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Previous work on solute transport with sorption in Poiseuille flow has reached
contradictory conclusions. Some have concluded that sorption increases mean solute
transport velocity and decreases dispersion relative to a tracer, while others have
concluded the opposite. Here we resolve this contradiction by deriving a series
solution for the transient evolution that recovers previous results in the appropriate
limits. This solution shows a transition in solute transport behaviour from early to
late time that is captured by the first- and zeroth-order terms. Mean solute transport
velocity is increased at early times and reduced at late times, while solute dispersion
is initially reduced, but shows a complex dependence on the partition coefficient k
at late times. In the equilibrium sorption model, the time scale of the early regime
and the duration of the transition to the late regime both increase with ln k for
large k. The early regime is pronounced in strongly sorbing systems (k � 1). The
kinetic sorption model shows a similar transition from the early to the late transport
regime and recovers the equilibrium results when adsorption and desorption rates are
large. As the reaction rates slow down, the duration of the early regime increases,
but the changes in transport velocity and dispersion relative to a tracer diminish. In
general, if the partition coefficient k is large, the early regime is well developed
and the behaviour is well characterized by the analysis of the limiting case without
desorption.

Key words: laminar reacting flows, microfluidics, mixing and dispersion

1. Introduction

Reactive solute transport with surface reaction is common in natural and engineering
applications such as solute separation in chromatography (Hlushkou et al. 2014),
contaminant transport in porous media (Hesse et al. 2010) and particle transport
in biological systems (Shipley & Waters 2012). Solute transport in a channel with
Poiseuille flow and sorbing boundaries provides a simplified model system that
allows an understanding of the effect of reactions on the macroscopic transport

† Email address for correspondence: mhesse@jsg.utexas.edu
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velocity and dispersion of the solute. This two-dimensional configuration resembles
some microfluidic systems used in chromatography and biomaterial delivery and
provides insight of solute transport in fractures (Wels, Smith & Beckie 1997). In
these systems, the macroscopic properties are given by transverse averaging. In the
absence of surface reactions, the solute is a tracer and the average transport velocity
of the tracer is identical to the mean flow velocity and its dispersion is given by
Taylor’s analysis (Taylor 1953). However, previous work has reached contradictory
conclusions as to the effect of sorption on solute transport velocity and dispersion.

For channel flow with first-order, irreversible adsorption reaction, previous analyses
have shown that adsorption increases transport velocity and decreases the dispersion
of the solute relative to a tracer in the asymptotic regime (Sankarasubramanian & Gill
1973; De Gance & Johns 1978a,b; Lungu & Moffatt 1982; Smith 1983; Barton 1984;
Shapiro & Brenner 1986; Balakotaiah & Chang 1995; Mikelić, Devigne & van Duijn
2006; Biswas & Sen 2007). The solute velocity increases because adsorption removes
solutes from the slow-moving fluid near the wall so that the solute preferentially
samples the fast-moving fluid in the centre of the channel. This can increase the
transport velocity by up to 30 % with increasing adsorption in planar Poiseuille flow
(Lungu & Moffatt 1982).

However, this is in contrast to the results in chromatography showing that adsorption
reduces the transport velocity due to the continuous removal of the solute from the
concentration front (Golay 1958; Khan 1962). The chromatographic analysis considers
a reversible reaction that allows both adsorption and desorption. In this case, the
transport of solute is determined by the partition coefficient k, the ratio of adsorbed
mass over aqueous mass. Concretely, the transversely averaged transport velocity will
be reduced by a factor of 1/(1 + k) relative to the mean flow velocity. Similarly,
different results have been reached with respect to the effect of adsorption on the
dispersion coefficient. Chromatographic analysis shows a complex dependence of
dispersion on k while dispersion is reduced in the former case.

The main difference between these two contrasting analyses is that one only
considers adsorption (e.g. Lungu & Moffatt 1982) while the other considers both
adsorption and desorption (e.g. Khan 1962). One might therefore expect that the
reversible analysis recovers the results of the irreversible one in the limit of negligible
desorption. However, in this limit the discrepancy between the two analyses is the
largest. The transport velocity vanishes in the reversible case while it is finite in the
irreversible case. This apparent contradiction may be reconciled by the observation
that solute transport undergoes a transition from an early regime characterized by
increased solute velocity to a late regime characterized by decreased solute velocity
(Paine, Carbonell & Whitaker 1983; Balakotaiah & Chang 1995).

Here we present an analysis that demonstrates that the transition in solute transport
behaviour reconciles the reversible and irreversible analyses. To this end, we study
solute transport in a two-dimensional straight channel with adsorption onto and
desorption from the walls. We use the method of moments in combination with the
Laplace transform to derive a set of series solutions for zeroth-, first- and second-order
longitudinal moments valid for all times. It is shown that the zeroth-order terms in
the series solution corresponds to the late-time behaviour, while the first-order terms
corresponds to the early-time behaviour. This analysis recovers both the previous
results and therefore reconciles them. Moreover, it allows us to quantify the transition
for equilibrium and kinetic sorption models. The paper is structured as follows: the
problem is formulated in § 2 and solved in § 3, followed by a discussion of the
transport regimes in § 4.
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Transient solute transport with sorption in Poiseuille flow 735

2H UY

X

FIGURE 1. In an infinitely long channel, a slender, transversely uniform strip of solute
(grey area) is released in the fluid and transported by Poiseuille flow with adsorption on
and desorption from the walls.

