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Thermodynamic Extremum
Principles for Nonequilibrium
Stationary State in Heat
Conduction
Minimum entropy production principle (MEPP) is an important variational principle for
the evolution of systems to nonequilibrium stationary state. However, its restricted
validity in the domain of Onsager’s linear theory requires an inverse temperature
square-dependent thermal conductivity for heat conduction problems. A previous deriva-
tive principle of MEPP still limits to constant thermal conductivity case. Therefore, the
present work aims to generalize the MEPP to remove these nonphysical limitations. A
new dissipation potential is proposed, the minimum of which thus corresponds to the sta-
tionary state with no restriction on thermal conductivity. We give both rigorous theoreti-
cal verification of the new extremum principle and systematic numerical demonstration
through 1D transient heat conduction with different kinds of temperature dependence of
the thermal conductivity. The results show that the new principle remains always valid
while MEPP and its derivative principle fail beyond their scopes of validity. The present
work promotes a clear understanding of the existing thermodynamic extremum principles
and proposes a new one for stationary state in nonlinear heat transport.
[DOI: 10.1115/1.4036086]
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1 Introduction

Thermodynamics plays an important role in determining the
dynamic behaviors of systems in nature and engineering [1–8]. In
classical thermodynamics, the concept of “entropy” introduced by
Clausius provides a criterion of the evolution of isolated systems
to equilibrium state, known as the entropy increase principle. The
monotonic increase of entropy was later proved by Boltzmann
from microscopic perspective, and constitutes the cornerstone of
second law of thermodynamics [9]. An extension of the thermody-
namic extremum criterion from equilibrium systems to nonequili-
brium ones was represented by Onsager’s principle of the least
dissipation of energy [10,11]. Prigogine then proposed the mini-
mum entropy production principle (MEPP) in the domain of Ons-
ager’s linear classical irreversible thermodynamics [12,13]. The
original MEPP was developed for discrete systems [13,14], and
later generalized for continuous ones, stating that a nonequili-
brium stationary state is characterized by the minimum of entropy
production compatible with external constraints [15]. MEPP has
achieved huge success with extensive applications in many fields
[15–19], and also fosters the development of various thermody-
namic extremum principles [20–23] for transport processes, such
as the widely spread entropy generation minimization principle
[24,25] and maximum entropy production principle [26]. In recent
years, the MEPP has also been generalized to account for none-
quilibrium transport with nonlocal effects which becomes
pertinent in cryogenic or nanoscale systems [27,28].

Heat conduction is one of the most common transport processes
[29] and acts as a typical example for the application of MEPP
since the beginning of this principle [15]. In spite of its huge suc-
cess, there have been still lots of debates on MEPP for characteriz-
ing a nonequilibrium stationary state in heat conduction over the

past dozens of years. The diverse debates mainly include three
aspects: theoretical analysis [30–34], numerical demonstration
[35], and experimental verification [36–38], as to be summarized
below.

