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The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice
thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering.
Callaway’s dual relaxation model represents a good approximation to the otherwise ab initio solution of
the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for
the numerical solution of the phonon Boltzmann equation under Callaway’s model. Heat transport in a graphene
ribbon with different geometries is modeled by our scheme, which produces results quite consistent with
the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway’s lattice
thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or
underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular
graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative
correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon
Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the
average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present
work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the
theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.
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I. INTRODUCTION

With the rapid developments in nanoscience and nan-
otechnology in the past several decades, the microscale and
nanoscale heat transport have become an important research
topic around the world [1–3]. The classical Fourier’s law is
often no longer valid as the spatial or temporal characteristic
dimension has shrunk to be comparable to or even smaller than
the mean-free path or relaxation time of heat carriers including
molecules, phonons, electrons, photons, and magnons [4,5].
Therefore, extensive study on nanoscale heat transport is mo-
tivated by both fundamental understanding of thermal physics
at the nanoscale and technical applications in extreme states.
One such great technical challenge is the heat dissipation
and thermal management of micro- and nanoelectronics [6,7].
People are thus pursing thermal interface materials with high
thermal conductivity, among which two-dimensional graphene
is a promising choice [8,9] because of its extremely good
in-plane thermal transport properties [10,11].

There has been a large number of experimental and theoreti-
cal works on heat transport in graphene, as summarized well in
two recent review articles [12,13]. The theoretical work mainly
consists of two groups: molecular dynamics (MD) simulation
and phonon Boltzmann equation modeling. MD simulation is
often flawed by the insufficient treatment of quantum effects
[14], diverse atomic interaction potential functions [15], and
relatively small simulation cells. In contrast, phonon Boltz-
mann equation modeling is a mesoscopic approach avoiding
or relieving the aforementioned three drawbacks [16,17]. The
phonon Boltzmann equation approach includes the exact (ab
initio) solution of the linearized phonon Boltzmann equation
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with the full scattering term and the relaxation time approx-
imation models. There have been two categories of ab initio
solution methods: the deterministic one including the iterative
approach [18] and variational approach [19], and the stochastic
one, i.e., the ab initio Monte Carlo scheme [20]. The ab initio
(or first-principles) method has demonstrated its successful
application in predicting the lattice thermal conductivity of
graphene ribbons [20–27]. Nevertheless, the implementation
of the ab initio solution is computationally intensive and often
too complicated for engineering utilization; on the other hand,
empirical phonon-boundary scattering has been added into
the full scattering term in the deterministic methods for heat
transport in nanostructures which may introduce a maximum
error on the order of 30% in graphene ribbons [20].

The relaxation time approximation models represent a
much simpler approach in spite of sacrificing minor accuracy.
The commonly used single mode relaxation time (SMRT)
approximation [16,17,28,29] has been shown to greatly
underestimate the thermal conductivity of graphene ribbons
[21,23–25]. This underestimation comes from the collective
effect of strong nonresistive phonon normal scattering at all
temperature scopes in graphene [24–26]. The SMRT approx-
imation treats equally the normal scattering and resistive
scattering (umklapp, isotope, etc.) thus overrating the heat
transport resistance. In comparison, Callaway’s dual relaxation
model [30] has been found as a very good approximation to
the ab initio results when normal scattering plays a significant
role [31] especially in two-dimensional materials (graphene,
graphane, etc.) [25]. Callaway’s model assumes that the
normal scattering and resistive scattering restores the phonon
distribution to a displaced Planck distribution and a Planck
distribution separately [30]. However, the existing phonon
Boltzmann modeling based on Callaway’s model for graphene
heat transport [32,33] is limited to empirical treatment of
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phonon-boundary scattering based on an additional relaxation
term. A direct numerical solution of the phonon Boltzmann
equation under Callaway’s model is still lacking, which
would avoid the empirical boundary treatment in both
previous approximate models [32,33] and ab initio solutions
[21,23,24,27]. The direct numerical solution is also indispens-
able for modeling heat transport in a rectangular graphene
ribbon with finite length and width [34,35], which is generally
impossible by the current deterministic ab initio method.