2. Problem formulation

We model single-component solute transport in a two-dimensional straight channel
with surface adsorption and desorption, which is illustrated in figure 1. The width of
the channel is 2H in the Y direction and the length is assumed to be infinite in the X
direction. The velocity field is given by an ideal Poiseuille flow, U(Y)= (3/2)U0(1−
Y2/H2), where U0 is the mean flow velocity. Adsorption onto and desorption from the
walls allow exchange of mass between the solid surface and the fluid.

The mass transport of solute in the fluid is given by the advection–diffusion
equation,

∂C
∂T
+U(Y)

∂C
∂X
=D

(
∂2C
∂X2
+
∂2C
∂Y2

)
, (2.1)

where T is the dimensional time [T], C the dimensional solute concentration [ML−3]
and D the diffusion coefficient [L2T−1].

Since the channel is assumed to be infinite, the concentration and any order of its
derivative must vanish as X→±∞. Because of the symmetry along the centreline,
∂C/∂Y = 0, and only the upper half of the domain is considered.

The adsorbed concentration on the wall is assumed to form an infinitely thin and
static surface layer without longitudinal diffusion. The exchange of mass between the
wall and the fluid is given as

−D
∂C
∂n
=
∂Γ

∂T
, (2.2)

where n denotes the outward normal direction of the wall and Γ is the dimensional
surface concentration [ML−2]. Adsorption and desorption are assumed to be described
by first-order reactions, so that the change of surface concentration is given by

∂Γ

∂T
=KaC−KdΓ , (2.3)

where Ka and Kd are the dimensional adsorption and desorption rate constants, with
dimensions of [LT−1] and [T−1], respectively (Khan 1962). When Kd = 0, the linear
kinetic model reduces to a first-order, irreversible adsorption reaction. When both Ka

and Kd are large, the reaction approaches local chemical equilibrium. At equilibrium,
the surface concentration is linearly proportional to solute concentration,

Γ =KC, (2.4)

where K = Ka/Kd is the dimensional partition coefficient. Equation (2.4) is also
referred to as a linear isotherm (Golay 1958).
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736 L. Zhang, M. A. Hesse and M. Wang

Initially, the solute has a uniform transverse distribution at X = 0 with no mass
adsorbed on the wall and is assumed to be a δ-function in the X direction so that

C(X, Y, 0)=
MI

A
δ(X) and Γ (X, 0)= 0, (2.5a,b)

where MI represents the total mass in the system [M] and A is the cross-sectional
area of the channel [L2]. A characteristic concentration is chosen as C0=MI/(HA) to
simplify the formulation in dimensionless form. This initial condition, which has been
used in previous work, assumes that the system is not in local chemical equilibrium.
We note that the transient solute transport behaviour is very sensitive to the initial
condition, and further analysis of the effect of the initial condition is provided in
appendix A.

The following characteristic quantities are chosen to non-dimensionalize the
problem:

x= X/H, y= Y/H, u=U/U0,

c=C/C0, γ = Γ /(C0H), t= T/(H2/D).

}
(2.6)

Note that we choose C0H as characteristic surface concentration and the diffusive
time scale H2/D as the characteristic time scale. Consequently, the dimensionless
formulation of the problem is written as

∂c
∂t
+ Pe u

∂c
∂x
=
∂2c
∂x2
+
∂2c
∂y2

, (2.7a)

−
∂c
∂y
=
∂γ

∂t
at y= 1, (2.7b)

∂c
∂y
= 0 at y= 0, (2.7c)

c= δ(x) at t= 0, (2.7d)
γ = 0 at t= 0. (2.7e)

If the surface reaction is modelled by the linear kinetic model,

∂γ

∂t
= kac− kdγ , (2.8)

there will be three dimensionless groups in (2.7) and (2.8):

Pe=
U0H

D
, ka =

KaH
D
, kd =

KdH2

D
. (2.9a−c)

Physically, the Péclet number, Pe, represents the ratio of the transverse diffusive time
scale to the longitudinal advective time scale and the Damköhler numbers, ka and
kd, represent the ratio of the transverse diffusive time scale to the adsorption and
desorption time scales, respectively.

Otherwise, if the equilibrium sorption model is used,

γ = kc, (2.10)

the number of dimensionless groups reduces to two by replacing ka and kd with

k=
ka

kd
. (2.11)
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Transient solute transport with sorption in Poiseuille flow 737

In this work, ka, kd and k are all assumed to be constants. A value of 10 is chosen for
Pe to limit the longitudinal domain size required in numerical simulation. This choice
will not affect the key results, which are independent of Pe. In the following, we deal
with the more general linear kinetic sorption model analytically, and results will be
given for both the kinetic and equilibrium model in § 4.

3. Solution for the longitudinal moments
Following the classical, transverse-averaging idea introduced by Taylor (1953)

to reduce the dimension of the problem, we consider the transverse-averaged
concentration c̄ =

∫ 1
0 c dy, and the distribution of c̄ is described by its longitudinal

moments mn =
∫
∞

−∞
xnc̄ dx, where n is the order of the moment. The lower-order

moments, e.g. zeroth-, first- and second-order moments, are of most interest to us.
Furthermore, we define the normalized longitudinal moments of zeroth, first and
second order as

M0 =
m0

mI
, M1 =

m1

m0
, M2 =

m2

m0
−

(
m1

m0

)2

, (3.1a−c)

where mI is the dimensionless initial mass, which is unity here. The fraction of
solute in the fluid is given by M0. The centre of mass and the variance of the solute
distribution in the fluid are given by M1 and M2, respectively. Thus, the dimensionless
transport velocity and longitudinal dispersion coefficient are

v =
dM1

dt
and DL =

1
2

dM2

dt
. (3.2a,b)

In the following, analytical solutions are derived for lower-order moments mn (n =
0, 1, 2) in the form of series solutions.

