/m2 and 
0 = −4 ×
10−3 C/m2, respectively. All mentioned scenar-
ios are solved when Ep = 104 V/m.

interfaces, which attract more counterions to retain the elec-
troneutrality. The presence of the particle and its radius has
significant impact on the increment of the K+ concentra-
tion at the particle region specifically for higher solution pH
(Fig. 10A). On the other hand, the concentration distribution
of the co-ions (Fig. 10B) would be in contrast to what men-
tioned for counterion (Fig. 10A). Modeling results showed
that by increasing the solution pH and for higher a/b, the

averaged concentration of Cl− around the particle could be
decreased up to 0.2 times of the bulk concentration.

Since the aim of this work is to study the electroosmo-
sis around a particle that is charged due to the chemically
reactive surface, the concentration of the H+ has a key role.
The nondimensional average of the H+ concentration along
the tube shows (Fig. 10C) that the presence of a negatively
charged particle in a tube induces lower pH solution at the
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Figure 9. The surface current density for
four different scenarios of particle size
and solution pH on the particle surface.

particle region. However, this decrease of pH strongly de-
pends on the bulk solution pH and the particle size. For
instance, as Fig. 10C shows, for higher bulk pH solution,
the concentration of H+ at the particle region increases up
to seven times of the bulk H+ concentration. In addition,
by increasing the particle size for a prescribed bulk solution
pH, the averaged concentration of the H+ also increased. An
interesting phenomenon revealed that for bulk solution with
pH 4, when we increase the particle size, two depleted re-
gions of H+ in front and rear of the particle are formed. In
other word, the particle induces two regions of the higher pH
solution in front and rear of it. To explain this phenomenon,
we have to address again the surface charge distribution on
the particle surface (Fig. 8B). It is indicated that for � =
0° and 180° the particle has the minimum surface charge
density. As we know, the less surface charge density will at-
tract fewer counterions to the EDL. Moreover, as it is shown,
the pH decreases in same applied external electric field and
particle size just happened for when the solution has pH 4,
which has the lowest surface charge compared with higher
solution pH.

Considering the electroosmotic velocity along the tube,
Fig. 10D indicates nearly constant averaged x-direction ve-
locity along the tube in front of the particle. However, it is
shown that the presence of the particle speeds up the velocity
when the fluid flow reaches the up and down part of the par-
ticle. By increasing the particle size, this velocity increment
would be enhanced as predicted for a/b = 0.48. Furthermore,
for the same bulk solution pH, the electroosmotic velocity

outside of the particle region has smaller amounts for a parti-
cle with bigger radius. However, in the particle region, as
Fig. 10D shows, the velocity for big particle accelerates
enough to reach the velocity predicted for the small particle.

In order to study the effects of the particle on the pH
distribution around itself, we need to look insight into it with
more quantitative data. To this aim, the nondimensional H+

concentration distribution for a cross-section of tube from
a x/H near to the particle to x/H = 2.5 is presented by
Fig. 11. The data showed that by getting closer to the par-
ticle in the x-direction, a negative pH gradient (�pHx � 0)
along the tube induces due to the presence of the particle. It
should be pointed out that far from the particle, there would
not be any pH gradient. On the other hand, for the y-direction,
the particle induces negative pH gradient (�pHy � 0) for the
region near to it. This pH gradient behavior implies the fact
that the particle resembles as a sink for solution pH.

3.3 Streaming current and potential

for particle-fluid-tube configuration

3.3.1 Streaming current for simple nanotube capillary

In the last section, we presented the surface current density
on the particle that is a result of the surface charge den-
sity obtained by our direct simulation. In 1998, Lyklema and
Minor [39] showed that the anomalous behavior of the zeta
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Figure 10. The nondimensional averaged amounts of K+, C1−, H+, and U on the microchannel cross-section.

potential obtained by the conventional definition for stream-
ing potential

Estr = εrε0�� P

�K L
, (16)

which sometimes radius-dependent and sometimes not,
could be explained by defining a new dimensionless param-
eter, so-called Dukhin number, as

Du ≡ K 


aK L
, (17)

where K 
 was defined previously by Eq. (15) and K L, the
bulk conductivity, could be obtained as K L = e n0 M in
C/Vms. Based on this definition, they proposed a relation for

streaming potential in a cylindrical capillary tube of radius a
as [8]

Estr = εrε0�� P

�K L (1 + 2Du)
. (18)

By employing the streaming potential (Eq. (18)), one can
obtain the streaming current as follows:

Istr = Estr AK L

L
, (19)

where A and L denote the cross-section area and length of
the capillary tube, respectively.

To compare our direct simulation prediction for stream-
ing current with what proposed by Eq. (19), we solved the
streaming current by employing present work framework
for different capillary tube radius. The pressure gradient for
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Figure 11. The H+ concentration distribution along the mi-
crochannel cross-section from a region near to the particle to
the half of the channel length. The last concentration distribution
illustrates the hydronium concentration when x/H = 0.5. The de-
creasing solution pH has been shown by �pH < 0 in the x and y
direction.

all scenarios kept unchanged and the solid–liquid interfaces
were acquired charge based on the local solution properties.
Fig. 12 demonstrates that our direct simulation results and
what predicted by Eq. (19) have good agreement. It is found
that for a nanotube capillary, by increasing the nanotube
radius, the streaming current would be increased even if the
surface and bulk conductivities are remained nonchanged.

