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Surface charge at solid-electrolyte interface is generally coupled with the local electrolyte properties
(ionic concentration, pH, etc.), and therefore not as assumed homogeneous on the solid surfaces in the
previous studies. The inhomogeneous charge brings huge challenges in predictions of electro-osmotic
transport and has never been well studied. In this work, we first propose a classification of electro-
osmosis based on a dimensionless number which is the ratio of the Debye length to the characteristic
pore size. In the limit of thin electrical double layer, we establish a pore-scale numerical model for inho-
mogeneously charged electro-osmosis including four ions: Na*,ClI",H" and OH . Based on reconstructed
porous media, we simulate the electro-osmosis with inhomogeneous charge using lattice Boltzmann
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method. The nonlinear response of electro-osmotic velocity to applied electrical field and the reverse flow
have been observed and analyzed.

Thin electrical double layer model

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Electro-osmosis in porous media has been studied for over
200 years due to its important applications in soil, petroleum and
chemical engineering [1,2] since it was first observed in 1809 by
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Reuss [3]. For examples, as a non-mechanical pumping technique,
electro-osmosis is widely used in sludge dewatering (e.g., [4]),
capillary chromatography (e.g., [5,6]), membrane filtration (e.g.,
[7]), electrokinetic remediation (e.g., [8,9]) and microfluidic
devices (e.g, [10,11]). Recent developments in nanotechnology
also raise interest to explore more possibilities in making use of
electro-osmosis and other related electrokinetic phenomena for
energy conversion (e.g., [12,13]), desalination (e.g., [14]) or
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biological use (e.g., [15]). Besides, from the thermodynamic point
view, the electro-osmotic permeability is closely related to the
electrical conductivity, hydraulic permeability and streaming
current coupling coefficient, which are important properties in
geophysical exploration (e.g., [16-19]).

Up to date, the most commonly used relation for electro-
osmosis in porous media is the Helmholtz-Smoluchowski (HS)
equation, which is introduced by Smoluchowski in 1905 [20].
Generally, the applicability of HS equation is constrained by three
main assumptions. Firstly, the characteristic length of the electrical
double layer (EDL) is much smaller than the pore size, namely, the
thin double layer assumption. Secondly, the surface conductance,
or the double layer conductance has little contribution to the total
ionic conductance. Since the surface conductance increases with
absolute value of zeta potential | { | and bulk concentration, this
poses an upper limit on | { | [21] and bulk concentration. Thirdly,
the solid/liquid interface is homogeneously charged, which is often
implicitly employed by introducing a constant surface potential or
surface charge density. Although numerous work has been done to
lift the limitation of the original HS equation, just to name a few of
them, Overbeek and Wijga [22], Burgreen and Nakache [23], Rice
and Whitehead [24], Levine et al. [25], O'Brien [21], a general
framework is still lacking and challenging, especially when the thin
double layer assumption fails.

The thickness of electrical double layer relative to the pore size
plays a key role in determining the property of electro-osmosis.
Most of the useful results are derived for thin double layer limit,
such as the HS equation. Other than this, when the thickness of
EDL is comparable, or even larger than the pore size, namely, in
the thick double layer limit, the diffuse layer potential distribution
can be seen as uniform across the pore space. By averaging over the
cross-section (for nanochannel) (e.g., [26]) or volume averaging
(for porous media) (e.g., [27]), the 3D problem reduces to 1D. This
thick double layer model is often referred as Donnan model owing
to the fact that Donnan equilibrium is assumed at the inlet and
outlet. Although the validity of these approximated models (thin
double layer model and thick double layer model) have been justi-
fied by various theoretical and experimental study (e.g. [28]), there
has not been any general criteria to systematically clarify the scope
of these approximations. In an analogy to classification for fluid
mechanics based on the Knudsen number, we propose a general
classification for electro-osmosis for the first time based on
the ratio of Debye length to characteristic physical size, which
can be used as a guideline for simplifying physical model for
electro-osmosis.

In most previous work, it is common to assume, in priori, homo-
geneous charge, i.e.,, constant surface charge density or surface
potential, on the solid-liquid interface (e.g., [29,30]). Nevertheless,
since the charging process is closely related to chemical equilib-
rium between surface and local bulk solution, the amount of sur-
face charge is dependent on the property of local bulk solution,
such as concentration and pH. Consequently, the homogeneous
charge assumption may fail if the property of electrolyte solution
is not homogeneous in the pore space. This will lead to the case
of inhomogeneously charged electro-osmosis.

In terms of micro- and nanofluidics, inhomogeneously charged
electro-osmosis has been studied for purpose of active control of
flow pattern (e.g., [31-33]). In membrane science, previous results
show that the inhomogeneity in charge density can have signifi-
cant influence on current efficiency (e.g., [34]). What's more, study
on electrokinetic remediation and soil consolidation in civil engi-
neering have recognized the effect of inhomogeneous charge
because of the gradient of pH for a long time (e.g., [35,36]). Some
macroscopic models have been proposed by including the
geochemical reactions (e.g., [37,38]). Lemaire et al. [39] and
de Lima et al. [40-42] coupled surface protonation/deprotonation

reactions to microscopic transport model and employed homoge-
nization method to provide the effective parameters for macro-
scopic model. However, they only solve the closure problem for
2D straight channel. Recent work by Zhang and Wang [43] modify
the space charge model to include the effects of heterogeneous
charge along the nanochannel to study reverse electrodialysis. In
summary, to the authors’ knowledge, the effects of inhomogeneous
charge on electro-osmotic flow in complex porous structures have
not been well studied.

The challenges of inhomogeneously charged electro-osmosis lie
in the coupling of surface charge boundary and local transport
property and complex geometry of porous media. Based on the
classification for electro-osmosis, we attempt to simplify the
model and provide a strategy to determine local transport property
for inhomogeneously charged electro-osmosis in porous media,
which will be described in detail in Section 2.