3.1. Moment equation and solution in the Laplace space
Firstly, following the method of moments developed by Aris (1956), multiply (2.7a)
by xn and integrate in the x direction to obtain the equation for c∗n(y, t),

∂c∗n
∂t
+ Pe u

∫
∞

−∞

xn ∂c
∂x

dx=
∫
∞

−∞

xn ∂
2c
∂x2

dx+
∂2c∗n
∂y2

, (3.3)

where c∗n =
∫
∞

−∞
xnc dx is the nth longitudinal moment of concentration in the filament

through y, which is not yet transversely averaged. The moments mn introduced above
are the transverse averages of c∗n. After integration by parts and noting that the
concentration and all of its derivatives vanish at infinity, we have

∂c∗n
∂t
− nPe uc∗n−1 = n(n− 1)c∗n−2 +

∂2c∗n
∂y2

, (3.4a)

where c∗
−1 = c∗

−2 = 0. Similarly, the boundary conditions (2.7b) and (2.7c) give

−
∂c∗n
∂y
=
∂γ ∗n

∂t
= kac∗n − kdγ

∗

n at y= 1, (3.4b)
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738 L. Zhang, M. A. Hesse and M. Wang

∂c∗n
∂y
= 0 at y= 0, (3.4c)

where γ ∗n is defined as the nth longitudinal moment of the surface concentration.
Laplace transformation in time reduces (3.4) to a system of ordinary differential

equations (ODEs) involving only the transformed variable,

ĉ∗n(y, s)=L {c∗n}(s)=
∫
∞

0
c∗ne−st dt, (3.5)

because the transformed longitudinal moments of surface concentration γ̂ ∗n =L {γ ∗n }
in the boundary condition can be eliminated. In Laplace space, (3.4) are given by

∂2ĉ∗n
∂y2
= sĉ∗n − c∗n(t= 0)− nPe uĉ∗n−1 − n(n− 1)ĉ∗n−2, (3.6a)

−
∂ ĉ∗n
∂y
= sγ̂ ∗n − γ

∗

n (t= 0)= kaĉ∗n − kdγ̂
∗

n at y= 1, (3.6b)

−
∂ ĉ∗n
∂y
= 0 at y= 0. (3.6c)

Since no mass is adsorbed on the wall initially, γ ∗n (t = 0) = 0. A discussion of the
more general initial conditions is given in appendix A. Note that the second equality
in (3.6b) can be solved for γ̂ ∗n as

γ̂ ∗n =
ka

kd + s
ĉ∗n, (3.7)

so that (3.6b) turns into a Robin-type boundary condition,

−
∂ ĉ∗n
∂y
=

kas
kd + s

ĉ∗n at y= 1. (3.8)

The δ-function initial distribution of solute leads to the following initial conditions:

c∗0 = 1, c∗1 = c∗2 = 0 at t= 0. (3.9a,b)

Therefore, (3.6a), together with boundary conditions (3.6c) and (3.8), gives the
following system of ODEs for ĉ∗0, ĉ∗1 and ĉ∗2:

d2ĉ∗0
dy2
= sĉ∗0 − 1, (3.10a)

d2ĉ∗1
dy2
= sĉ∗1 − Pe uĉ∗0, (3.10b)

d2ĉ∗2
dy2
= sĉ∗2 − 2Pe uĉ∗1 − 2ĉ∗0, (3.10c)

with boundary conditions

dĉ∗n
dy
=−

kas
kd + s

ĉ∗n at y= 1, (3.11a)
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Transient solute transport with sorption in Poiseuille flow 739

dĉ∗n
dy
= 0 at y= 0, (3.11b)

for n= 0, 1, 2.
However, it is not the analytical solutions of ĉ∗n(y, s) but the transverse-averaged

moments m̂n(s)=
∫ 1

0 ĉ∗n dy that are of interest here. For instance, m̂0 has the form

m̂0 =
1
s
−

ka sinh(
√

s)
√

s(kas cosh(
√

s)+
√

s sinh(
√

s)(kd + s))
. (3.12)

The analytical forms of m̂1 and m̂2 are complex (given in the supplementary materials
available at https://doi.org/10.1017/jfm.2017.546), but both of them and m̂0 can be
written in a general form as

m̂n(s)=
Nn(s)

E(s)(n+1)
for n= 0, 1, 2, (3.13)

where the denominator E(s) is given by

E(s)= kas cosh(
√

s)+ (kd + s)
√

s sinh(
√

s), (3.14)

which is a transcendental function of s and includes all the singularities of the
moments. The numerators Nn(s) are complex functions of s obtained by a computer
algebra system (MathWorks 2012). The transcendental function E(s) has two important
properties:

(i) There are only first-order singularities in E(s), and thus m̂0, m̂1 and m̂2 have only
first-, second- and third-order singularities, respectively. This helps to employ the
residue theorem for the inverse Laplace transform.