The first theoretical query of MEPP may be due to Ref. [30],
where a simple heat conduction through an infinite plate with con-
stant thermal conductivity was explored under two isothermal
ends. The derived temperature profile from MEPP was found to
contradict the well-known linear profile from a steady-state heat
equation. Later, more rigorous analysis [31,33] showed that the
Euler–Lagrange equation obtained from the variational problem
of MEPP was incompatible with the steady-state energy balance
equation except in a very special case. Similar results were
obtained in heat conduction with the temperature power-
dependent thermal conductivity [32], where the temperature field
through the extremalization of entropy production was generally
different from that deduced from the steady-state heat equation
except for a power “�2.” On the other hand, the temporal evolu-
tion of entropy production was analytically [34] and numerically
[35] studied when the heat conduction process approaches the sta-
tionary state. For the considered cases except an inverse tempera-
ture square-dependent thermal conductivity, the minimum of
entropy production was reached before the stationary state was
arrived [35]. For some special case, the entropy production may
be even an increasing function of time [34]. These theoretical and
numerical works clearly demonstrate the limited validity of
MEPP for heat conduction. Some experimental try was also made
to verify the MEPP by heat conduction through a rod with con-
stant thermal conductivity [36]. But more serious analysis indi-
cated that the observed stationary state with linear temperature
profile along the rod was not the state with minimum entropy pro-
duction [37,38]. To sum up, MEPP is only valid in the domain of
Onsager’s linear theory which requires constant phenomenologi-
cal coefficient or an inverse temperature square-dependent ther-
mal conductivity. Such a requirement is too restrictive for most of
the materials in nature [29].
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To remove or release such nonphysical constraints on the ther-
mal conductivity, many efforts have been paid to generalize the
MEPP. An early progress was actually made by Prigogine himself
based on a weighted entropy production, with the temperature
square as the weight function [16]. A minimum of the weighted
entropy production corresponds rigorously to the stationary state in
heat conduction with constant thermal conductivity [16,34]. The
limitation of MEPP is thus relieved to some extent since constant
thermal conductivity is an appreciably reasonable approximation
for some engineering applications. Nevertheless, from both theoret-
ical and practical viewpoints, an arbitrarily temperature-dependent
medium thermal conductivity is more realistic and intrinsic. There-
fore, a thermodynamic extremum principle without the restrictions
on the thermal conductivity is desirable, which becomes the main
aim of the present work. The second try was also made by the
group of Prigogine through a linearization of the temperature pro-
files [18], which extends the validity of the minimum principle of
entropy production or a local potential [39] by an average system
temperature. However, the assumption of small temperature gradi-
ent becomes the main limitation [32]. The integral principle based
on picture representation [40] provides another search of general-
ized MEPP for heat conduction. Three classical pictures have been
given: entropy picture, energy picture, and Fourier picture, with
different forms of thermodynamic forces and fluxes. The dissipa-
tion potentials in entropy picture and Fourier picture are actually
equivalent to entropy production and weighted entropy production,
respectively. A general C-picture was thereafter proposed for treat-
ing the nonlinear heat conduction [40–42]. Despite the unified
framework of general C-picture, an explicit expression of the dissi-
pation potential has to be determined case by case and is still not
convenient for actual use. Last, a recent effort rooted in nonequili-
brium statistical mechanics is worth mentioning [43], which pro-
posed a minimum principle of integrated entropy production
instead of the usual instantaneous one. It indeed supplies a way to
generalize MEPP for nonlinear transport processes. However, the
complicated expression of integrated entropy production and the
nontrivial solution of inverse problem of calculus of variation may
make it impractical for actual application.

In a word, there still lacks a simple and efficient thermodynamic
extremum principle for characterizing nonequilibrium stationary
state in heat conduction with the arbitrarily temperature-dependent
thermal conductivity. Therefore, the present work represents such
an attempt to provide a credible solution to this problem. A new
dissipation potential is proposed after a careful revisit of MEPP and
its current derivative principle, as the main content of Sec. 2. In
Secs. 3 and 4, a systematical numerical demonstration of the new
extremum principle and existing ones will be then conducted based
on the classical 1D transient heat conduction with three types of
temperature dependence of the thermal conductivity. The conclud-
ing remarks of the present work are finally given in Sec. 5.

2 Thermodynamic Extremum Principles

In this section, first an overview is given on the principles of
minimum entropy production and minimum weighted entropy
production, with both their validity and limitations elucidated.
Then a minimum principle of a new dissipation potential is pro-
posed, supplemented with the rigorous theoretical verification of
its effectiveness in characterizing the nonequilibrium stationary
state in heat conduction. It will be shown that the new extremum
principle removes the limitations and generalizes the validity of
MEPP and its derivative principle.