In terms of structure of porous media, simplified models of por-
ous structures, such as capillary tube model (e.g., [22,44]) and cell
model (e.g., [45-47]) have been used to obtain analytical or semi-
analytical solution for electro-osmotic permeability. Although
recent development of imaging techniques such as micro-CT
scanning, provides us the opportunity to recover the realistic micro
structure of porous media [48], its use is still limited by high cost.
As a cheaper and more flexible alternative, numerical reconstruc-
tion methods reproduce microporous structures by computer
algorithms [49-51]. Meanwhile, owing to the advent of super
computers, numerical simulation can handle with more complex
structures of porous media and provide a powerful tool to study
pore-scale transport process in porous media such as electro-
osmosis (e.g. [29,52,30,53]). In these models, the detailed informa-
tion in the pore space can be accurately captured and the transport
property can be evaluated by averaging over the sample. In this
work, we first reproduce random porous structures by random
generation growth method (RGG) [54] and solve for the pore-
scale distribution using lattice Boltzmann method [55].

This paper is organized as follows. Section 2 describes the clas-
sification criteria for electro-osmosis. Sections 3 and 4 present the
theoretical preparation and numerical model for inhomogeneously
charged electro-osmosis. Results and discussion are given in
Section 5. Section 6 concludes this work.

2. Classification of electro-osmosis

The challenge of inhomogeneously charged electro-osmosis
comes from the coupling of surface charge boundary and the
“local” fluid properties in transport, and the difficulties lie in the
following key questions. (i) Are the electrical double layers over-
lapped in the pores? The answer of this question determines the
availability of local electroneutrality and validity of the bulk prop-
erties to calculate the surface charge. (ii) Does the charge structure
within the electrical double layer play an important role to the
transport? If the answer is no, the solution may be significantly
simplified, for both non-overlapped or fully overlapped cases. (iii)
Is the conventional simple model still valid? Once there is any pos-
sibility for the conventional models still available, efforts for exten-
sion by modifications may be highly appreciated and recognized by
engineering applications. Since a general solution has so many
difficulties and has never been established for all cases effectively,
a classification of electro-osmosis in inhomogeneously charged
porous media is necessary to clarify the solubility.

Based on the analysis to the challenges, the answers to the
questions seem all dependent of the thickness of electrical double
layer (Lgp; ) locally compared with the characteristic pore size (L), as
shown in Fig. 1(a), where /p is the Debye length. To characterize
the thickness of EDL quantitatively, we define a non-dimensional
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(a) Lengths in physical model. L is the charac-
teristic length of pore. Lgpp is the thickness of
electrical double layer and Ap is the Debye length.
The blue line is the electrical potential profile and
0 is the non-dimensional excess electrical potential.
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(b) Ratio between EDL length and Debye length
Lgpr/Ap against dimensionless zeta potentials ¢* for
different types of electrolyte. The ratio is lower than
but close to 5 for all cases.

Fig. 1. Illustration of definition of different lengths (a) and ratio between EDL
length and Debye length (b).

excess electrical potential, 0 = % where  is the electrical poten-

tial and { is the zeta potential. Similar to the definition of boundary
layer thickness in fluid mechanics, the thickness of electrical dou-
ble layer is defined as the position where the excess electrical
potential is 0.99, i.e., 0 = 0.99. Thus the thickness of EDL can be
determined quantitatively. Fig. 1(b) shows that the ratio of thick-
ness of EDL relative to Debye length, Lgp, //p, is not a constant
but varies with zeta potential and type of solutions. In all cases,
the ratio is below but close to 5. Therefore, one can roughly esti-
mate Lgp; as five times of /p.

It is easy to associate this ratio of two size with another well-
known one, the Knudsen number Kn which is defined as ratio of
gas molecular mean free path to the characteristic geometric
length in gas transport. The Knudsen number helps to classify
gas flow into four regimes[56,57]: (i) the continuum regime at
Kn < 0.01 where the classical theories of fluid mechanics are avail-
able; (ii) the slip regime at 0.01 < Kn < 0.1 where the continuum
theories begin to break down but the modifications with slip
boundary conditions may work; (iii) the transition regime at
0.1 < Kn < 10 where the continuum assumption totally breaks
down and the transport behavior has to be captured by
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molecule-based and statistical methods; and (iv) the free-
molecular regime at Kn > 10 where the gas molecular collision is
rare at movement so that some simple analytical solution can be
established again.

Inspired by Kn, we propose here a dimensionless number,
M= TD to distinguish different regimes of electro-osmosis, where
Jp is the Debye length and L is the characteristic geometric length
(e.g., local or mean pore size). Here we use the Debye length
instead of the thickness of electrical double layer (Lgp;) because
the Debye length can be directly determined by the theoretical
formula (e.g., [2]). Based on M, the electro-osmotic flow can be
divided into four regimes as well:

o thin layer regime (M < 0.01),

e non-overlap layer regime (0.01 < M < 0.1),
e partially-overlap layer regime (0.1 <M < 1),
o fully-overlap layer regime (M > 1).

The profiles of electrical potential for three typical values of M
are shown in Fig. 2.

In the thin layer regime at M < 0.01, the thickness of EDL is
much smaller than the characteristic geometric length so that
the charge structure within EDL is negligible. Most pore region
remains electroneutral and bulk properties. The velocity profile
appears plug-like. In this regime, the classical Helmholtz-
Smoluchowski (HS) equation [58] is available to introduce a slip
velocity on wall surfaces dependent on the local charge and solu-
tion properties by:

€l
Uys I E, (1)
where pu is the dynamic viscosity and € is the permittivity of elec-
trolyte solution, { is the local zeta potential of surface, and E is
the local electrical strength.

