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• A generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed.
• Heat wave propagations are investigated systematically in nonequilibrium steady states.
• The phase (or front) speed of heat waves is intimately related to the nonlinear and nonlocal terms.
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a b s t r a c t

Heat transport may behave as wave propagation when the time scale of processes decreases to be
comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat
transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the
Cattaneo–Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame
of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady
states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves
is obtained through a perturbation solution to the heat differential equation, and found to be intimately
related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium
states are devised to measure the coefficients in the generalized equation, which may throw light on
understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Heat waves contribute to heat transport in fast processes
besides the usual diffusive transport described by Fourier’s law,
and on the other hand, they may provide new experimental tools
for the analysis of physical systems [1–10]. Recent investigations of
heat transport in carbonnanotubes [11–13] and in graphene sheets
or nano-ribbons [14–16] have declared the role of several non-
Fourier features, related to a combined heat transfer in diffusive
form and in form of heat waves. For instance, in Ref. [14] the
authors studied the effects of a rapid cooling of four layers of
carbon atoms at one end of a graphene nano-ribbon,which leads to
rapid propagation of thermal perturbation, especially at the early
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period. They observed temperature responses described by the
following generalized heat transport equation:
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with α the thermal diffusivity, and τq and τθ two phase lags. In
particular, they found τq = 1.85 ps, τθ = 1.01 ps and α =

1.44 × 10−5 m2/s for a ribbon of length 14.9 nm. Although these
values are very small, they aremeasurable by current experimental
techniques. This work is mentioned as an example of generalized
heat transport equations not only beyond Fourier’s law (τq =

τθ = 0) but also beyond Cattaneo–Vernotte (C–V) law [17,18]
(τθ = 0), one of the well-known equations in the description of
heat waves [1,7]. The need to go beyond C–V law in the analysis
of actual fast thermal processes motivates the current interest in
exploring generalized heat transport equations.

In the present work, a generalized heat transport equation is
proposed, which incorporates nonlinear and nonlocal terms into
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the C–V law. It sums up many previous macroscopic models for
nanoscale heat transport [9] as special cases, allowing a compari-
son between their respective physical consequences in the propa-
gation of heat waves. Usually, heat wave propagation was studied
around equilibrium states [11–16,19–22]. Propagation of heat
waves in nonequilibrium steady states has been only considered
for some particular cases [23–28]. However, the nonlinear terms
often neglected in generalized heat transport models have an in-
timate relevance to wave propagation in nonequilibrium steady
states [26–28]. Thus the present work generalizes much the few
previous works on this issue, and gives rise to some new features
of heat waves along nonequilibrium steady states based on the
proposed generalized equation. In addition, nanotechnology opens
new perspectives to this problem, because it becomes possible to
study the speed of thermal perturbations along carbon nanotube or
graphene ribbons with their ends kept at different temperatures,
thus imposing a controlled non-vanishing average heat flux along
them.

The remainder of this article is organized below. In Section 2,
the generalized heat transport equation is introduced, with a
summary of how one may recover from it diverse heat transport
equations of existing macroscopic models. Besides, the kinetic
theory and thermodynamic foundations are also discussed for the
generalized heat transport equation. In Section 3, the influences
of nonlinear and nonlocal terms in the generalized equation are
systematically studied on the phase speed of heat waves or front
speed of heat pulse perturbations around nonequilibrium steady
state. In Sections 4 and 5, discussions and concluding remarks are
made.

2. A generalized heat transport equation

A generalized heat transport equation including nonlinear and
nonlocal terms as well as a relaxation term is proposed as:

τ
∂q
∂t

+ q = −λ∇T + m1q∇ · q + m2q · ∇q + m3∇q2
+ m4∇

2q

+m5∇ (∇ · q) + m6q (q · ∇T ) + m7q2
∇T , (2)

where τ is the relaxation time of heat flux, λ is the thermal
conductivity, and mi(T ) (i = 1, 2, . . . , 7) are temperature
dependent coefficients to be identified below. In physical views,
the main motivation in incorporating these terms originates in the
analysis of nanosystems, where the spatial gradients of physical
quantities such as temperature and heat flux may be extremely
large due to the minute size of the system. On the other hand, the
temporal derivative of heat flux may be extremely high in the fast
local heating of a sample by intense and narrow laser beams. Eq. (2)
contains particular cases of many previous macroscopic models
for nanoscale heat transport, and provides a common ground for
a comparison between them.