2.1 Principle of Minimum Entropy Production. In classical
irreversible thermodynamics, the local entropy production for
heat conduction is derived from the entropy balance equation and
written as the product of thermodynamic flux and force [15]

rs ¼ q � r 1

T

� �
(1)

Combined with the linear transport law q ¼ Lqqrð1=TÞ, Eq. (1)
becomes

rs ¼ Lqqr
1

T

� �
� r 1

T

� �
¼ k

T2
rT � rT (2)

where Lqq is the phenomenological coefficient related to the ther-
mal conductivity k by kT2 ¼ Lqq. For a transient heat conduction
process, the stationary state is reached at the minimum entropy
production P ¼

Ð
rsdV in the whole system, as the main content

of MEPP. The MEPP is based on three vital assumptions within
the domain of Onsager’s linear theory [15,40]: (a) linear
phenomenological transport law (Fourier’s law here); (b) constant
phenomenological coefficient (Lqq); (c) the Onsager reciprocal
relation for cross transport processes (necessary for multitransport
processes such as thermal diffusion). The mathematical tenets of
MEPP for heat conduction include twofold: (i) the extremum of
the entropy production in the whole system

dP ¼ d
ð

rsdV (3)

gives rise to the stationary state heat equation and (ii) the temporal
derivative of entropy production is negative

dP

dt
� 0 (4)

The second condition (ii) ensures the stability of the stationary
state. The details of the rigorous proof of the two tenets can be
found in many classical monographs of nonequilibrium thermody-
namics [15,40] and will not be repeated here anymore. In general,
the entropy production of the system decreases in time when it
approaches a stationary state, and will achieve a minimum value
when the system reaches the stationary state. Once the system is
deviated from the stationary state from external thermal perturba-
tion, Eq. (4) continuously decreases the entropy production with
time until the stable stationary state is returned. The substantial
limitation of MEPP comes from the assumption (b): constant Lqq

infers an inverse temperature square-dependent thermal conduc-
tivity (k / 1=T2 from kT2 ¼ Lqq), which is often too restrictive
and nonrealistic for most materials.

2.2 Principle of Minimum Weighted Entropy Production.
To release the limitation of MEPP, a weighted entropy production
was instead considered as [16]

P1 ¼
ð

T2rsdV ¼
ð

krT � rTdV (5)

where Eq. (2) has been substituted in the derivation of Eq. (5). The
stationary state of heat conduction with constant thermal conduc-
tivity can thus be characterized by the minimum of the weighted
entropy production, Eq. (5) [16] (note a similar extremum principle
based on half of the weighted entropy production has also been
formulated [44]). On the other hand, the stability condition of
extremum principle dP1=dt � 0 can be also proved to ensure a sta-
ble stationary state [34]. A constant thermal conductivity k is a
more reasonable approximation in some engineering applications
than k / 1=T2 in MEPP, but not yet sufficient for many materials
with highly temperature-dependent thermal conductivity as dis-
played in the classical textbook of heat transfer [29].

2.3 Minimum Principle of a New Dissipation Potential.
The new dissipation potential is proposed as an integral of the
product of a weight function kT2 and the local entropy production

P2 ¼
ð

kT2rsdV (6)
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Substituting Eq. (2) into Eq. (6) gives the full expression of the
new dissipation potential

P2 ¼
ð

k2rT � rTdV (7)

The two mathematical tenets (Eqs. (3) and (4)) given in Sec. 2.1
are rigorously verified below for the minimum principle of the
new dissipation potential. The heat conduction with the arbitrarily
temperature-dependent thermal conductivity is taken into account.

The extremum of Eq. (7) is obtained by conducting a varia-
tional computation

dP2 ¼ d
ð
½kðTÞ�2rT � rTdV ¼ 0 (8)

which leads to

dP2 ¼
ð

2k
dk

dT
rTð Þ2 �r � 2k2rTð Þ

� �
dTdV þ

ð
@V

2k2rTdT � ndS

(9)

In Eq. (9), @V denotes the boundary surface of the system volume
V, with n being the unit vector along the surface external normal
direction. As in the principles of minimum entropy production
and minimum weighted entropy production, the fixed temperature
condition at the boundary of system is assumed such that

ðdTÞ@V ¼ 0 (10)

Substituting Eq. (10) into Eq. (9), we obtain the Euler–Lagrange
equation for the variational problem, Eq. (8)

2k
dk

dT
rTð Þ2 �r � 2k2rTð Þ ¼ 0 (11)

After a slight transform, Eq. (11) results in the steady-state heat
equation

r � ½kðTÞrT� ¼ 0 (12)

Thus, the extremum of the new dissipation potential, Eq. (7),
exactly corresponds to the stationary state. Next, the stability of
the stationary state will be verified as well.