In the non-overlap regime at 0.01 < M < 0.1, the thickness of
EDL is still smaller than the characteristic geometric length. How-
ever the charge distribution structure within EDL is not negligible
and has to be fully solved. The consequent velocity profile may
change from plug-like to parabolic-like. Since still no overlap of
EDLs in this regime, the local bulk property of fluid can be taken
at the middle of the pore. In this regime, the conventional simple
models, such the HS model for slip velocity on surfaces, are not
valid rigorously; however as M is not so large, modifications to
the macroscopic models are still available for rough estimation at
an acceptable accuracy. This strategy is similar to the slip modifi-
cation to the continuum model for gas flow at 0.01 < Kn < 0.1.
Here we introduce a dimensionless correction factor @ to modify
the thin double layer model. ® is defined as the ratio of cross-
section averaged velocity, uq,, to the Helmholtz-Smoluchowski
velocity, uys, i.e. © = Ll‘fg In this non-overlap regime, the electrical
potential in the middle remains zero so that the analytical solution
for velocity field can be obtained. With some approximations for
the integral, we propose a relationship of @ at the analytical form
for a 1:1 type electrolyte by

P =0 ilgp =5L

L *lL
, VEDL = 50

ey

~

(a) M =0.01

(c) M=1

Fig. 2. Classification of electro-osmosis based on M = 2. Blue lines represent profiles of electrical potential. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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Fig. 3. Correction factor for dimensionless Debye length € [0.01,0.1] with different dimensionless zeta potentials. Symbols denote the approximate results using Eq. (2),

while lines denote accurate results by numerical modeling.

_osM, (¢
O=1- = tanh (Z)’ (2)

where (" is the dimensionless zeta potential normalized by "BTT For
|*] < 1,6 can be further simplified to 1 — 2M. For |{*| > 8,0 can
be approximated by 1 —M Detailed derivation can be found in
Appendix A. Fig. 3 shows the predicted averaged velocity across a
2D straight channel by the modified HS model, Eq. (2), compared
with the accurate results by numerical modeling. It is not surprising
to find the deviations increase with the dimensionless Debye length
and zeta potential, but the acceptable agreement at a large range of
{* and Ap/L proves the good performance of our correction factor
formula.

In the partially-overlapped regime at 0.1 < M < 1, the interac-
tion between EDLs occurs and there is no electroneutral region in
the whole pore. The charge structure and flow velocity have to
be fully solved by numerical methods and no simple analytical
solution is available for this situation.

In the fully-overlap regime at M > 1, the thickness of EDL is
much larger than the geometric length and the EDLs are fully over-
lapped. In this case, since the electrical potential in the pore space
is similar to zeta potential, the whole region can be treated as
equipotential. The local bulk property in this case has to be deter-
mined by external conditions. Again some simple models can be
established for predictions. For example, in the pore-network
model [53], the property in the throat/channel can be determined
by the connected pores or reservoirs.

Compared with the few previous studies, as shown by Jackson
and Leinov [28], for study of streaming potential using capillary
model, the thin double layer model is valid for M < 0.0025
(M < 0.01 in this work) and the thick double layer assumption is
valid for M > 3 (M > 1 in this work). This good agreement reflects
the intimate relation between electro-osmosis and streaming
potential.

The classification based on M makes the very complicated prob-
lem into several solvable pieces. In this study as the first step, we
focus on the thin layer regime at M < 0.01. We will build up a the-
oretical and numerical framework to predict electro-osmotic flow
behavior in inhomogeneously charged porous media when the
classical HS model is still valid. Actually the significance of classi-
fication based on M is far beyond just providing a strategy to inves-
tigate inhomogeneously charged electro-osmosis. On the one hand,
previous models and results can be categorized according to the
value of M, which will be convenient for use. On the other hand,
for a new problem, M can be first estimated to obtain a simplified
problem. In this way, M serves as a guideline for future research.

3. Mathematical models
3.1. Fluid flow
For electro-osmotic flow of aqueous electrolyte solution in

microporous media, the flow is generally laminar and incompress-
ible (e.g., [2,30]). The governing equations for fluid flow are,

V.u=0, 3)
0—u+u-Vu:f@+vV2u+E, (4)
ot p p

where u is the fluid velocity in pores, v the kinematic viscosity, p the
pressure, p the density and Fr a body force induced by the external
electrical field. For the slipping model with M < 0.01 concerned in
this work, the electrical body force reduced to the slip velocity on
the surface, which is determined by the HS equation as shown in
Eq. (1).

3.2. Surface charge distribution

Rather than employing a given zeta potential at liquid-solid
interfaces, such as in Wang and Chen [30], we determine zeta
potential at the interface by introducing surface complexation
model. Following de Lima et al. [40-42], we use a 1-pK model
instead of more complicated models, such as the triple layer model
(e.g., [27,19]), for simplicity as the first step in this work, which
considers a single protonation/deprotonation chemical reaction,

(> Me — OH) "2 + H" & (> Me — OH,)"'/2, (5)

where Me represents a metallic ion lying in the tetrahedral (Si**) or
octahedral (Al*3) layers of clay particle.

Dynamic equilibrium of surface complexation reaction leads to
the correlation between surface charge density ¢ and zeta poten-
tial ¢ [42],

_ Flusx <1<cl;,+ exp (— &) - 1) ©)
2 \KC,exp(—E)+1)

where

Y _ 4172
K — {(>Me—0H,)*"12} 7)

b F\’
’y{(>Me—OH)"/2}CH+ exp ()

Fuax = V{(>Me-on)172} + V{(>Me-oHp)*12} > 8)

denote the equilibrium constant for complexation reaction and the
maximum surface density, respectively. 7y {(>Me OHy)112} and
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surface density of the complex

V{>Meony12)  are the

(> Me — OH,)""/* and (> Me — OH) /2, respectively. C3,, is the local

bulk concentration of hydrogen ion. F is the Faraday constant, R the

gas constant and T the temperature, which is 298 K in this work.
Meanwhile, the Grahame equation gives

= \/8€RTC, sinh <2RT> 9)

where C, denotes the local bulk concentration of electrolyte
solution. By solving Egs. (6) and (9) simultaneously, one obtains
the values of { and o.

Further, de Lima et al. [42] derived an analytical formulation of {
as a function of C, and pH using perturbed analysis

hC;
,{lnh+ln < 1 hbq)}

(ch )

where pK, defined as log,,K, is the isoelectric point.