(ii) All the singularities of E(s)= 0 fall along the negative axis, and thus substituting
s=−p2, where p is a real positive number, leads to a transcendental equation of
p in real space (where tanh(ip)= i tan(p) is used),

tan(p)(p2
− kd)− kap= 0. (3.15)

Equation (3.15) has an infinite number of roots pk, k= 0, 1, . . . ,∞. These roots
pk correspond to characteristic decay rates of the moments, and the lowest-order
term with the smallest root, i.e. p0 = 0, dominates the behaviour at late times.

3.2. Inverse Laplace transform by the residue theorem
The inverse Laplace transform of the moments can be written as the Bromwich
integral,

mn(t)=
1

2πi

∫
C

m̂n(s)est ds, (3.16)

where i=
√
−1 and C is a contour chosen so that all the singularities of m̂n(s) are to

the left of it. Further, if we apply the residue theorem to the above integral, we have

mn(t)=
∞∑

k=0

Rk, (3.17)
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where Rk are the residues of m̂nest and can be calculated as

Rk =
1

(l− 1)!
lim
s→sk

dl−1

dsl−1
(m̂nest(s− sk)

l), (3.18)

where l is the order of the kth singularity or pole sk.
Since m̂0, m̂1 and m̂2 have only first-, second- and third-order singularities,

respectively, we have

m0(t)=
∞∑

k=0

lim
s→sk

(s− sk)m̂0 exp(st)=
∞∑

k=0

ak exp(−p2
kt), (3.19a)

m1(t)=
∞∑

k=0

lim
s→sk

d
ds
[(s− sk)

2m̂1 exp(st)] =
∞∑

k=0

b(1)k exp(−p2
kt)+ b(2)k t exp(−p2

kt),

(3.19b)

m2(t) =
∞∑

k=0

1
2

lim
s→sk

d2

ds2
[(s− sk)

3m̂2 exp(st)]

=

∞∑
k=0

c(1)k exp(−p2
kt)+ c(2)k t exp(−p2

kt)+ c(3)k t2 exp(−p2
kt), (3.19c)

where

ak = lim
s→sk

(s− sk)m̂0, (3.20a)

b(1)k = lim
s→sk

d
ds
[(s− sk)

2m̂1], (3.20b)

b(2)k = lim
s→sk

(s− sk)
2m̂1, (3.20c)

c(1)k =
1
2

lim
s→sk

d2

ds2
[(s− sk)

3m̂2], (3.20d)

c(2)k = lim
s→sk

d
ds
[(s− sk)

3m̂2], (3.20e)

c(3)k =
1
2

lim
s→sk

(s− sk)
3m̂2. (3.20f )

In order to remove the limit operator and give an explicit form of the coefficients
in (3.20), the general form of moments in Laplace space (3.13) are substituted into
(3.20). The fractional forms of m̂0, m̂1 and m̂2 allow us to apply L’Hospital’s rule and
obtain the explicit form of the coefficients,

ak =
N0

T1
, (3.21a)

b(1)k =
T1N ′1 − 2T2N1

T3
1

, (3.21b)

b(2)k =
N1

T2
1
, (3.21c)

c(1)k =
(12T2

2 − 6T1T3)N2 − 6T1T2N ′2 + T2
1 N ′′2

2T5
1

, (3.21d)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

si
ng

hu
a 

U
ni

ve
rs

ity
, o

n 
01

 D
ec

 2
01

7 
at

 0
3:

58
:3

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.546


Transient solute transport with sorption in Poiseuille flow 741

c(2)k =
T1N ′2 − 3T2N2

T4
1

, (3.21e)

c(3)k =
N2

2T3
1
, (3.21f )

where N ′n = dNn/ds, N ′′n = d2Nn/ds2 at s= sk and Tn = E(n)/n! is the nth-order Taylor
expansion coefficient of E(s) at s = sk. These coefficients can also be expressed in
terms of pk by substituting sk =−p2

k . The analytical expressions of ak, b(1)k , b(2)k , c(1)k ,
c(2)k and c(3)k are given in the supplementary materials.

To summarize, for a given ka and kd, (3.15) is first solved for a series of pk, which
are substituted into (3.21) to obtain the coefficients ak, bk and ck. The normalized
longitudinal moments M0, M1 and M2, the transport velocity v and the dispersion
coefficient DL are then determined by definitions (3.1) and (3.2).

3.3. Reduction to previous results
In the long-time limit, when the zeroth-order terms dominate, the transport velocity
and dispersion coefficient are

v0 =
b(2)0

a0
= Pe

kd

ka + kd
= Pe

1
k+ 1

, (3.22a)

D0 =
1
2

(
c(2)0

a0
−

2b(1)0 b(2)0

a0
2

)
=

1
1+ k

+ Pe2 2
105

1+ 9k+ 25.5k2

(1+ k)3
+

Pe2

kd

k
(1+ k)3

,

(3.22b)

which are consistent with the results obtained in chromatography (Khan 1962). For
k > 0, the transport velocity of the solute is slower than the mean flow velocity at
late times.