To recover the classical Fourier’s law, all the terms in τ and mi
are vanishing whereas for the C–V law only the relaxation term is
kept. The coefficientsmi are identified through comparing Eq. (2) to
the heat transport equations respectively in dual-phase-lag (DPL)
model [10]:

τq
∂q
∂t

+ q = −λ∇T − λτT
∂

∂t
(∇T ) , (3)

with τq, τT the phase lags of heat flux and temperature gradient,
in Guyer–Krumhansl (G–K) model [29] (phonon hydrodynamics
model [30]):

τR
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+ q = −λ∇T + l2

∇

2q + 2∇(∇ · q)

, (4)

with l2 = τNτRv
2
g/5, τN, τR the relaxation times of phonon normal

(N) and resistive (R) processes and vg the average phonon group
speed, in the nonlinear G–K model [28]:
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with CV the heat capacity per unit volume, and in the thermon gas
model [31,32]:
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with τT the relaxation time of thermon gas. Note that to
recover Eq. (3) in the DPL model, the energy balance equation is
supplemented [6]:

CV
∂T
∂t

= −∇ · q, (7)

and the mixed partial derivative of temperature in Eq. (3) is
reformulated as:

∂
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1
CV

∇ (∇ · q) . (8)

The relations between the coefficients in Eq. (2) and those in
the previous heat transport models are thoroughly summarized
in Table 1. Besides, the terms in Eq. (2) with coefficients m3
and m7 not explicitly correlated to previous models could be got
from a nonequilibrium temperature θ dependent on heat flux. The
nonequilibrium temperature is obtained in extended irreversible
thermodynamics as θ−1

≡ ∂s/∂u with s ≡ s (u, q) a generalized
entropy dependent on u and q, and becomes [6]:

θ−1
= T−1

−
1
2

∂
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
τ

ρλT 2


q · q. (9)

Substitution of Eq. (9) into an extended Fourier’s law q =

−λ∇θ with an approximation θ ≈ T + ξ (T ) q2 (ξ (T ) ≡
1
2T

2∂

τ/ρλT 2


/∂u for brevity) gives rise to:
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∇T − λξ∇q2. (10)

Thus the coefficients are identified as: m7 = −λ∂ξ/∂T , and
m3 = −λξ . The terms inm3 andm7 could be logically incorporated
as additional terms into the nonlinear G–K model equation (5)
through the temperature gradient term, but usually they are not
considered for simplicity because of their negligible effect.

Therefore the generalized heat transport equation (2) contains
in a compact way the heat transport equations of diverse previous
macroscopic models. Furthermore, these terms with coefficients
mi in Eq. (2) are notmerelywritten in a phenomenologicalway, but
actually deeply rooted in the kinetic theory of phonons [33,34]. The
following heat transport equation has been derived from phonon
Boltzmann equation by either maximum entropy [35] or Grad’s
type [36] moment methods and Chapman–Enskog expansion
within zeroth-order approximation [9,37]:
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where the deviatoric part of the tensor qq denotes ⟨qq⟩ =

qq −
1
3q

2I, with I the unit tensor. For relatively small heat flux
(q/vgCV T ≪ 1), Eq. (11) is approximated as:
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T
. (12)
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Table 1
Relations between the coefficients in the generalized heat transport equation (2) and in previous macroscopic models for nanoscale heat
transport.

Fourier’s law C–V law DPL model
equation (3)

G–K model
equation (4)

Nonlinear G–K model
equations (5), (10)

Thermon gas model
equation (6)

τ 0 τ τq τR τR τT

m1 0 0 0 0 0 −
τT
CV T

m2 0 0 0 0 2
T

τR
CV

−
τT
CV T

m3 0 0 0 0 −λξ 0
m4 0 0 0 l2 l2 0
m5 0 0 ατT 2l2 2l2 0
m6 0 0 0 0 0 τT

CV T2

m7 0 0 0 0 −λ∂ξ/∂T 0
With a full expansion of the second term on the rightside, Eq. (12)
is reformulated as:
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It is seen that Eq. (13) contains the terms with coefficients
m1,m2,m3,m6, m7 in Eq. (2). Besides, the terms with coefficients
m4,m5 in Eq. (2) have been obtained through a Chapman–Enskog
solution of the phonon Boltzmann equation within the first-order
expansion [9], which results in the well-known G–K equation (4).
Explorations of the kinetic foundation of generalized heat trans-
port equations are still pending, for instance, the consideration
of higher-order Chapman–Enskog expansion. On the other hand,
Eq. (2) has been verified to be compatible with second law of
thermodynamics in the framework of extended thermodynam-
ics. A weakly nonlocal and nonlinear heat transport equation in a
more general form than Eq. (2) was derived through the classical
Lagrange multiplier method in rational extended thermodynam-
ics [38]. In a very recent work [39], nonlinear thermodynamic
force–flux relations were proposed as an extension of the usual
linear ones in extended irreversible thermodynamics, resulting in
the nonlinear terms in Eq. (2). Nevertheless, further efforts are
still desirable for a clear physical interpretation of the nonlinear
force–flux relations. The serious connection between phonon ki-
netic theory and generalized nonequilibrium thermodynamics re-
mains also an open question. However, the aim in the present
work is not the physical foundations (including kinetic theory and
thermodynamic aspects) of unknown terms, but the physical con-
sequences of the hitherto known terms with coefficients mi in
propagation of thermal perturbation (and, especially, heat wave
propagations), as the topic in next section.