One of the main aims in the present work is to develop
a numerical scheme for solution of the phonon Boltzmann
equation under Callaway’s dual relaxation model accounting
for the phonon spectral properties. The existing schemes
for numerical solution of the phonon Boltzmann equation
under the SMRT approximation mainly include the Monte
Carlo (MC) scheme [36,37], lattice Boltzmann method (LBM)
[38,39], discrete-ordinate-method (DOM) scheme [40,41],
finite volume method (FVM) [42,43], and discrete unified
gas kinetic scheme (DUGKS) [44,45]. We chose to develop
the DOM scheme for the phonon Boltzmann equation under
the dual relaxation model for the following reasons: (i)
it is challenging to implement adequately phonon normal
scattering in the existing MC scheme; (ii) it is difficult to
treat effectively the strong nonequilibrium effects and phonon
spectral properties in LBM; (iii) the DOM, FVM, and DUGKS
are all based on the discrete-ordinate formulation. With the
DOM method, we are thus capable of exploring both crucial
mathematics and novel physics of heat transport in two-
dimensional nanomaterials, as the other aim of this study. The
remainder of this article is organized as follows: In Sec. II, the
mathematical and numerical methods are introduced including
the phonon Boltzmann equation under Callaway’s model and
the DOM scheme; in Sec. III, we demonstrate a validation
of the DOM methodology by modeling heat transport in
a graphene ribbon with different kinds of geometries; in
Sec. IV, three important applications of our methodology
are presented including examining the empirical phonon-
boundary scattering expressions and investigating the width-
dependent length divergence of lattice thermal conductivity
and the phonon Knudsen minimum phenomenon in a graphene
ribbon; concluding remarks are made in Sec. V.

II. MATHEMATICAL AND NUMERICAL METHODS

A. Phonon Boltzmann equation under Callaway’s model

The phonon Boltzmann equation under Callaway’s dual
relaxation model is [30,46]

∂fω

∂t
+ vg · ∇fω

= f
eq
R (Tloc,R) − fω

τR(ω,p,T )
+ f

eq
N (Tloc,N,u) − fω

τN(ω,p,T )
, (1)

where fω ≡ f (t,r,ω,p,�) denotes the spectral phonon dis-
tribution function, with p the phonon polarization, vg the
phonon group velocity, and � = vg/vg the unit vector along
the direction of phonon propagation. The local pseudoequilib-
rium distributions for phonon resistive scattering and normal
scattering are the Planck distribution and displaced Planck

distribution, respectively:

f
eq
R (Tloc,R) = 1

exp(h̄ω/kBTloc,R) − 1
, (2)

f
eq
N (Tloc,N,u) = 1

exp[(h̄ω − h̄k · u)/kBTloc,N] − 1
, (3)

where kB and h̄ denote separately the Boltzmann constant and
reduced Planck constant. In Eq. (3), k is the wave vector related
to the microscopic phonon quasimomentum (p = h̄k) whereas
u is a macroscopic phonon drift velocity intimately related to
heat flux [3]. The two local pseudotemperatures Tloc,R and
Tloc,N are introduced to ensure the energy conservation princi-
ple during phonon resistive scattering and normal scattering,
respectively:

1

h0

∑
p

∫ ∫ 2π

0
h̄ω

f
eq
R (Tloc,R) − fω

τR(ω,p,T )

D(ω,p)

2π
dθdω = 0, (4)

1

h0

∑
p

∫ ∫ 2π

0
h̄ω

f
eq
N (Tloc,N,u) − fω

τN(ω,p,T )

D(ω,p)

2π
dθdω = 0,

(5)

where h0 is the thickness of two-dimensional material, of
which the wave vector space is two-dimensional characterized
by the angular variable θ ∈ [0 2π ]. D(ω,p) is the density
of phonon states for phonon polarization p. The phonon
drift velocity can be computed from the quasimomentum
conservation of phonon normal scattering:

1

h0

∑
p

∫ ∫ 2π

0
h̄k

f
eq
N (Tloc,N,u) − fω

τN(ω,p,T )

D(ω,p)

2π
dθdω = 0.