The temporal derivative of P2 is obtained as

dP2

dt
¼
ð
@ k2rT � rTð Þ

@t
dV (13)

With the aid of partial integration and Gauss theorem [15], Eq.
(13) is rewritten as

dP2

dt
¼
ð
@V

2k2rT
@T

@t
� ndS�

ð
2
@T

@t
kr � krTð ÞdV (14)

The heat equation for the transient conduction process is

CV
@T

@t
¼ r � k Tð ÞrT½ � (15)

Combined with Eqs. (10) and (15), Eq. (14) becomes

dP2

dt
¼ �

ð
2CVk

@T

@t

� �2

dV (16)

Based on the thermodynamic stability of equilibrium system
(CV> 0) and positive thermal conductivity (k � 0), Eq. (16)
signifies

dP2

dt
� 0 (17)

Therefore, the minimum principle of the new dissipation poten-
tial is obtained: for a transient heat conduction process with the
arbitrarily temperature-dependent thermal conductivity, the total
dissipation potential P2 in the whole system decreases with time
and achieves a minimum value when the system reaches the sta-
tionary state. After obtaining such an extremum principle, we
came across a similar thermodynamic treatment in biophysical
field [45] by using the integral of the square of metabolic matter
flow (termed as dissipative flow elsewhere [46]). Although the
present new dissipation potential can be reformulated as a similar
form, P2 ¼

Ð
q2dV, with the help of linear transport law

q ¼ �krT, we prefer the expression, Eq. (7), as a quadratic func-
tion of the temperature gradient since temperature is a quantity
more easily measured than the heat flux in actual application. On
the other hand, the present formalism for pure heat conduction in
a homogeneous medium remains to be generalized to heat trans-
port in a heterogeneous medium such as the graded systems [47]
and heat convection processes [31,33] in future work. In the follow-
ing Secs. 3 and 4, the new extremum principle will be demonstrated
through the classical one-dimensional (1D) transient heat conduc-
tion, with also a systematic comparison to principles of minimum
entropy production and minimum weighted entropy production.

3 Physical Models and Mathematical Descriptions

The classical 1D transient heat conduction across an infinite
plate with a thickness L is taken for the illustration of the thermo-
dynamic extremum principles in Sec. 2. For generality, the ther-
mal conductivity and volumetric heat capacity of the medium are
assumed dependent on temperature in arbitrary forms k(T) and
CV(T), respectively. As assumed in MEPP, its derivative principle,
and the new extremum principle, fixed temperature boundary con-
ditions are considered for the plate, with its leftside and rightside
ends keeping at TL and TR, respectively. A uniform initial temper-
ature T0 is assumed in the medium. The governing heat equation
of this problem is

CV Tð Þ @T

@t
¼ @

@x
k Tð Þ @T

@x

� �
(18)

with the boundary conditions

x ¼ 0; T ¼ TL; x ¼ L; T ¼ TR; t > 0 (19)

and the initial condition

t ¼ 0; T ¼ T0; 0 � x � L (20)