At early but finite time, the first-order terms dominate and lead to an asymptotic
velocity v1 and dispersion coefficient D1 given as

v1 =
b(2)1

a1
and D1 =

1
2

(
c(2)1

a1
−

2b(1)1 b(2)1

a2
1

)
. (3.23a,b)

In the limiting case of kd = 0 analysed by Lungu & Moffatt (1982), the zeroth-order
coefficients of the moments vanish, i.e. a0= b(2)0 = b(1)0 = c(3)0 = c(2)0 = c(1)0 = 0. Therefore,
the first-order terms dominate and lead to the following asymptotic transport velocity
and dispersion coefficient,

vLM =
Pe(4k2

ap2
1 + 3k2

a + 3ka + 4p4
1 − 3p2

1)

4p2
1(k2

a + ka + p2
1)

, (3.24a)

DLM = 1+ (Pe2(−8k6
ap4

1 + 150k6
ap2

1 − 315k6
a − 56k5

ap4
1 + 750k5

ap2
1

− 945k5
a − 24k4

ap6
1 + 282k4

ap4
1 + 555k4

ap2
1 − 945k4

a − 192k3
ap6

1

+ 1560k3
ap4

1 − 540k3
ap2

1 − 315k3
a + 24k2

ap8
1 − 78k2

ap6
1 + 1455k2

ap4
1

− 495k2
ap2

1 − 136kap8
1 + 810kap6

1 + 225kap4
1 − 8p10

1 − 210p8
1 + 585p6

1))

/(160p6
1(k

2
a + ka + p2

1)
3), (3.24b)
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where p1 is determined by solving (3.15). Equations (3.24) are consistent with (3.4)
and (3.11) given in Lungu & Moffatt (1982), except for a difference in notation.
For ka > 0, the asymptotic transport velocity of the solute is faster than the mean
flow velocity. Note that the early and late transport velocities v1 and v0 have linear
dependence on Pe, and the early and late dispersion coefficients D1 and D0 (excluding
the contribution from pure diffusion) have quadratic dependence on Pe, so that the
normalized ones defined in (4.1) below are generally independent of Pe.

3.4. Equilibrium sorption model
If the kinetics of the reactions are fast enough that local chemical equilibrium is
valid, the linear kinetic sorption model reduces to the linear isotherm (i.e. equilibrium
sorption model) γ = kc, with k = ka/kd. For the equilibrium sorption model, (3.15)
becomes

tan(p)=−kp, (3.25)

which can be solved for a series of pk. Taking the limit ka → ∞, kd → ∞ of
(3.21) while keeping ka/kd = k, the coefficients become functions of only the partition
coefficient k, as expected.

3.5. First-order approximation of the series solution
For the general case when kd is not zero, the fast transport described by (3.24) may
survive at early times before desorption has come into play. In this case, the general
series solution of the moments (3.19) allows us to study the transition from fast
transport at early times described by first-order terms to slow transport at late times
described by zeroth-order terms.

The zeroth- and first-order terms correspond to the residues R0 and R1 in (3.17).
Figure 2(a,b) shows the comparison of the zeroth-order approximation R0 and
first-order approximation R0 + R1 with the numerical inversion of the Laplace
transform using Talbot’s method (Abate & Whitt 2006; McClure 2013). As expected,
the first-order approximation R0 + R1 captures the solution at both the early and late
times, while the zeroth-order approximation R0 only describes the late-time behaviour.
Additional tests show that the first-order approximation is sufficient to describe the
solution for a large range of ka and kd after a short initial time. Therefore, we truncate
the series solution (3.19) by retaining only the zeroth- and first-order terms,

m0 = a0 + a1 exp(−p2
1t), (3.26a)

m1 = (b
(1)
0 + b(2)0 t)+ (b(1)1 + b(2)1 t) exp(−p2

1t), (3.26b)

m2 = (c
(1)
0 + c(2)0 t+ c(3)0 t2)+ (c(1)1 + c(2)1 t+ c(3)1 t2) exp(−p2

1t), (3.26c)

where the higher-order terms describing the very early-time behaviour are ignored.

4. Regimes of transport
In this section, we discuss the transition from the early fast transport to the late

slow transport. Numerical simulations of the full two-dimensional problem illustrate
the physical mechanism that leads to this transition. The truncated analytical solution
provides the estimates of the associated time scales. First, we will use the simpler
equilibrium sorption model to discuss the regime transition, followed by the more
general kinetic case.
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5
Numerical inversion
Analytical solution

 0

10

15

10010–110–210–3 101

t
10010–110–210–3 101

t

0

20

40

60

80(a) (b)

Taylor

FIGURE 2. Comparison of the zeroth-order approximation (R0) and the first-order
approximation (R0 + R1) with the numerical inversion of the Laplace transform (squares)
using Talbot’s method. R0 and R1 are the zeroth and first residues of the moments defined
in (3.17) and (3.18). Results are shown for Pe= 10, ka= 10 and kd = 1. (a) The transport
velocity v, where the mean flow velocity u0=U0H/D=Pe. (b) The dispersion coefficient
DL, where the dashed line labelled as Taylor denotes the Taylor dispersion 2/105Pe2.

4.1. Two-dimensional simulations
Figure 3 shows two-dimensional simulations of the solute concentration at different
times for Pe = 10, ka = 50 and kd = 1. The full problem is numerically solved
by the lattice Boltzmann method (LBM) (Chen & Doolen 1998; Wang & Kang
2010; Zhang & Wang 2015). The δ-function initial condition is approximated by a
piecewise-constant function that is non-zero in a small interval around the origin.
This approximation of the initial condition only affects the results in a short diffusive
transient and the results agree well with the analytical solution (figure 3f –h).

Initially, the strong adsorption removes the solute from the slow-moving fluid near
the wall. The remaining solute in the centre of the channel forms a fast-moving
pulse (figure 3b,c), particularly evident in the transversely averaged concentration
shown in figure 3(e). This corresponds to the increased solute transport velocity in
the irreversible sorption case (Lungu & Moffatt 1982). This regime persists as long
as adsorption dominates.