In this paper, we use pK = 5.5 and I'yax = 3 sites/nm?, which is
reported by de Lima et al. [40] to best fit the titration curve of
Kaolinite. Once determined by experiments, other pairs of pK and
I'vax can be used. To further reduce the cost for computing local
zeta potential, the analytical solution by Eq. (10) will be imple-
mented in the algorithm other than the numerical solution to
Eqgs. (6) and (9). This simplification is judged by the good agree-
ment between analytical solution and numerical solution shown
in Fig. 4(a) and (b). Moreover, note that zeta potential is strongly
dependent on pH while weakly dependent on concentration in pre-
sent surface complexation model. Therefore, we will mainly focus
on the effects of pH in the results part while put the effects of con-
centration aside. The readers, however, should be aware that this is
not a general, but a model-dependent result.

with h = — 1QPH-PK, — V8eRT /FI“M%

(10)

3.3. Ionic concentration distribution

The NaCl aqueous solution considered in this work contains
four kinds of major ions: Na*, CI-, H* and OH™. As shown in

Section 3.2, the hydrogen ions and the hydroxyl ions are
potential-determining ions and the zeta potential is strongly
dependent on pH. The mass conservation of Na*,Cl",H" and OH"~
can be written as

aC;

o tVJi=R, (1)
with mass flux
_’,— = uC,~ — D,‘VC,‘ — Z,‘b,‘CiVI// (12)

where i = Na*,Cl",H* or OH". The right-hand-side terms in Eq. (12)
represent mass transfer by convection, diffusion and electromigra-
tion, respectively. The only homogeneous reaction in this system
is water ionization. R; represents the amount of ions produced by
water ionization,

H,0 « H" + OH". (13)

By assuming instantaneous equilibrium of water ionization, it
leads to Cy x Con- = K,, where K,, = 107"* mol*/L? is the ionic
product of water at 298 K [59]. The transport equation can be
solved in an operator-splitting manner [60]. Firstly, Eq. (11) is
solved by setting right-hand-side term to be 0. Next, Cy+ and
Coy- are updated according to Cy+ x Coy- = Ky. Similarly,

0.2

01rf

= Analytical
O Numerical

CV)

pH

(a) zeta potential for different pH with C, =
1 x 10~3 mol/L

-0.08

-0.085

cv)

-0.09F ]
—— Analytical
O Numerical

-0.095

-0.1 " .
107° 107 1073 1072
C, (mollL)

(b) zeta potential for different concentrations
with pH =7

Fig. 4. Prediction of zeta potentials for different pH and ionic concentrations using
1-pK model [41,42] with pK = 5.5. Solid line denotes the analytical solution of Eq.
(10), while circle symbols denote the numerical solution of Eqs. (6) and (9).

convection-diffusion-migration equation Eq. (11) is solved for the
concentration of Na* with Ry,- = 0 and the concentration of CI~
is obtained by electroneutrality.

3.4. Electrical potential field

By ignoring the magnetic effects, one can obtain the distribution
of electrical potential by the Gauss’s law [2],

V- (€E) = p,. (14)

with E = —Vy. Owing to the electroneutrality condition outside
EDLs in the thin layer regime concerned in this work, it leads to
the Poisson equation for electrical potential,

V2 =0, (15)

where the permittivity of the electrolyte solution € is assumed to be
a constant. For common mineral-electrolyte interface with a large
dielectric contrast, the boundary condition at the interface for v is
a Neumann-type boundary [61],

Vy -n=0, (16)

where n is the normal vector at the interface.
3.5. Solution strategy

The governing equations with definite conditions in Sections
3.1-3.4 can be solved as follows, no matter what numerical
method is used. First, the electrical potential governed by
Eq. (15) is decoupled from the ionic distribution due to
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electroneutrality and can be determined independently. Egs. (3)
and (4) for fluid flow and Eq. (11) for ion concentration are coupled
together. On the one hand, ionic transport is dependent on velocity
field via electro-osmotic convection. On the other hand, since the
zeta potential is affected by local ion distribution, the induced slip
velocity and thus the electro-osmotic flow is influenced by ion
transport. Consequently, we solve these two equations in an
iterative way. The flow scheme of the model is as follows,

1. After initialization, solve Poisson equation, Eq. (15), for electri-
cal potential first.

2. Solve the mass conservation equation of ions, Eq. (11), for
ionic concentration Cy,+,Cy+ and Coy-. Determine Cg- by
electroneutrality.

3. Based on the distribution of ions, calculate the local zeta poten-
tial at the surface using the 1-pK surface complexation model.

4. Solve the governing equations for fluid flow, Eqs. (3) and (4), for
the velocity field with the slip velocity determined by step 3.

5. Go back to step 2 and continue the loop until convergence.
(criteria for convergence: the relative error of permeability
smaller than 1%).

In fact, for cases with moderate applied electrical strength, the
electromigration dominates the process of ion transport. Therefore,
the calculation reaches convergence quickly within finite iteration
steps.

4. Numerical framework

This section presents the numerical framework, which consists
of a reconstruction method for microstructure of porous media and
the numerical method for solving the governing equations.

4.1. Reconstruction of porous media

In essence, the complexity of porous media comes from its
irregular and random structure, and thus it plays a critical role to
obtain the morphological information of the porous media. Thanks
to the progress in imaging techniques, it has been made possible to
extract the microscopic 3D structure of porous media such as rock
samples. The resolution can reach as high as a few hundreds of
nanometers with micro-CT scanning [48]. The extracted image by
CT scanning needs to be filtered to provide the required binary
image (i.e., solid and void) for further transport simulation. The
main limitations of this procedure are two-fold. On the one hand,
the high-resolution imaging techniques like micro-CT are still
high-cost and time-consuming. This makes it difficult to access
by academic research, especially for study on large amount of sam-
ples for comparison or to eliminate the randomness. On the other
hand, the quality of final image depends on the chosen threshold
values in the filtering process, which is somewhat artificial.

Apart from the imaging-based approach, another strategy is to
obtain the 3D structure by computer algorithms. This algorithm-
based approach provides a low-cost and convenient way to study
the relation between structure and property of porous media.
Various methods have been proposed. Generally, these methods
can be divided into two main categories: genesis imitation method
and statistical reconstruction method. The first type of the meth-
ods, genesis imitation method, consists in explicit simulation of
forming processes of porous media, for example, sedimentation
or cluster growth. Among the sedimentation-type method, most
of them borrow ideas from packing problems to reproduce uncon-
solidated media [62,63]. More complicated methods, for example,
the one proposed by Bakke and @ren [64] includes three
reconstruction steps representing deposition, compaction and

consolidation respectively. Despite that these methods are physi-
cally appealing, their use is mostly limited to packings of
regularly-shaped particles and their success highly relies on the
understanding of the physical processes [65].