3. Heat waves around nonequilibrium steady states

The nonlinear and nonlocal terms in Eq. (2) make it impracti-
cable to obtain a general solution of it. Here, as previously done in
Refs. [26–28], Eq. (2)will be linearized around a reference nonequi-
librium steady state characterized by a heat flux q0 = (qx0, 0, 0).
In this way, the nonlinear and nonlocal terms will contribute ex-
plicitly to the speed of small thermal perturbation propagating
in nonequilibrium steady states. The skipped mathematical com-
plexities will be considered in future work. Both heat wave prop-
agations parallel to q0 and orthogonal to q0, both for longitudinal
waves and for transverse waves are thoroughly studied, as shown
in Fig. 1. In practical view, these situations are easy to implement
on a two-dimensional nanosystem, for instance a graphene sheet
or a silicon thin layer.
For convenience, the nonlinear andnonlocal terms are classified
into three categories: (i) nonlinear nonlocal terms of heat fluxwith
coefficients: m1,m2,m3 (Section 3.1); (ii) linear nonlocal terms
of heat flux with coefficients: m4,m5 (Section 3.2); (iii) purely
nonlinear terms with coefficients:m6,m7 (Section 3.4). Therefore,
the effects of these three kinds of terms on the phase speed
or front speed of different kinds of heat waves shown in Fig. 1
will be explored respectively. To obtain the phase speed or front
speed of a small thermal perturbation, a perturbation method is
used to linearize the heat differential equation by combining the
respective simplified forms of Eq. (2) with the energy balance
equation (7). In doing so, the coefficients λ, τ and mi are taken as
constants rather than temperature dependent. Such temperature
dependencewill lead to further nonlinear terms, whichwould play
a role at low frequencies. Here we have focused our attention on
relatively high-frequency thermal perturbations (namely: ωτ ≫

1), thus neglect this dependence. The schemeof thismethodwill be
elucidated through the solution in Section 3.1 as an example. Only
the resultswill be provided in subsequent subsections, without the
solution details anymore.

3.1. Nonlinear nonlocal terms of heat flux

Here, the situation with coefficients m1,m2,m3 ≠ 0, m4,m5,
m6,m7 = 0 is considered. With this simplification, Eq. (2)
becomes:

τ
∂q
∂t

+ q = −λ∇T + m1q∇ · q + m2q · ∇q + m3∇q2. (14)

In the reference one-dimensional nonequilibrium steady state, we
have ∂qx0/∂x = 0 from the energy balance equation (7). Thus the
initial solution of Eq. (14) becomes: qx0 = −λ∂T0/∂x, with the
subscript 0 representing the steady state. Then the perturbations of
heat flux and temperature around the steady state will be studied.

3.1.1. Case I (longitudinal waves propagating along q0 : δqx(x, t))
For longitudinal wave propagation along x-direction, Eq. (14)

reduces to the one-dimensional form:

τ
∂qx
∂t

+ qx = −λ
∂T
∂x

+ M1qx
∂qx
∂x

, (15)

with M1 = m1 + m2 + 2m3. Combination of Eq. (15) with the
energy balance equation (7) gives rise to a temperature differential
equation with the nonlinear terms neglected:

τ
∂2T
∂t2

+
∂T
∂t

= α
∂2T
∂x2

+ M1qx
∂2T
∂x∂t

, (16)

where α = λ/CV is the thermal diffusivity.
The following temperature and heat flux perturbations are

considered:

qx (x, t) = qx0 + δqx (x, t) , T (x, t) = T0 (x) + δT (x, t) . (17)
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(a) Case I. (b) Case II.

(c) Case III. (d) Case IV.