To demonstrate the validity of the new extremum principle and
the limitation of the principles of minimum entropy production
and minimum weighted entropy production, three different kinds
of temperature dependences of the plate thermal conductivity are
designed

k ¼ C1

T2
(21)

k ¼ C2 (22)

k ¼ C3T2 (23)

with the constants C1, C2, and C3 to be specified soon. Hereafter,
the heat conduction with Eq. (21), Eq. (22), and Eq. (23) are
referred as case I, case II, and case III, respectively. For all the
cases, TL¼ 500 K, TR¼ 100 K, with an average temperature of
about 300 K throughout the plate. Therefore, the properties of
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silicon at a reference temperature Tr¼ (TLþ TR)/2¼ 300 K are
taken: the thermal conductivity kr¼ 148 W/m K, the volumetric
heat capacity CVr¼ 1.66� 106 J/m3 K, and the heat carrier mean
free path l¼ 41.79 nm [48]. The thickness of the plate is assumed
L¼ 41.79 lm with an average Knudsen number Kn¼ 0.001
(defined as the ratio of mean free path l to system length L) such
that Fourier’s law is valid to describe the heat conduction. In case
II, the constant properties of silicon are used, i.e., k¼C2¼ kr,
CV¼CVr. In case I and case III, the thermal conductivity of silicon
at Tr acts as the reference data such that the coefficient constants
C1 and C3 are calibrated as C1 ¼ krT

2
r and C3 ¼ kr=T2

r . The volu-
metric heat capacities are chosen to have the same temperature
dependence as that of thermal conductivities, i.e.,

CV ¼
CVrT

2
r

T2
(24)

CV ¼
CVrT

2

T2
r

(25)

for cases I and III, respectively. The reason why we choose the
forms of Eqs. (24) and (25) for volumetric heat capacity will be
elaborated later. In terms of the initial conditions, T0¼TL for case
I, T0¼TR for cases II and III. Here, the initial condition T0¼ TL

rather than T0¼ TR is considered for case I since one has

dP1

dt
¼ �2krT

2
r

ð
@T

@t

1

arT2

@T

@t
þ rTð Þ2

T3

" #
dV (26)

An artifact of decreasing weighted entropy production of the sys-
tem along the time will be obtained from Eq. (26) attributed to
@T=@t > 0 thereafter when T0¼ TR is initialized for case I. To
avoid an erroneous conclusion about the validity of the principle
of minimum weighted entropy production for case I due to the ini-
tial condition, we thus consider T0¼TL instead. The same logic is
established for the other two cases. For clarity, the schematic and

parameter details of the three cases are shown in Fig. 1 and
Table 1, respectively.

For case II, the analytical solution of Eq. (18) can be directly
obtained with the method of variable separation [49]

Hð ÞII �
T � TR

TL � TR

¼ 1� X� 2

p

X1
n¼1

1

n
sin npXð Þexp �n2p2Foð Þ

(27)

where the dimensionless spatial and temporal coordinates are
defined, respectively, as X ¼ x=L and Fo ¼ art=L2, with ar ¼
kr=CVr being the thermal diffusivity. For cases I and III, a direct
analytical solution of Eq. (18) is difficult due to the nonlinear
properties. To eliminate the nonlinearity of heat equation, the fol-
lowing Kirchhoff transformation is introduced [50]:

h ¼
ðT

Tr

k Tð Þ
kr

dT (28)

Substitution of Eq. (28) into Eq. (18) results in the following dif-
ferential equation for h:

@h
@t
¼ k Tð Þ

CV Tð Þ
@2h
@x2

(29)

Attributed to the same temperature dependence of volumetric heat
capacity as that of the thermal conductivity, Eq. (29) reduces to a
linear partial differential equation

@h
@t
¼ ar

@2h
@x2

(30)

Analytical solution of Eq. (30) becomes feasible when the bound-
ary conditions (hL and hR) and initial conditions (h0) are acquired
from the correlation between h and T. For case I, we get this corre-
lation by substituting Eq. (21) into Eq. (28)

h ¼ Tr T � Trð Þ
T

(31)

whereas for case III we get by substituting Eq. (23) into Eq. (28)

h ¼ T3 � T3
r

3T2
r

(32)

In this way, the analytical solution of h distribution in case I is
obtained as

Hð ÞI �
hL � h
hL � hR

¼ X� 2

p

X1
n¼1

1

n
sin np 1� Xð Þ½ �exp �n2p2Foð Þ

(33)

Fig. 1 Schematic of 1D transient heat conduction across an
infinite plate with thickness L: (a) case I, (b) case II, and (c) case
III. The dashed and solid lines denote the initial and final tem-
perature distributions, respectively. The arrow line means the
direction of temporal evolution.