Another type of genesis imitation method is the random gener-
ation growth method (RGG) proposed by Wang et al. [54]. Inspired
by cluster growth theory, RGG method is designed to reproduce
structure assembles of elements with random sizes, locations and
orientations, and connections, each of which grows from a
randomly distributed seeds and the growth is guided by a few
given probabilistic growth rates [51]. Different types of porous
structures, i.e., fibrous, granular and network, can be reconstructed
by RGG [54,66,67|. Compared with the statistical reconstruction
method below, RGG is a more comprehensive method with physi-
cally clear and interpretable morphological parameters (statistical
information) as input.

Based on the statistical perspective, the statistical reconstruc-
tion methods generate random fields to resemble the stochastic
feature of natural porous media under the constraint of low-
order statistical information obtained by experiment. Among them
are simulated annealing method (SA) (e.g., [68,69]) and
thresholded Gaussian field method (TGF) (e.g., [70,71]). These
two methods differ from each other in the low-order statistical
information they use. Typically, two-point probability function
and lineal-path function are adopted in SA [72,68] while void-
phase autocorrelation function [71] and size distribution spectrum
|73] are used in TGF.

In this work, we employ RGG method for saturated granular
media, also termed as Quartet Structure Generation Set (QSGS),
to reconstruct 3D microstructures of porous media, which resem-
ble the real structure in nature like soil or clay. Fig. 5 shows the
slices of generated 3D structures of granular porous media for
different porosities. Other parameters such as granular size and
anisotropy also can be tuned. The black parts and the white parts
represent the solid phase and void space occupied by liquid respec-
tively and the gray layers in between represent the solid-liquid
boundary. Note that the original algorithm in Wang et al. [54]
may generate some isolated granules and non-percolating chan-
nels, which have no contributions for ionic transport and make
the solver unstable. These regions have been removed by a post-
processing algorithm following the idea in Adler [74]. Therefore,
the porosity in this work all refers to the effective porosity.

4.2. Lattice Boltzmann methods

Lattice Boltzmann method is a promising numerical method for
simulating fluid flow and modeling multi-physical transports in
fluid [55,75]. Originally proposed to make the Navier-Stokes equa-
tion solved, LBM has been extended to solve other types of partial
differential equations like the convection-diffusion equation and

(b) porosity=0.7

Fig. 5. Slices of 3D generated structures of granular porous media with a 60 x 60
mesh for different porosities.
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the Poisson equation. There have been several successful attempts
using LBM to simulate electrokinetic flow in microchannel (e.g.,
[76-78]) and porous media (e.g., [52,30]). Coupled lattice Boltzmann
framework, proposed by Wang and Kang [79] and modified by
Yoshida et al. [80], Zhang and Wang [43], has been applied to solve
PNP model while Hlushkou et al. developed a hybrid framework
with LBM for velocity field and finite difference [76] or random
walk method [52] for transport. In this paper, we follow the mod-
ified coupled lattice Boltzmann framework to solve all the govern-
ing equations using LBM [80,43]. Present model differs from
previous ones in that the slipping model is employed, other than
PB model [30] or PNP model [79,80,43]. Therefore, the constraint
of grid size from resolution of diffuse layer can be removed, which
allows us to simulate a large system around centimeter with pore
size of millimeter. In the following of this section we first give a
brief introduction of the evolution equations for governing
equations, then present some details about the implementation
of slip velocity in LBM. Readers interested in the aspects of choice
of parameters and implementation of other boundary conditions
can refer to Wang and Kang [79], Zhang and Wang [81] and refer-
ences therein.

4.2.1. Evolution equations

Generally, under the assumption of thin layers, i.e., the slipping
model, we have to solve Egs. (3) and (4) for velocity u, Eq. (11) for
C;i (i =Na*,H", OH ) and Eq. (15) for the local electrical potential, v.
The corresponding lattice evolution equations for u,C; and v are

fa(r+ Cfétfe%t+ 5tf) 7fa<(rv t) = 7% [ a(rv t) 7f§cq(r7 t)}v

o=0-18, (17)
. 1
gi.oc (r + Cgi()tged» t+ &g) - gi.a(r’ t) = - T_g [ i.zx(rﬂ t) - gff;(r’ t)] 5
%=0-6, (18)
hy(r + chotye,, t + oty) — hy(r,t) = —Tl [hy(r,t) — h(r,b)],
h
%x=0-6, (19)

where f,, g;, and h, represent the distribution functions for density,
concentration of ith ion and electrical potential, respectively, which
are functions of position vector r, time t and discrete unit direction
vector e,. [cf, Tf, otf], [Cg,, Tg;, Otg,] and [cy, Ty, otp] are the correspond-
ing dimensional lattice speed, dimensionless relaxation time and
dimensional time step for each evolution equation. Note that we
employ a D3Q19 model to solve the velocity field for higher accu-
racy with convection term, while use a D3Q7 model for both con-
centration and electrical potential fields for higher stability and
efficiency in because of absent convection terms in the correspond-
ing governing equations. The dimensional lattice speeds ¢y, ¢, and
¢, are independent from each other, and thus can be tuned to
improve the efficiency and stability with the constraint that 7y, 7,
and 1, in the range of [0.5,2] [67].

For solving the velocity field, the density equilibrium distribu-
tion function f' takes the form

eq e, -u (ea-u)z_ﬁ
fa = @ap 1+3—Cf +9 2 2| (20)
with the discrete unit direction vectors
(0707 0)7 a = O
€, = (j:]~070)/(071170)7(0707i1)7 a=1-6 (21)
(£1,£1,0),(£1,0,£1),(0,£1,+£1), aa=7-18

and the distribution coefficients w, =1/3,0=0;w, =1/18, 0=
1-6;w, =1/36,00=7 —18.In D3Q19 model, 7y = %* 0.5 where
Oy is the grid size and v the kinematic viscosity of fluid.