However, the fast-moving pulse decays rapidly and eventually desorption releases
solute in its wake (figure 3d). As the amount of desorbed solute in the slow-moving
fluid near the wall increases, the solute transport velocity declines. This process
continues until desorption at the back balances adsorption at the front. The transport
velocity and dispersion coefficient will approach the slow transport described by the
one-dimensional model of the transversely averaged concentration in the reversible
sorption case (Khan 1962).

4.2. Equilibrium sorption model
Following the solution procedure in § 3.4, this section presents results and analysis for
equilibrium sorption model, γ = kc. To demonstrate the different transport behaviours,
we define a normalized transport velocity V and a normalized dispersion coefficient
D as

V =
v

Pe
and D=

DL − 1
Dt

, (4.1a,b)

where Dt= 2/105Pe2 is the Taylor dispersion coefficient for a tracer in Poiseuille flow
and the unit contribution of diffusion has been subtracted in the numerator of (4.1b).
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FIGURE 3. Two-dimensional simulation of solute transport with sorption in Poiseuille flow
with Pe = 10, ka = 50 and kd = 1. (a–d) Concentration distribution and (e) transversely
averaged concentration profile at t=0.12, 0.73, 2.7, 12. ( f –h) The evolution of the zeroth-,
first- and second-order moments and comparison of the numerical simulation (LBM) with
the first-order approximation of the analytical solution (Ana).

In this way, V > 1 (D > 1) means increased velocity (dispersion) relative to a non-
reactive tracer while V < 1 (D< 1) means decreased velocity (dispersion).

Figure 4 shows the evolution of the position of the centre of mass M1 and the
normalized transport velocity V for different partition coefficients. For k> 10, a linear
region emerges at early times in figure 4(a), corresponding to an initial plateau in
figure 4(b). This corresponds to the well-developed early regime characterized by
fast transport, approaching an asymptotic velocity 1+ 3/π2

≈ 1.3. This is consistent
with the results in an adsorption-only case with ka →∞ (Lungu & Moffatt 1982).
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FIGURE 4. Evolution of (a) centre of mass M1 and (b) normalized transport velocity V
for different partition coefficients k. Dashed lines with labels LM and Taylor stand for the
asymptotic regime of an adsorption-only case (Lungu & Moffatt 1982) and the asymptotic
regime of a non-reactive tracer, respectively.
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FIGURE 5. Evolution of (a) variance of solute mass distribution M2 and (b) the normalized
dispersion coefficient D for different partition coefficients k. Dashed lines with labels LM
and Taylor stand for the asymptotic regime of an adsorption-only case (Lungu & Moffatt
1982) and the asymptotic regime of a non-reactive tracer, respectively.

After a transition period, a second linear region at late times appears, corresponding
to the decreased transport velocity 1/(1+ k).

Figure 5 shows similar behaviours of the variance of solute mass in the fluid M2 and
the normalized dispersion coefficient D. In the early regime, the dispersion coefficient
is reduced relative to a tracer with D ∼ 0.14, which also agrees with the adsorption-
only case with ka→∞. In the late regime, the dispersion coefficient is given by the
first two terms of (3.22b), first obtained by Golay (1958).

Between the early and late times, there is a drastic transition of the transport
behaviour. Especially when k is large, both M1 and M2 decrease after reaching
maxima during the transition, and this leads to negative velocity and dispersion
coefficient. Physically, it means that desorption near the origin dominates over the
fast-moving pulse in figure 3 so that the centre of mass shifts backwards and the
variance reduces because the transversely averaged concentration distribution changes
from a bimodal type (one peak near the origin and the other at the pulse front) to a
unimodal type (single peak near the origin).

To compare the early and late behaviours as a function of k, we define the
normalized early and late velocities as

Ve =
v1

Pe
and Vl =

v0

Pe
, (4.2a,b)
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10010–2 104102 10010–2 104102

 0.5

 0

1.0

1.5

 0

 –2.5

2.5

 –5.0

5.0
LM

LM
Taylor Taylor

k k

(a) (b)

FIGURE 6. (a) Normalized early velocity Ve = v1/Pe and late velocity Vl = v0/Pe and
(b) normalized early dispersion coefficient De= (D1− 1)/Dt and late dispersion coefficient
Dl = (D0 − 1/(1+ k))/Dt as functions of partition coefficient k.

and similarly we define the normalized early and late dispersion coefficients as

De =
D1 − 1

Dt
and Dl =

D0 − 1/(1+ k)
Dt

, (4.2c,d)

where v0, D0 and v1, D1 are obtained from the zeroth- and first-order terms of the
solution, the equilibrium limits of (3.22) and (3.23). Note that at early times the
effective diffusion is not affected by sorption while it is reduced by a factor of
1/(1+ k) at late times.

As shown in figure 6, for large k the difference of normalized transport velocity
between Ve and Vl is the largest and the normalized early-time dispersion coefficient
De asymptotes to 0.14. The normalized late-time dispersion coefficient Dl first
increases with k, then reduces towards 0. For small k, the early velocity Ve and
dispersion coefficient De do not reach the asymptotic values 1.3 and 0.14. In this
case, the early regime is not well developed and the first-order terms of the solution
are not dominant. Therefore, Ve and De do not represent the transport behaviour in
this case.