Table 1 Parameters in three cases of 1D transient heat conduction

Boundary conditions

Cases TL (K) TR (K) Initial condition, T0 (K) Thermal conductivity Volumetric heat capacity

I 500 100 500
k ¼ krT

2
r

T2
CV ¼

CVrT
2
r

T2

II 500 100 100 k ¼ kr CV ¼ CVr

III 500 100 100
k ¼ krT

2

T2
r

CV ¼
CVrT

2

T2
r
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The analytical solution of h distribution in case III is obtained as

Hð ÞIII �
h� hR

hL � hR

¼ 1� X� 2

p

X1
n¼1

1

n
sin npXð Þexp �n2p2Foð Þ

(34)

The nonlinear temperature distributions are then calculated inver-
sely from Eqs. (33) and (34) via Eqs. (31) and (32).

Once the temperature fields are obtained, the entropy produc-
tion and weighted entropy production as well as the present new
dissipation potential are computed as

P ¼
ðL

0

k

T2

dT

dx

dT

dx
dx (35)

P1 ¼
ðL

0

k
dT

dx

dT

dx
dx (36)

P2 ¼
ðL

0

k2 dT

dx

dT

dx
dx (37)

For a convenient comparison between different thermodynamic
extremum principles, the dimensionless dissipation potentials are
introduced as

P	 ¼ P

P Fo ¼ 0:1ð Þ (38)

where P stands shortly for all the P, P1, and P2 in Eqs. (35)–(37).

4 Results and Discussion

4.1 Evolution of Temperature Distributions. For the 1D
transient heat conduction discussed in Sec. 3 with different kinds
of temperature-dependent thermal conductivities, the results of
temporal evolutions of temperature distributions across the plate
are shown in Fig. 2. When the stationary state is finally reached,
the temperature distribution in case II with constant thermal con-
ductivity becomes the classical linear profile shown in Fig. 2(b).
In contrast, a convex and a concave temperature profiles are
obtained for case I and case III with thermal conductivities inver-
sely and directly proportional to the square of temperature sepa-
rately, as is shown in Figs. 2(a) and 2(c), respectively.

4.2 Demonstration of Thermodynamic Extremum Princi-
ples. As is explained in Sec. 2, when a thermodynamic extremum
principle is available, the corresponding dissipation potential
(entropy production for MEPP) will decrease with time when the
system approaches the stationary state and achieve the minimum
value once the stationary state is finally reached. In Fig. 3, a thor-
ough comparison is made between the three extremum principles
in Sec. 2 for the three cases of 1D transient heat conduction in
Sec. 3. For case I with the inverse temperature square-dependent
thermal conductivity, the MEPP is valid as expected (cf. Sec. 2.1),
as is shown in Fig. 3(a); for case II with constant thermal conduc-
tivity, the principle of minimum weighted entropy production is
valid as expected (cf. Sec. 2.2), as is shown in Fig. 3(b). For case
III with a temperature square-dependent thermal conductivity,
both the principles of minimum entropy production and minimum
weighted entropy productions fail, since their minimum values
have been achieved before the final stationary state is reached, as
is shown in Fig. 3(c). In addition, the principle of minimum
weighted entropy production is invalid for case I whereas the
MEPP is invalid for case II. In strong contrast, for all the three
cases, the present new extremum principle is always valid as the
new dissipation potential, Eq. (37), decreases with time till the
final stationary state when its minimum value is achieved. The
results indicate that the limitations of MEPP and its derivative

Fig. 2 Temporal evolution of temperature distributions in 1D
transient heat conduction: (a) case I, an inverse temperature
square-dependent thermal conductivity k 5 krT