For solving the ionic concentration and electrical potential field,

the equilibrium distribution functions are

§§:a¢ﬂ1+3%‘“;4“vw, (22)
8i
hy! =@,y (23)
with the discrete unit direction vectors
0,0,0), =0
e1 — { ( b b )‘ a (24)
(:t17070)>(Oai170)’(0707i1)a a=1-6

and the distribution coefficients @, =1/4,a=0;0,=1/8, 0=
1 - 6. In D3Q7 model, 7, = 2% where D; is the diffusivity of ith

T cgox
. . . 4
ion. For electrical potential, 7, = o

The macroscopic quantities can calculated as

18
p=> fu (23)
o=0

18
pu=>"ef, (26)
=0
6
G = Zgux’ (27)
=0
6
=3 hs (28)
o=0

4.2.2. Implementation of slip velocity

The main numerical issue for slipping model is to implement
the slip velocity on the boundary in LBM. The basic idea here fol-
lows the one proposed by Ladd [82] for dealing with moving
solid-fluid boundary conditions in particle suspension. Essentially,
Ladd’s method can be seen as a modified bounceback method
including a term accounting for the velocity on the boundary.

The unknown post-collision distribution function f of each link
can be determined as

fw - 6wy p

Cr

(e - up) (29)

where p is the local density and e, and e,denote the inward direc-
tion vector pointing to the liquid phase and outward direction vec-
tor pointing to the solid phase respectively. The boundary velocity,
u,, is determined by HS equation and in parallel with the local
boundary. As shown in Fig. 6, the liquid cell O in the corner is con-
nected with solid cell P and Q by face I'op and I'oq. The slip velocity
at the boundaries are denoted as u,, and u,,. However, if we per-
form Eq. (29) to compute the unknown distribution function for
o =5, there is a subtle issue to determine the boundary velocity
at point x5 since it is actually a singular point generated by the
stair-wise geometry. (Note that in particle suspension problem, u,
at x5 is determined by particle motion independent of the boundary
geometry, and thus there is no such singularity issue.) Another
problem of this link-based scheme is that it is not necessarily
mass-conservative. To overcome these problems, we propose a
face-based scheme, which is mass-conservative and more consis-
tent with the surface induced velocity in electro-osmosis.

We illustrate the procedure using a 2D case shown in Fig. 6 and
it can be applied to 3D case easily. First we choose a liquid cell on
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/

Fig. 6. Illustration for implementing face-based slip velocity boundary in LBM.
Liquid cell O is connected with solid cell P and Q by face I'op and I'gq. Slip velocities
upy and u,, determined by HS equation live on I'op and I'gq.

the boundary, i.e., O here. Then search around O in the main direc-
tion 1,2,3,4 to determine how many solid-liquid boundaries it
has. In this case, there are two denoted by I'op and I'gq. Next, for
each solid-liquid boundary, use Eq. (29) to obtain the unknown
distribution functions with the boundary related velocity u,. Take

T'oq as an example, fe is calculated as fg = fg — 6“6’;" upy and fa=fa

since e, is normal to the velocity u,,. Note that in this case, f5
should be updated twice for both I'pp and I'nq, and the contribu-
tions are added together.

5. Results and discussion

In this section, we present the simulation results of inhomoge-
neously charged electro-osmosis in 3D granular porous media.
Fig. 7 shows a typical porous structure used in simulation with
length L = 10 cm and a square cross-section. The system includes
Na™,H" OH™ and CI". At the inlet and outlet boundary, concentra-
tions of ions, pH, pressure and electrical potential are fixed, while
the lateral boundaries are periodic. Typically, the concentration of

Na* is fixed as 107> mol/L at both inlet and outlet. Physical param-
eters are given in Table 1. To meet the requirement for representa-
tive elementary volume (REV), we employ a mesh of 100 x 30 x 30
so that the ratio of number of grids on one side (i.e.,30 for y- or
z-axis and 100 for x-axis) over number of granules with the
characteristic size is generally larger than 10.

Table 1
Physical parameters in the simulation.
Physical meaning Symbol Value
Density of electrolyte solution P 999.9 Kg/m?
Kinematic viscosity of electrolyte solution v 0.89 x 10 ®Pas
Permittivity of electrolyte solution € 6.95 x 107 '°F/m
Diffusivity of H* Dy 9.3 x 1079 m?[s
Diffusivity of OH™ Don 5.3 x 1072 m?[s
Diffusivity of Na* Dyt 1.3 x 1072 m?[s
Diffusivity of CI~ D¢ 2.0 x 1079 m?/s

In this work, the electro-osmotic permeability in the main

direction (i.e., x-direction) is defined as
(Uux)

") 50
where (-) =1 [, dV means average over the total volume. Therefore,
it follows that (u,) represents the macroscopic electro-osmotic
velocity (electro-osmotic velocity for short) and (E,) is equal to
the macroscopic electrical field, —4% (see Appendix B), where Ay
is electrical potential difference between inlet and outlet. In the
following, we will drop the subscript x as we only talk about the
transport in the main direction.

5.1. Comparison with macroscopic model

Under the assumption of thin double layer and negligible
surface conductance, Overbeek [83]| has given a relation to
determine electro-osmotic permeability based on the ratio of to
the conductivity of the porous media to the electrolyte
conductivity,

e (K
()

where K and K; are the conductivity of the porous media and the
electrolyte conductivity, respectively. We give a derivation of Eq.
(31), see Appendix B. The ratio can be related to tortuosity and
porosity as [84]

K ¢

K =1 (32)

where 7 is the tortuosity. As a result, Eq. (31) can be written as
(¢

() >

Fig. 7. Schematic of 3D granular porous media generated by RGG method [54] for electro-osmotic simulation with black part representing solid and blue part representing
liquid. X-axis indicates the main direction of electro-osmotic flow. Concentration of ions, pH, pressure and electrical potentials are fixed at inlet and outlet.
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Fig. 8. Comparison of electro-osmotic permeability given by Overbeek’s model and
numerical simulation for homogeneously charged granular porous media with
pH = 8. Black symbols represent values calculated by Eq. (33) while red symbols
represent values obtained by our numerical method. Samples with 100 % 30 % 30
mesh are generated by RGG method for different porosities.