For a tracer in Poiseuille flow, the pre-asymptotic transport before equilibrium has
been studied extensively (e.g. Gill & Sankarasubramanian 1970; Haber & Mauri 1988;
Mercer & Roberts 1990; Latini & Bernoff 2001; Dentz & Carrera 2007; Bolster et al.
2011; Wang et al. 2012). Typically, diffusion dominates when t � td = Pe−2/3; and
after the characteristic equilibrium time scale, t= 1, solute transport can be described
by the transversely averaged model with the mean flow velocity and the dispersion
coefficient Dt. However, for a reactive case considered here, the time scale to reach
equilibrium can be quite different from the tracer case because surface reactions
introduce additional characteristic time scales.

In the first-order approximation (3.26), a series of time scales can be defined
by comparing the zeroth-order and first-order terms. Taking m0 as an example, by
comparing a0 and a1 exp(−p2

1t), we can define a time scale as

t1 =
1
p2

1
ln

a1

a0
=

1
p2

1
ln

2k2(k+ 1)
k2p2

1 + k+ 1
. (4.3)

This time scale indicates the transition from the early regime when the transport is
dominated by the first-order terms to the late regime dominated by the zeroth-order
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terms. Similarly, other time scales can be determined by comparing bk and ck. We
notice that the coefficients in the series solution have the property

a1

a0
<

b(2)1

b(2)0

∼
c(2)1

c(2)0

<
c(3)1

c(3)0

, (4.4)

which means that t1 will give the smallest time scale. At the same time, since the time
scales for the velocity determined by b(2)1 /b

(2)
0 and the dispersion coefficient determined

by c(2)1 /c
(2)
0 have the same scaling, we can choose

t2 =
1
p2

1
ln

b(2)1

b(2)0

=
1
p2

1
ln

k2(k+ 1)2(4k2p4
1 + 3k2p2

1 − 3k+ 4p2
1 − 3)

2p2
1(k2p2

1 + k+ 1)2
(4.5)

as a critical time scale, after which the zeroth-order terms dominate and the
late-time behaviour emerges. Note that the two time scales are not dependent on Pe.
Consequently, the transient solute transport with sorption can be divided into the
following three regimes:

(I) 0< t< t1 – early regime with fast transport;
(II) t1 < t< t2 – transition period;

(III) t2 < t – late regime with slow transport.

As shown in figures 4 and 5, the duration of the early regime, as well as the
transition period, increase with increasing k. In the limit of large k, we have

lim
k→∞

t1 =
4
π2

ln k and lim
k→∞

t2 =
8
π2

ln k, (4.6a,b)

where we have used limk→∞ p1 = π/2. Equations (4.6) predict a linear relationship
between t1, t2 and ln k when k is large and t2 ∼ 2 t1. Figure 7 compares results from
the numerical inverse Laplace transform with these analytically determined time scales
as a function of k. When k� 1, t scales with ln k, as predicted by (4.6). For small k,
the early regime is so short that it is generally not observed.

4.3. Kinetic sorption model
In the kinetic sorption model, there are two additional governing parameters, namely,
the dimensionless adsorption rate constant ka and the dimensionless desorption rate
constant kd. Generally, a similar transition from early to late behaviour can be
observed and the equilibrium results are recovered when kinetics are fast, i.e. ka� 1
and kd� 1.

Similar to the way that the time scales are determined for the equilibrium model,
we can obtain t1 and t2 for the kinetic model using (4.3) and (4.5),

t1 =
1
p2

1
ln

2k2
a(ka + kd)

kd(p4
1 + (k2

a + ka − 2kd)p2
1 + kakd + k2

d)
, (4.7a)

t2 =
1
p2

1
ln

k2
a(ka + kd)

2(4p6
1 + (4k2

a − 8kd − 3)p4
1 + (3k2

a + 3ka + 4k2
d + 6kd)p2

1 − 3kakd − 3k2
d)

2k2
dp2

1(p
4
1 + (k2

a + ka − 2kd)p2
1 + kakd + k2

d)
2

,

(4.7b)

which are shown in figure 8.
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FIGURE 7. Variation of the early time scale t1 and the late time scale t2 as functions of
partition coefficient k. The solid lines show t1 and t2 from (4.3) and (4.5), respectively, and
the dashed lines indicate the scalings for large k given by (4.6), which have been shifted to
match the symbols determined by the numerical inverse Laplace transform. White symbols
are determined by velocity and grey symbols are determined by dispersion coefficient. The
transient solute transport with sorption is divided into three regimes: (I) early regime with
fast transport; (II) transition period; and (III) late regime with slow transport.

The early regime is only observed when ka exceeds kd. In all other cases, transition
occurs from the very beginning followed by a dominated late regime. When both ka
and kd are large, the time scales of the kinetic model recover those of the equilibrium
model.

However, if the rates decrease, the kinetic time scales become longer. In this case,
the root p1 of (3.15) can be approximated by p2

1≈ ka+ kd using Taylor expansion for
tan(p). Then the ratios a1/a0 and b(2)1 /b

(2)
0 used to obtain the time scales simplify to

a1

a0
=

2ka

kd(ka + 2)
and

b(2)1

b(2)0

=
k2

a(4ka + 4kd + 7)
2k2

d(ka + 2)2
. (4.8a,b)

This analysis shows that both time scales increase dramatically in the lower left region
where ka and kd are small in figure 8. In this region, the duration of the early regime is
long, but the deviations of velocity and dispersion coefficient from the tracer case are
minor, as the limiting values given by the adsorption-only case approach unity with
small ka. Physically, this region corresponds to a kinetically slow-sorbing (ka, kd� 1)
solute with a large partition coefficient k� 1.