2
r =T

2 and volu-
metric heat capacity CV 5 CV rT

2
r =T

2; (b) case II, constant thermal
conductivity k 5 kr and volumetric heat capacity CV 5 CV r; and
(c) case III, the temperature square-dependent thermal conductiv-
ity k 5 krT

2=T 2
r and volumetric heat capacity CV 5 CV rT

2=T 2
r . For

all the three cases, the Fourier number (Fo) is defined based on
the thermal diffusivity at the reference temperature (Tr 5 300 K):
ar 5 kr=CV r. Temperature distributions at four sequential (Fo)
have been displayed: Fo 5 0.02, 0.05, 0.15, and 1. The arrow lines
signify the direction of temporal evolution.
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principle have been successfully removed. The minimum princi-
ple of the new dissipation potential is capable of characterizing
the nonequilibrium stationary state in heat conduction without any
restrictions on the medium thermal conductivity.

5 Conclusions

In the present work, a systematic study is performed on the ther-
modynamic extremum principles for nonequilibrium stationary
state in heat conduction. Aiming at eliminating the nonphysical
restrictions on the medium thermal conductivity of minimum
entropy production principle (MEPP) and its current derivative
principle, we propose a novel extremum principle based on a new
dissipation potential. A rigorous theoretical verification shows that
the new extremum principle satisfies both the extremum condition
and stability condition as required in original MEPP. The new dis-
sipation potential will decrease with time and achieve its minimum
value when the heat conduction approaches the final stationary
state. A thorough demonstration of the new extremum principle
and existing ones is also conducted through the classical 1D tran-
sient heat conduction with different temperature-dependent thermal
conductivities. The results indicate that the new extremum princi-
ple remains always available while MEPP and its derivative princi-
ple fail once beyond their domain of validity. The present work
would contribute to a clarified understanding of the thermodynamic
variational principles for nonequilibrium states, and a generaliza-
tion of the classical MEPP to nonlinear heat conduction. Moreover,
the new dissipation potential may provide a promising avenue for
thermodynamic optimization of nonlinear transport problems.
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Nomenclature

C ¼ constants
CV ¼ volumetric heat capacity at constant volume (J/m3 K)
Fo ¼ Fourier number

k ¼ thermal conductivity (W/m K)
Kn ¼ Knudsen number

l ¼ mean free path of heat carrier (m)
L ¼ length of the conducting medium (m)

Lqq ¼ phenomenological coefficient in heat conduction
P ¼ entropy production in the whole system (W/K)

P1 ¼ weighted entropy production in the whole system (W K)
P2 ¼ new dissipation potential in the whole system (W2/m)
q ¼ heat flux (W/m2)
t ¼ time (s)

T ¼ thermodynamic temperature (K)
V ¼ volume of the conducting region (m3)
x ¼ x component of Cartesian coordinates (m)

X ¼ dimensionless x-coordinate

Greek Symbols

h ¼ temperature after Kirchhoff transformation (K)
H ¼ dimensionless temperature
rs ¼ local entropy production (W/K m3)

Subscripts

L ¼ leftside
r ¼ reference state

R ¼ rightside
0 ¼ initial state

Fig. 3 Dimensionless dissipation potential versus time in 1D
transient heat conduction: (a) case I, the inverse temperature
square-dependent thermal conductivity k 5 krT

2
r =T

2 and volu-
metric heat capacity CV 5 CV rT

2
r =T

2; (b) case II, constant ther-
mal conductivity k 5 kr and volumetric heat capacity CV 5 CV r;
(c) case III, the temperature square-dependent thermal conduc-
tivity k 5 krT

2=T 2
r and volumetric heat capacity CV 5 CV rT

2=T 2
r .

For all the three cases, the Fourier number (Fo) is defined based
on the thermal diffusivity at the reference temperature
(Tr 5 300 K): ar 5 kr=CV r. Solid line-square represents entropy
production, Eq. (35), and solid line-circle represents weighted
entropy production, Eq. (36), whereas the solid line-star repre-
sents the present new dissipation potential, Eq. (37).
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