In order to evaluate tortuosity, Johnson et al. [85] gives an ana-
lytical approach using the solution of potential flow. Based on this,
Pride [61]" shows that tortuosity can be calculated as

2 _ (E)
T° = (E>p’ (34)

where (-) = Vip fvp dV is the average over the pore space or liquid

phase. V, means the volume of pore space.

In Fig. 8, we compare electro-osmotic permeability by Over-
beek’s model and numerical simulation for homogeneously
charged granular porous media with pH =8. In consideration of
the randomness of porous media, the agreement is good, which
indicates the validity of our algorithm. In fact, the assumption of
similitude between velocity and electrical field in Overbeek’s
model can not be fully satisfied in our case,especially at the inlet
and outlet (necessary condition for this similitude can refer to
Cummings et al. [87]), which might be the reason for the difference
at large porosity.

5.2. Nonlinear response of inhomogeneously charged electro-osmosis

Numerous works on electro-osmosis with homogeneous charge
have shown that the electro-osmotic permeability is only related
to the structure and surface property of the porous media, but
irrelevant to the external electrical field. In fact, this is to say, the
electro-osmotic velocity is linearly related to the external electrical
field, which is intrinsically assumed by using linear phenomeno-
logical relations. However, when the surface is inhomogeneously
charged, this obvious property may not be valid. One macroscopic
evidence for this nonlinear effect is in the study of electrokinetic
remediation. Reverse electro-osmotic flow has been observed
(e.g., [36]), which indicates a change of sign of the electro-
osmotic permeability. Inspired by previous study, we attempt to
investigate this nonlinear effect in porous media by simulation.
Because of the weak dependence of the zeta potential on the con-
centration in our 1-pK model (see Fig. 4(b)), we will focus on the
effect of inhomogeneous pH.

Firstly, a pH difference is imposed to induce an inhomogeneous
distribution of surface charge on the porous structure. To be speci-
fic, different pH values are assigned at the inlet and outlet in Fig. 7,

! Tortuosity in Pride’s paper actually means square of tortuosity here. This
conceptual confusion has been explained by Epstein [86].

which correspond to Dirichlet boundary conditions for transport of
H* and OH . The steady state distribution of pH is generally non-
linear and dependent on the external electrical field, as shown in
Fig. 10 for inlet pH = 6 and outlet pH = 8. Under the same condition,
the black curve in Fig. 9 illustrates the electro-osmotic velocity for
different applied electrical strengths. When E is smaller than
20 V/m, the electro-osmotic velocity shows a nonlinear response
to the increase of the electrical field strength. The reason is that
increase of electrical field will have different effects on H" and
OH™ because of the difference of electrical mobility. Specifically,
since the diffusivity, thus the electrical mobility, of H* is larger
than that of OH™, when the electrical field increases, the hydrogen
front will move to the outlet (the cathode end). As a result, the dis-
tribution of pH is affected by the applied electrical field (see
Fig. 10). According to the { - pH curve in Fig. 4(a), decrease of pH
from 8 to 6 will reduce the absolute value of zeta potential. There-
fore, the total effect of increasing E on electro-osmotic velocity will
be partly counterbalanced by the decrease of | { |, which leads to a
nonlinear dependence. In terms of electro-osmotic permeability,
different from homogeneous charge case, where it is a constant,
the electro-osmotic permeability is generally dependent on the
applied electrical field in inhomogeneous charge case. However,
when E is large enough, the electrical force will be dominant in
the distribution of potential-determining ions and the pH distribu-
tion doesn’t change much in this situation. Consequently, the
electro-osmotic velocity grows linearly with applied electrical field
strength.

When the inlet and outlet pH are fixed as 5 and 9, the blue” line
in Fig. 9 shows that the electro-osmotic velocity will have a dramat-
ical change of direction with the increase of electrical field strength.
When E is about 25V/m, flow reverses. The reason is that the
isoelectric point of the porous material, pK = 5.5, is above the inlet
pH, and hence part of the surface is positively charged, which leads
to a local reverse flow. When E is small, the positive charge only
occupy a small portion of the system near the inlet and the reverse
flow is overwhelmed by the forward main stream. As the electrical
field increases, it pushes the hydrogen front to the outlet. As a result,
the area of positive charge expands and leads to a dominant reverse
flow as a whole. Further increase of electrical field induces a linear
increase of the magnitude of electro-osmotic velocity since the
electrical force dominates as before.

This nonlinearity comes from the fact that the electrical field
affects not only the slip velocity by HS equation, but also the distri-
bution of potential-determining ions, which is a feature of inhomo-
geneous charge. In our case, since the potential-determining ions
are H" and OH", the distribution of pH plays a key role. When
the electrical force dominates the transport process over convec-
tion and diffusion, the nonlinear effect vanishes and electro-
osmotic permeability will be a constant. In addition, the reverse
of flow is closely related to the isoelectric point and it emerges
when the positively charged area is dominant in the whole system.

Furthermore, we investigate inhomogeneously charged electro-
osmosis in different pH regimes and porosities to figure out when
is the nonlinear effect important. Fig. 11 shows electro-osmotic
permeability with homogeneous charge and inhomogeneous
charge for (a) acidic (pH =3-5) and (b) nearly neutral (pH = 6-8)
and (c) alkaline (pH = 7-9) conditions with porosity ranging from
0.2 to 0.7. The given electro-osmotic permeabilities are averaged
over two different samples with same statistical geometrical
feature and the standard deviation of the electro-osmotic perme-
ability is also shown in the figure as the error bar.

2 For interpretation of color in ‘Fig. 9’, the reader is referred to the web version of
this article.
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Fig. 10. Profiles of cross-section averaged pH along the x-direction for different
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Clearly, for all cases, the electro-osmotic permeability of homo-
geneous charge sets upper and lower bounds for that of inhomoge-
neous charge. For pH = 3-5, the solid/liquid interface is positively
charged so that reverse flow is induced and electro-osmotic per-
meability is negative. What’s more, comparison with cases with
homogeneous charge demonstrates that the nonlinear response,
or dependence on electrical field is most noticeable for nearly neu-
tral cases (pH = 6 — 8). In the pH range from 3 to 5, H* is dominant
in most part of the pore space while OH™ dominates for pH from 7
to 9. Under both circumstances, the influence of electrical field on
pH distribution is relatively small, and therefore the electro-
osmotic permeability of inhomogeneous charge is closer to the that
of homogeneous charge. In terms of porosity, there is a similar
trend for both homogeneous cases and inhomogeneous charge
cases. In addition, this strong influence of porosity on the
electro-osmotic permeability has been observed in Wang and Chen
[30] which employs a Poisson-Boltzmann model.