The analytical solution presented in § 3.3 recovers the previous analysis in the limit
of kd = 0 (Lungu & Moffatt 1982). This limiting solution puts an upper bound on
the transport velocity and a lower bound on the dispersion coefficient in the early
regime. If the early regime is well developed, the limiting solution given by Lungu
& Moffatt (1982) provides a good approximation for finite kd (see figure 8c). The
well-developed early regime is indicated by grey shadings in figure 8(a), where the
early-time asymptotic transport velocity and dispersion coefficient given by (3.23) are
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(c)

FIGURE 8. Contour lines of (a) the early time scale t1 and (b) the late time scale t2
for the kinetic sorption model. Dashed lines represent the time scales obtained from the
equilibrium sorption model for large ka and kd and dotted lines represent approximations
for small ka and kd, given by (4.8a,b). The shaded area in (a) represents the region where
the early regime is well developed, i.e. the velocity (light shaded area) and dispersion
coefficient (dark shaded area) are close to the limiting values given by the adsorption-only
case. (c) The evolution of velocity at early time for the conditions labelled as A, B, C and
D in (a). Symbols are the results from full numerical inverse Laplace transform, solid lines
are first-order approximation of the analytical solution and dashed line is the asymptotic
value for kd = 0 at ka = 1, given by Lungu & Moffatt (1982).

within 10 % of the limiting values given by Lungu & Moffatt (1982). Cases A, B and
C give examples of the well-developed early regime, while the velocity does not reach
the asymptotic value in case D. Generally, if k> 10 (k> 1000), the early-time velocity
(dispersion coefficient) is well developed. Note that the first-order analytical solution
for transport velocity (R0+ R1) shown in figure 8(c) is computed by (3.2) and (3.26).

5. Conclusion
In this work, we reconcile two different analyses of solute transport with sorption

in Poiseuille flow that reached apparently contradictory conclusions. We show that
these two analyses capture different regimes of the transport. Generally, the solute
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experiences an early regime with fast transport velocity if adsorption dominates
desorption. At late times, when desorption becomes important, the solute transport
slows down. This leads to a regime transition that scales as ln k for the equilibrium
sorption model, where k is the dimensionless partition coefficient. Therefore, the early
regime is more pronounced when k is large. In the kinetic sorption model, the early
regime is also observed if the kinetics are slow and the dimensionless adsorption rate
constant ka exceeds the dimensionless desorption rate constant kd. As long as ka� kd,
the early regime is well developed, and the transport velocity and the dispersion
coefficient in this early regime are well approximated by the analysis of Lungu &
Moffatt (1982) in the limit of kd = 0.

The time scales presented in this work allow the determination of the dominant
transport behaviour for a given application. Experience shows that the late regime
dominates the subsurface transport of sorbing contaminants in fractures. However, the
early regime may be important in biomedical applications where transport occurs over
smaller distances. Our analysis may also allow a design of chromatography columns
that can achieve opposite separation results.
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Appendix A. Effect of initial condition
The initial distribution of solute mass manifests itself either as a source term,

c∗n(t = 0), or as a constant in the boundary condition, γ ∗n (t = 0), in the ODE system
(3.10). These effects can be important in our problem in the sense that they may
affect the form of the solutions of the moments. A general discussion on this topic
is beyond the scope of this paper, and we show a special case as an example.

In the previous formulation, we assume initially there is no mass adsorbed on the
wall, γ ∗n (t = 0) = 0. In this section, we change the initial condition by retaining the
uniform release in the fluid, but assuming the mass distribution between the wall and
the bulk has reached equilibrium, namely, c(t = 0) = δ(x)/(1 + k), γ (t = 0) = δ(x)k/
(1+ k). Following the same procedure as in §§ 3.1 and 3.2, we find that the moments
in Laplace space m̂0, m̂1, m̂2 are no longer in the form of (3.13), but show a slight
difference, i.e.

m̂0(s)=
Q0(s)

s
, (A 1a)

m̂1(s)=
Q1(s)
sE(s)

, (A 1b)

m̂2(s)=
Q2(s)
sE2(s)

, (A 1c)
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where Q0, Q1 and Q2 are different from N0, N1 and N2. In fact, Q0 = 1/(1 + k).
Essentially, the order of all the singularities, other than the zeroth-order one, reduce by
one in the solutions. Therefore, the series solutions obtained by the residue theorem
are written as

m0(t)= a0, (A 2a)

m1(t)= b(1)0 + b(2)0 t+
∞∑

k=1

b̃(1)k exp(−p2
kt), (A 2b)

m2(t)= c(1)0 + c(2)0 t+ c(3)0 t2
+

∞∑
k=0

c̃(1)k exp(−p2
kt)+ c̃(2)k t exp(−p2

kt), (A 2c)

where b̃(1)k , c̃(1)k and c̃(2)k are different from b(1)k , c(1)k and c(2)k . Note that the long-time
velocity and dispersion coefficient determined by a0, b(2)0 and c(2)0 do not change.
However, since b(2)k diminishes, the early regime will not be well developed in this
case. Physically, the solute that is initially adsorbed onto the wall begins to desorb
much earlier, and hence reduces the duration of the early regime. In the limit of
kd = 0, k→∞, and the initial solute mass in the fluid c(t = 0) vanishes so that the
results by Lungu & Moffatt (1982) cannot be properly recovered in this case.
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