Fig. 1. Schematics of heat wave propagations in nonequilibrium steady state: (a) longitudinal wave propagating along x-direction, denoted as case I; (b) transverse wave
propagating along x-direction, denoted as case II; (c) longitudinal wave propagating along y-direction, denoted as case III; (d) transverse wave propagating along y-direction,
denoted as case IV. The double arrow represents the direction of the thermal perturbation, whereas the single arrow represents the propagating direction of heat waves.
The perturbation parts in Eq. (17) are assumed to be much smaller
than the steady-state parts, such that the high-order terms in the
perturbations (δTδqx, δTδT , δqxδqx) are negligible. Putting Eq. (17)
into Eq. (16) thus results in the linearized form of Eq. (16):

τ
∂2δT
∂t2

+
∂δT
∂t

= α
∂2δT
∂x2

+ M1qx0
∂2δT
∂x∂t

. (18)

For simplicity, a harmonic temperature perturbation is assumed to
compute the phase speed of heat waves:

δT (x, t) = T exp [i (ωt − kx)] , (19)

with T , ω, k denoting separately the amplitude, frequency
and wave number of the harmonic perturbation. The dispersion
equation for the heat wave is derived by substituting Eq. (19) into
Eq. (18):

k2 −
M1qx0

α
ωk −

τ

α
ω2

+ i
ω

α
= 0. (20)

The high-frequency heat waves (ω2
≫ ω) are taken into account

hereafter in the present work since the phase speed in this limit
yields the speed of short thermal pulse propagation. Thus Eq. (20)
reduces to:

k2 −
M1qx0

α
ωk −

τ

α
ω2

= 0. (21)

The solution of Eq. (21) is:

k =


τ

α


Λ1 ±


1 + Λ2

1


ω, with Λ1 =

M1qx0
2
√

ατ
. (22)

In Eq. (22), the ‘plus’ sign represents a positive wave number,
where the heatwave propagates in the same directionwith q0, and
the ‘minus’ sign represents an opposite direction of propagation.
Therefore, the phase speeds of heat wave in the positive and
opposite directions are obtained as:

v±

p =

 ω

Re (k)

 =


α

τ

1
1 + Λ2

1 ± Λ1

, (23)

where ‘Re’ denotes the real part of a complex number. Eq. (23)
indicates that in nonequilibrium steady state, the heat wave
propagates with different phase speeds in the direction of and
in the opposite direction of the steady-state heat flux q0. The
difference between the two phase speeds vanishes in equilibrium
steady state (qx0 = 0), wherein the phase speed reduces to
the well-known result derived from the C–V law:
√

α/τ . The
result Eq. (23) has been already obtained in Refs. [23,24,26–28]. In
subsequent subsections we will consider the situations that have
not yet been examined to our best knowledge, which will provide
additional information about the coefficients in Eq. (2).

3.1.2. Case II (transverse waves propagating along q0 : δqy(x, t))
For transverse wave propagating along x-direction, the

x-component and y-component of Eq. (14) become respectively:

τ
∂qx
∂t

+ qx = −λ
∂T
∂x

+ 2m3δqy
∂δqy
∂x

, (24)

τ
∂δqy
∂t

+ δqy = −λ
∂T
∂y

+ m2qx0
∂δqy
∂x

. (25)

Neglecting the second-order small term, combined with qx =

qx0 = −λ∂T0/∂x, Eq. (24) vanishes. Based on the energy balance
equation (7), the time derivative of temperature is zero, thus the
temperature is independent of time, i.e. T = T0(x). Therefore
Eq. (25) reduces to:

τ
∂δqy
∂t

+ δqy = m2qx0
∂δqy
∂x

. (26)

The solution of Eq. (26) adopts the expression of a decaying
traveling signal:

δqy (x, t) = δqy0 exp (−t/τ) f (ct ± x) , (27)

where f is an arbitrary function. Putting Eq. (27) into Eq. (26) gives
rise to the propagation speed of the perturbation front along the
x-direction:

c = ±
m2qx0

τ
. (28)

Eq. (28) indicates that the perturbation does not propagate in
equilibrium state (qx0 = 0), but simply decays with time
exponentially, with relaxation time τ independent on the form of
f (x). Furthermore, it is inferred from Eq. (28) that the perturbation
propagates only in the opposite direction of the steady-state heat
flux. Since the signal decay exponentially in time, the displacement
of perturbation will be small.

3.1.3. Case III (longitudinal waves propagating orthogonal to q0 :

δqy(y, t))
For longitudinal wave propagating along y-direction in princi-

ple, δT (y, t) in the propagation could depend also on x, i.e. the
perturbation becomes δT (x, y, t), but here δT (y, t) is simply
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considered for illustration. Thus, the temperature field will be
T (x, y, t) = T0(x) + δT (y, t), whereas the heat flux field being
q(y, t) = (qx0, δqy(y, t), 0).