6. Conclusions

In this contribution, we first propose a quantitative criteria for
classifying electro-osmosis based on a dimensionless number M,

which is the ratio of Debye length and characteristic pore size. This
classification, on the one hand, can be used as a guideline for sim-
plification of electro-osmotic model. On the other hand, we
attempt to follow the spirit of this classification to overcome the
difficulty from the problematic definition for “local bulk property”,
which plays a key role in inhomogeneously charged electro-
osmosis.Following this classification, we can focus on the simplest
case, the thin-layer regime (M <0.01) in this work. Based on
numerical reconstruction method and LBM solver, we simulate
the electro-osmosis using the pore-scale slipping model. Present
results show that for small electrical field strength, the effect of
electrical force on distribution of pH gives rise to the nonlinear
response. In an extreme case with inlet pH smaller than the iso-
electric point, a reversal of flow occurs with increase of electrical
field. Moreover, this nonlinear feature is most noticeable for nearly
pH-neutral region since H* and OH™ are competing in this situa-
tion, which needs to be validated by further experimental data.
More complicated regimes with electrical double layer overlap will
be studied in our future work.
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Appendix A. Correction factor

First, we define the dimensionless length I" = i which is the

reciprocal of the dimensionless Debye length M. I is also called
electrokinetic radius in [23]. Similarly, y* is defined as % When
there is no overlap of EDL, the analytical solution for PB equation
of 1:1 type electrolyte takes the following form

" = 4tanh™' <tanh (%) exp (—IE + |y*|)) (A.1)
Because of the similitude of velocity and electrical field,
€E
u=—=FW-0. (A2)
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The correction factor is defined as

"
2 d *
Uavg fﬂ udy
O=—=-=—2__. A3
Uns Uns (A3)

Substitute Egs. (A.1) and (A.2) into Eq. (A.3), the correction factor
can be written as

_1 2 4 1 C* I " *
(2] =7 /J7 {1 —Etanh (tanh (Z) exp(—j-i- |y |)>}dy .

Thanks to the symmetry, the domain of integration can be replaced

by [0,5] through multiplying a factor of 2 and after some simplifi-
cation, Eq. (A.4) is written as

L * %
@:1—%/ tanh™' { tanh £ exp —l—+y* dy”. (A.5)
cr Jo 4 2

Therefore, the main difficulty to give a analytical form for © lies
in simplifying the integration which can be defined as

(A4)

N o .

(¢, = /2 tanh ™' <i> exp (—I—er*)dy*. (A.6)
0 4 2

It is easy to see that I is a function of dimensionless zeta potential {*

and dimensionless length I'. Furthermore, we substitute z* for y —
and define A = tanh (%). Then, the integral is written as follow,

0
[AT) = / . tanh™' (Aexp(z)dz’". (A7)

When A is small, tanh™' (x) can be approximated by tanh™ (x) ~ x.
So,?

0
- / (Aexp(z))dz’ = Aexp(z)[’; ~ A, (A8)
-
2
where we have used the fact that § € [5,50].

Therefore, the correction factor @ has this simple form,

8 r
O=1- T tanh (Z) (A9)

Fig. 3 shows the comparison between analytical result and
the result from numerically integration. Generally, Eq. (2) will
overestimate the correction factor because of the approximation
of small A.

When (* is below 1,A = tanh () ~ 4. Then ® =1 — 2, which is
same with the result directly derived from Debye-Huckel approxi-
mation. When (* is above 8, A will be rather close to unity and
with numerical integration, we have”

I(A

(A.10)

0
1) = / tanh ' (exp(z*))dz" ~ 1.25.
_r

2

Therefore, © can be approximated by 1 — 19

rre
Appendix B. Derivation of macroscopic model

Though the derivation can be found in many papers or books,
the author feels it necessary to give a more rigorous version as
the existing derivation is either unclear or conceptually problem-
atic. We start the derivation by defining the effect conductivity
of the porous media as

(i) = K(E), (B.1)

where j is the electric current and E is the electrical strength. Since
the solid is non-conducting, the total current (j) can be written as

(j):% devzg | Edv, (B.2)

3 It can be further proved that A is the first-order approximation for the integral by
expanding I as Taylor series.
4 This improper integral can be proved to be convergent.
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where V), is the pore volume and K} is the conductivity of the elec-
trolyte solution. In the second equality above, we have used the
Ohm’s law in the pore space, i.e., j = K¢E, which is valid in the bulk
electroneutral region when there is no concentration gradient. (This
can be derived from the Nernst-Planck equation, see [88].) Compare
Egs. (B.1) and (B.2), we have

1 K
= [ EdV =—(E). B.3
v ), BV =i ® (B3)
The macroscopic electro-osmotic velocity can be calculated as
1 1 1 €
w—1 udV:—/ uav =2 [ —SEav. B4
W=y [uavey [wav-g [ -5 (B4)

In the last equality above, we have used the Helmholtz-
Smoluchowski’s formula u = — %E for the whole pore space outside
EDL by assuming the similitude between velocity field u and
electrical field E. Finally, by substituting Eq. (B.3) into Eq. (B.4), it
leads to

e K
W == (B (B5)

Therefore, compared with definition Eq. (30), the macroscopic
model, Eq. (31), is obtained.

Moreover, one can simply prove (E) = — Y% by expressing the
averaged electrical strength vector as

® =y

EfdVv + / E.dV |, (B.6)
Vs Vs
where E; and E; represents electrical field in fluid region V; and
solid region V, respectively. By noticing that both E; and E; satisfy
the Laplace equation and interchanging the integral and nabla oper-
ator, we can obtain

V.- (E)=0. (B.7)
For the macroscopically 1D problem, solution to Eq. (B.7) is a

constant electrical field, namely, (E) = — %2
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