3.3.2 Streaming current for particle-fluid-tube system

In this section, we consider the same scenarios mentioned
at Section 3.1 in which the fluid flow generated by applied

external pressure gradient instead of the external electric
field. As a result, the ion transport could be generally due to
the convection, diffusion, and electromigration. However, the
EDLs still formed in the vicinity of the particle and tube walls
since the surfaces are chemically reactive and may possess
negative charges. By solving the governing equations men-
tioned before, Fig. 13 shows the overall zeta potential and
surface charge density predicted by the METL model cou-
pled with the PNP + NS. One interesting point, it is found
that both the zeta potential and surface charge density are
not changed when the particle size changes. However, by
increasing the KCl concentration, the overall absolute zeta
potential decreases while the absolute surface charge density
increases. This behavior of zeta potential and surface charge
density is expected based on the previous experimental and
theoretical studies [26].

In experimental measurements, the main important
measurable parameter to identify the intrinsic solid–liquid
interface electric potential is streaming potential. Therefore,
making a meticulous relation between measured streaming
potential and surface electric potential would be of great im-
portance. In the last section, we presented a relation that
reveals the dependence of streaming potential not only to
the bulk electric conductance but also the Dukhin number.
Based on this relation (Eq. (18)), by increasing the nanotube
capillary radius, the streaming or current potential should be
increased and decreased for smaller nanotube radius. How-
ever, for the particle fluid tube system, this behavior of the
streaming potential could not be available when the particle
size is changed instead of the tube radius. Fig. 14 shows the
fact that the streaming current predicted by our direct simu-
lation would have higher amounts by decreasing the particle
radius. To explain this particle fluid tube behavior, we revisit
the assumption that the conductivity of the system should be
considered as [8]

Istr

Estr
= AK L + SK 
, (20)

H (m)

I st
r
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A
)
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Figure 12. The streaming current predicted by our
direct simulation compared with what predicted by
Eq. (19) as a function of nanotube height.
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Figure 13. The overall zeta potential,
� (V), and surface charge density, 


(C/m2) the microchannel particle sys-
tem as a function of bulk solution
ion concentration in which the fluid
flow generated by the applied exter-
nal pressure gradient. The solution
has pH 4 and Ep = 104 V/m.
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Figure 14. The streaming current as a
function of bulk solution ion concentra-
tion. The results for streaming current
from the direct simulation have been
compared with what predicted by pro-
posed equation for streaming current
(Eq. (26)). The solution has pH 4 and
Ep = 104 V/m.

where A and S denote the tube cross-section and circum-
ference, respectively. By using the definition of streaming
potential (Eq. (9)) one can propose the streaming current as

Istr =
∫

�e (y) u (y) d A . (21)

If the simple pressure-driven velocity in a tube introduced
to Eq. (21) and employing the Poisson equation for internal
electric potential field, based on the particle-tube symmetry,
one can find out the streaming current as

Istr = ε0εr A�� P

�L
. (22)

By introducing Eqs. (20) to (22), the Istr would be elimi-
nated and, eventually, we have a general relation for stream-

ing potential, zeta potential, bulk conductivity, and surface
conductivity as

Estr = ε0εr�� P

�
(
K L + S

A K 

) . (23)

For the particle fluid tube system, we present the effective
cross-section and circumference as

Aeff = �b2 − �a2,

Seff = 2�b + 2�a. (24)
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Introducing the effective cross-section area and circum-
ference to Eq. (23), we have the relation for streaming poten-
tial for particle-tube configuration as

Estr = ε0εr�� P

�
(
K L + 2

b−a K 

) (25)

whereas the streaming current would be

Istr = ε0εr�� P

�
(
K L + 2

b−a K 

)
((

�b2 − �a2
)

K L

L − 2a

)
. (26)

Fig. 14 demonstrates the predicted streaming current by
our direct simulation and Eq. (26). It is shown that for higher
KCl concentrations, the presented streaming current rela-
tion (Eq. (26)) could predict more accurate results. However,
still, for lower KCl concentration that the EDLs may inter-
act strongly, the streaming current equation could predict
streaming current with acceptable deviation compared with
direct simulation results. It is worth mentioning that in Eqs.
(23) and (26), the � and K 
 are substituted with the overall
amounts presented in Fig. 13.

4 Concluding remarks

The electroosmosis around a spherical particle immersed into
a micro or nanotube that is filled with aqueous solution is in-
vestigated. The tube and spherical particle surfaces are con-
sidered to be chemically reactive and acquire electric charges
due to the chemical interaction with the electrolyte solution.
The following interesting points would be the results of the
particlefluid tube configuration:

(i) The surface charge density and zeta potential depend
on the tangential positions on the particle surface. This
dependency became more significant for solutions with
a higher pH. On other hand, the particle size had sig-
nificant effects when the solution pH decreased.

(ii) As an excess quantity, the surface current density on
the particle surface had a sinusoidal behavior and for
higher solution pH, it would be significantly depend
on the tangential position.

(iii) Considering the pH distribution around the spherical
particle, by moving through y-direction to the middle
of the microchannel, the pH decreased. Further ap-
proaching to the particle in the x-direction imposed
lower pH amounts. This pH distribution resembled a
pH sink at the middle of the tube due to the presence
of a negatively charged particle.

(iv) By utilizing the proposed numerical framework for
pressure-driven flow case, the streaming potential for
a system of particle fluid tube had reverse relation with
the particle size. This finding is in contrast to what pro-
posed for the direct relation of streaming potential with
the tube radius. This implies that the streaming poten-
tial in a micro or nanochannel could be changed by the
particle size even if the surface charge and zeta poten-
tial on the solid–liquid surfaces would not be changed.

To elucidate the main reason in favor of this fact, we
presented a new simple relation between streaming
potential, zeta potential, bulk, and surface conductiv-
ity. In this relation, the streaming potential decreases
with the increasing particle size.
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