The x-component of Eq. (14) vanishes and the y-component
becomes after neglecting the higher-order terms:

τ
∂δqy
∂t

+ δqy = −λ
∂δT
∂y

. (29)

The energy balance equation (7) reduces to:

CV
∂δT
∂t

= −
∂δqy
∂y

. (30)

Combination of Eqs. (29) and (30) gives the differential equation of
temperature perturbation:

τ
∂2δT
∂t2

+
∂δT
∂t

= α
∂2δT
∂y2

. (31)

The phase speed of high-frequency heat wave is derived from
Eq. (31) as:

v±

p =


α

τ
. (32)

Comparison of Eq. (32) to Eq. (23) shows that the steady-state heat
flux q0 has a relevance only to the longitudinal heat wave propa-
gating parallel to its direction. The phase speed of longitudinal heat
wave propagating orthogonal to q0 is independent on the heat flux.
Of course, actually the phase speed vp may depend on tempera-
ture, thus a pulse initially orthogonal to the x-axis would become
distorted, which would cause a perturbation of the x component of
heat flux too. This more complicated situation needs further inves-
tigation in future work.

3.1.4. Case IV (transverse waves propagating orthogonal to q0 :

δqx(y, t))
For transversewave propagating along y-direction, the temper-

aturewill not varywith time based on the energy balance equation
(7). The y-component of Eq. (14) vanishes and the x-component be-
comes:

τ
∂δqx
∂t

+ δqx = 0. (33)

The solution of Eq. (33) is explicitly:

δqx = δqx0 exp


−
t
τ


. (34)

Eq. (34) indicates that the thermal perturbation will not
propagate but only decays exponentially with time. Comparison
of Eq. (34) to Eq. (27) also reveals that the steady-state heat flux
q0 has only a relevance to the transverse heat wave propagating
parallel to its direction.

3.2. Linear nonlocal terms of heat flux

Here, the situationwith coefficientsm1,m2,m3 = 0, m4,m5 ≠

0,m6,m7 = 0 is examined, in such a way that Eq. (2) becomes:

τ
∂q
∂t

+ q = −λ∇T + m4∇
2q + m5∇ (∇ · q) . (35)

At the reference nonequilibrium steady state, we have the solution
for Eq. (35) : qx0 = −λ∂T0/∂x.

3.2.1. Case I (longitudinal waves propagating along q0 : δqx(x, t))
For longitudinal wave propagation along x-direction, Eq. (35)

reduces to the one-dimensional form:

τ
∂qx
∂t

+ qx = −λ
∂T
∂x

+ M2
∂2qx
∂x2

, (36)
with M2 = m4 + m5. Combined with the energy balance equation
(7), Eq. (36) gives rise to the linearized form of temperature
differential equation:

τ
∂2δT
∂t2

+
∂δT
∂t

= α
∂2δT
∂x2

+ M2
∂3δT
∂x2∂t

. (37)

Through similar procedures in Section 3.1.1, the phase speed of
high-frequency thermal perturbation based on Eq. (37) is obtained:

v±

p =


α

τ
Re


1 + Λ2i


with Λ2 =
M2ω

α
. (38)

Eq. (38) indicates that in nonequilibrium steady state, the
thermal perturbation propagates with the same phase speed in
the direction and in the opposite direction of q0. Furthermore,
the phase speed is independent of the value of q0. This is
not surprising since q0 does not appear in the linearized heat
transport equation (37), in contrast to the nonlinear one Eq. (18)
in Section 3.1. However, the phase speed equation (38) increases
with ω infinitely, which leads to the non-physical divergence of
propagation speed of a short heat pulse in the limit of ω → ∞.
This behavior results from the parabolic characteristic of Eq. (37).
In Section 3.3, we provide a generalized equation for Eq. (35),
which gives an upper bound for the propagation speed of thermal
perturbation.

3.2.2. Case II (transverse waves propagating along q0 : δqy(x, t))
For transverse wave propagating along x-direction the temper-

ature does not vary with time based on the energy balance equa-
tion (7), and the x-component of Eq. (35) vanishes, with the y-
component becoming:

τ
∂δqy
∂t

+ δqy = m4
∂2δqy
∂x2

. (39)

The solution of Eq. (39) adopts the expression of a traveling signal:
δqy (x, t) = δqy0 exp (−t/τ) exp [η (ct ± x)] , (40)
with η a constant. Substituting Eq. (40) into Eq. (39) gives rise to
the front speed of the thermal perturbation:

c =
m4η

τ
. (41)

The propagation speed can be determined once the initial signal
δqy (x, 0) (orη) is given, and is independent of the steady-state heat
flux. Thus the propagation speed in nonequilibrium steady state is
the same as that in equilibrium state.

3.2.3. Case III (longitudinal waves propagating orthogonal to q0 :

δqy(y, t))
For longitudinal wave propagating along y-direction, as in

Section 3.1.3, after imposing the perturbation the temperature
field and heat flux become: T (x, y, t) = T (x) + δT (y, t) and
q(y, t) = (qx0, δqy(y, t), 0).

The x-component of Eq. (35) vanishes and the y-component
becomes:

τ
∂δqy
∂t

+ δqy = −λ
∂δT
∂y

+ M2
∂2δqy
∂y2

. (42)

Combination of Eq. (42) with the energy balance equation (7)
results in the linearized form of temperature differential equation:

τ
∂2δT
∂t2

+
∂δT
∂t

= α
∂2δT
∂y2

+ M2
∂3δT
∂y2∂t

. (43)

Eq. (43) has an identical form to Eq. (37) except the spatial
coordinate. Thus the phase speed of high-frequency thermal
perturbation based on Eq. (43) is just as Eq. (38). The longitudinal
heat waves have the same phase speed in parallel to and
orthogonal to the steady-state heat flux.
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3.2.4. Case IV (transverse waves propagating orthogonal to q0 :

δqx(y, t))
For transversewave propagating along y-direction, the temper-

aturewill not varywith time based on the energy balance equation
(7). The y-component of Eq. (35) vanishes and the x-component be-
comes:

τ
∂δqx
∂t

+ δqx = m4
∂2δqx
∂y2

. (44)

Eq. (44) has an identical form to Eq. (39). Thus the front speed of
the perturbation based on Eq. (44) is just as Eq. (41). The transverse
heat pulses have the same front speed in parallel to and orthogonal
to the steady-state heat flux.

The present Section 3.2 indicates that the steady-state heat
flux has no relevance to the heat wave propagation based on the
generalized heat transport equation Eq. (35) with linear nonlocal
terms.

3.3. A generalized G–K model

It has been seen in Sections 3.2.1 and 3.2.3 that the Eq. (35),
which corresponds to the G–K equation (4), results in a thermal
perturbation propagation with a nonphysical infinite phase speed.
To remedy this anomaly, a generalized G–K equationwas proposed
in the frame of extended irreversible thermodynamics [40,41]:

τ
∂q
∂t

+ q = −λ∇T − ∇ · Q

τ2
∂Q
∂t

+ Q = −λ2∇q,

(45)

where Q is the flux of heat flux, and τ2 is the relaxation time of Q.
Combination of Eq. (45) and the energy balance equation (7) results
in the temperature differential equation:

ττ2
∂3T
∂t3

+ (τ + τ2)
∂2T
∂t2

+
∂T
∂t

= α∇
2T + (ατ2 + λ2)

∂

∂t


∇

2T

. (46)

Heat wave propagation of case I is merely considered to illustrate
the main features of the generalized G–K model Eq. (45), (46).
Here Case II–IV is not taken into account to avoid repeat. Through
similar procedures, the phase speed of high-frequency heat wave
is obtained:

v±

p =


α

τ
Re


1 +

λ2

τ2α
−

1
τ2ω

i


. (47)

In comparison to Eq. (38) based on the G–K model, Eq. (47) based
on the generalized G–Kmodel results in a finite phase speed (v±

p =
α
τ


1 +

λ2
τ2α

) of heat pulse propagation in the limit of ω → ∞.
Therefore the generalized G–K equation eliminates the paradox of
infinite speed of thermal perturbation propagation.

3.4. Purely nonlinear terms of heat flux

Here, the situation with coefficients m1,m2,m3 = 0,
m4,m5 = 0, m6,m7 ≠ 0 is explored. With this simplification,
Eq. (2) becomes:

τ
∂q
∂t

+ q = −λ∇T + m6q (q · ∇T ) + m7q2
∇T . (48)

At the reference nonequilibrium steady state, we have the solution
for Eq. (48): qx0 = −λeff∂T0/∂x, with the effective thermal
conductivity: λeff = λ − (m6 + m7) q2x0. In more general view,
Eq. (48) could be treated as a generalized C–V equation with an
effective thermal conductivity tensor as: λ = λI−m6qq−m7q2I,
which exactly reduces to λeff in one-dimensional situation
3.4.1. Case I (longitudinal waves propagating along q0 : δqx(x, t))
For longitudinal wave propagation along x-direction, Eq. (48)

reduces to the one-dimensional form:

τ
∂qx
∂t

+ qx = −λ
∂T
∂x

+ (m6 + m7) q2x
∂T
∂x

. (49)

Combined with the energy balance equation (7), Eq. (49) gives rise
to the linearized temperature differential equation:

τ
∂2δT
∂t2

+


1 +

2 (m6 + m7)

λeff
q2x0


∂δT
∂t

= αeff
∂2δT
∂x2

, (50)

with the effective diffusivity defined as: αeff = λeff/CV .
The phase speed of high-frequency heat wave based on Eq. (50)

is thus obtained:

v±

p =


αeff

τ
. (51)

Eq. (51) has an identical form to the phase speed
√

α/τ based
on the C–V equation. This could be understood since Eq. (48) is a
generalized C–V equation with the effective thermal conductivity
λeff.

3.4.2. Case II (transverse waves propagating along q0 : δqy(x, t))
For transverse wave propagating along x-direction, the temper-

ature does not vary with time based on the energy balance equa-
tion (7), and the x-component of Eq. (48) vanishes, whereas the
y-component reduces to:

τ
∂δqy
∂t

+
λeff,1

λeff
δqy = 0, (52)

with λeff,1 = λ − m7q2x0. The solution of Eq. (52) is explicitly:

δqy (x, t) = δqy0 exp


−
λeff,1

λeff
t/τ


. (53)

Eq. (53) shows that the heat pulse perturbation will not propagate
but only decay exponentiallywith time. Based on the identification
of the coefficients in Table 1, m6 > 0, thus λeff,1 > λeff inferring
the decay rate of perturbation around nonequilibrium steady state
is larger than that around equilibrium state.

3.4.3. Case III (longitudinal waves propagating orthogonal to q0 :

δqy(y, t))
For longitudinal wave propagating along y-direction, as in

Sections 3.1.3 and 3.2.3, after imposing the perturbation, the
temperature and heat flux fields become: T (x, y, t) = T (x) +

δT (y, t) and q(y, t) = (qx0, δqy(y, t), 0).
The x-component of Eq. (48) vanishes and the y-component

becomes:

τ
∂δqy
∂t

+


1 − m6qx0

∂T0
∂x


δqy = −λeff,1

∂δT
∂y

. (54)

Combination of Eq. (54) with the energy balance equation (7)
results in the linearized form of temperature differential equation:

τ
∂2δT
∂t2

+
λeff,1

λeff

∂δT
∂t

= αeff,1
∂2δT
∂y2

, (55)

with the effective diffusivity defined as: αeff,1 = λeff,1/CV .
The phase speed of high-frequency heat wave based on Eq. (55)

is thus obtained:

v±

p =


αeff,1

τ
. (56)

Both Eqs. (51) and (56) indicate that the steady-state heat flux has
a relevance to the longitudinal heat wave propagation based on
Eq. (48). The relevance is slightly different in the propagating
direction parallel to and orthogonal to the heat flux q0.
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Table 2
Heat wave propagations in nonequilibrium steady states characterized by an average heat flux q0 along the positive direction of x-axis.

Cases A generalized heat transport equation (Eq. (2)) A generalized G–K model
m1,m2,m3 ≠ 0 (Eq. (14)) m6,m7 ≠ 0 (Eq. (48)) m4,m5 ≠ 0(Eq. (35)) Eq. (45)

I δqx(x, t) v±
p =


α
τ

1√
1+Λ2

1±Λ1
v±
p =


αeff
τ

v±

p =


α/τ

×Re


1 + Λ2i
 v±

p =


α
τ


1 +

λ2
τ2α

II δqy(x, t) c = ±
m2qx0

τ
Don’t propagate c =

m4η

τ
–

III δqy(y, t) v±
p =


α
τ

v±
p =


αeff,1

τ
Same as I –

IV δqx(y, t) Don’t propagate Don’t propagate Same as II –

Notes:
1. Λ1 =

M1qx0
2
√

ατ
, Λ2 =

M2ω

α
, withM1 = m1 + m2 + 2m3,M2 = m4 + m5 , thermal diffusivity α = λ/CV ;

2. Effective thermal conductivity: λeff = λ − (m6 + m7) q2x0, λeff,1 = λ − m7q2x0;
3. Effective thermal diffusivity: αeff = λeff/CV , αeff,1 = λeff,1/CV .
3.4.4. Case IV (transverse waves propagating orthogonal to q0 :

δqx(y, t))
For transversewave propagating along y-direction, the temper-

aturewill not varywith time based on the energy balance equation
(7). The y-component of Eq. (48) vanishes and the x-component be-
comes:

τ
∂δqx
∂t

+


2λ
λeff

− 1


δqx = 0. (57)

The solution of Eq. (57) is explicitly:

δqx (y, t) = δqx0 exp

−


2λ
λeff

− 1

t/τ


. (58)

Eq. (58) indicates that the heat pulse perturbation will not
propagate but only decay exponentially with time. Both Eqs. (53)
and (58) reveal that the steady-state heat flux has a relevance to
the decay rates of transverse heat pulse imposed both parallel and
orthogonal to its direction.

4. Discussions

The ultimate aim of the present work is to explore further how
heat waves could contribute to the measurement of coefficients
appearing in Eq. (2). This is not an easy task due to the number
of coefficients appearing in Eq. (2), whose measurement requires
several different kinds of independent experiments. First of
all, the specific heat capacity CV can be got from equilibrium
measurements, whereas the thermal conductivity λ can be
derived from near-equilibrium steady-state measurements. A
measurement of the phase speed of heat wave around equilibrium
states will give the relaxation time τ . Thus the coefficients mi
remain to bemeasured. In principle, one-dimensional steady-state
measurement (implying ∂qx0/∂x = 0) would allow to obtain
m6 + m7, since in this case Eq. (2) reduces to:

qx0 = −

λ − (m6 + m7) q2x0

 ∂T0
∂x

. (59)

To discriminate between m6 and m7, a two-dimensional steady-
state heat conduction experiment should be designed, considering
a homogeneous heat flux q0 along the x axis, the relation between
qy and ∂T/∂y along the y-axis being:

qy = −
λ − (m6 + m7) q2y
1 − m6qx0∂T0/∂x

∂T
∂y

. (60)

For the case of small values of qy, one would have:

qy ≈ −
λ

1 − m6qx0∂T0/∂x
∂T
∂y

, (61)

in such a way that m6 could be obtained. Steady-state measure-
ments in radial heat transport, where the steady-state radial heat
flux adopts the form qr(r) = 1/r , could provide information on
coefficientsm1 − m5.

But here we focus on dynamical measurements of m1–m7,
based on heat wave propagation along non-equilibrium steady
states. The results of the analysis in Section 3 are summarized
in Table 2. Through the experimental measurements, it can be
also determined which terms dominate in the generalized heat
transport equation. In this way, the presentworkwould contribute
to the fundamental understanding and macroscopic modeling of
the heat transport in nanosystems and in ultrafast pulse heating
processes.

In the present analysis discussed in Section 3 the linear nonlocal
terms (m4,m5), the nonlinear nonlocal terms (m1,m2,m3) and the
purely nonlinear terms (m6,m7) have been accounted separately.
In actual thermal transport experiments, the mixed features from
all these termsmay appear. However, the combination of different
measurements in equilibrium and nonequilibrium situations
allows for discrimination between the several coefficients. This
has been the reason to consider heat wave propagation in
nonequilibrium steady states.

5. Conclusions

In this work, a generalized heat transport equation including
nonlinear, nonlocal and relaxation terms is proposed, which sums
up diverse macroscopic models for nanoscale heat transport as
special cases. Heat wave propagations in nonequilibrium steady
state characterized by a heat flux q0 have been systematically
studied and the following points are concluded:

(1) Nonlinear terms (including the nonlinear nonlocal terms and
the purely nonlinear terms) make the phase speed of heat
waves in nonequilibrium steady state different from that in
equilibrium state. Furthermore, the phase speed along q0 is
predicted different from that in the opposite direction of q0.

(2) The nonlinear nonlocal terms result in different phase or
front speeds propagating parallel to and orthogonal to q0 for
both longitudinal and transverse heat waves; in contrast, the
linear nonlocal terms result in the same speeds for both kinds
of waves. The purely nonlinear terms give rise to different
phase speeds propagating parallel to and orthogonal to q0
for longitudinal heat waves, and different decay rates for
transverse heat pulses.

(3) In high-frequency limit, the Guyer–Krumhansl model will
result in an infinite phase speed of thermal perturbation,
which is reduced to a finite value in the generalized
Guyer–Krumhansl model by considering the relaxation of the
flux of heat flux.

Therefore, credible experimental measurements could be
designed in equilibrium and nonequilibrium states to specify the
coefficients in the generalized heat transport equation (2), which
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would foster deeper understanding and macroscopic modeling of
nanoscale heat transport. The next task could be to examine some
of the genuine nonlinear effects in wave propagation. Although a
topic analogous to this has been much studied in electromagnetic
waves, it has been not yet received attention for heat waves.
This exploration is truly needed to explore the whole possibilities
of thermal waves which could probably lead to phenomena
such as self-focusing or flux-limited behaviors [42]. From the
mathematical point of view, these phenomena should be related to
the coefficients mi considered in this article. Exploration of Eq. (2)
in other geometries, as for instance in two-dimensional heat flow
in thin layers or graphene sheets [43], could also bring additional
information about the influence of the non-classical terms.
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