(6)
For simplicity, Eq. (1) is rewritten into a deviational

intensity form:

∂φω,p

∂t
+ vg · ∇φω,p

= φ
eq
R (Tloc,R) − φω,p

τR(ω,p,T0)
+ φ

eq
N (Tloc,N,u) − φω,p

τN(ω,p,T0)
, (7)

where the phonon intensity and deviational phonon intensity
are defined respectively as Iω,p = vgh̄ωfω

D(ω,p)
2π

and φω,p =
Iω,p − I

eq
R (T0), with I

eq
R (T0) = vgh̄ωf

eq
R (T0)D(ω,p)

2π
. The physi-

cal meaning of phonon intensity is the flux of energy per unit
time, per unit area, per unit plane angle along the direction of
phonon propagation, and per unit frequency interval around
ω [47]. It has also been assumed the heat transport takes
place within a small temperature difference around a reference
temperature T0 such that the phonon Boltzmann equation (7)
is linearized. Under the circumstance of small temperature
difference thus small heat flux and phonon drift velocity, the
displaced Planck distribution is usually approximated within
the first-order Taylor expansion [30]:

f
eq
N (Tloc,N,u) � f

eq
R (Tloc,N) + Tloc,N

∂f
eq
R

∂T

k · u
ω

. (8)

Therefore, the local pseudoequilibrium deviational intensities
for phonon resistive scattering and normal scattering are
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simplified as

φ
eq
R (Tloc,R) = vg

Cω,p

2π
(Tloc,R − T0), (9)

φ
eq
N (Tloc,N,u) = vg

Cω,p

2π
(Tloc,N − T0) + vg

Cω,p

2π
Tloc,N

k · u
ω

,

(10)

where the spectral heat capacity per unit area of the two-

dimensional material is defined as Cω,p = h̄ω
∂f

eq
R

∂T
D(ω,p).

The local pseudotemperatures Tloc,R and Tloc,N are determined
through substituting Eq. (9) and Eq. (10) into the energy
conservation conditions Eq. (4) and Eq. (5):

Tloc,R − T0 = 1

CτR

∑
p

∫ ∫ 2π

0

φω,p

�R(ω,p,T0)
dθdω, (11)

Tloc,N − T0 = 1

CτN

∑
p

∫ ∫ 2π

0

φω,p

�N(ω,p,T0)
dθdω, (12)

where we have defined CτR = ∑
p

∫ Cω,p

τR(ω,p,T0)dω and CτN =∑
p

∫ Cω,p

τN(ω,p,T0)dω for short notations. The phonon drift
velocity is determined by substituting Eq. (10) into the
quasimomentum conservation condition Eq. (6):

u = 2

Tloc,NC1
τN

∑
p

∫ ∫ 2π

0

k
ω

φω,p

�N(ω,p,T0)
dθdω, (13)

with C1
τN

= ∑
p

∫
k2

ω2
Cω,p

τN(ω,p,T0)dω defined for short notation.
To sum up, we obtain the linearized phonon Boltzmann

equation (7) under Callaway’s model with the local pseu-
doequilibrium deviational intensities for phonon resistive
scattering and normal scattering computed from Eqs. (9)–(13).
Once the deviational phonon intensity in Eq. (7) is resolved,
the macroscopic variables including temperature and heat flux
are then calculated from the following statistical formulas:

ed(t,r) = 1

h0

∑
p

∫ ∫ 2π

0

φω,p

vg
dθdω = CV [T (t,r) − T0],

(14)

q(t,r) = 1

h0

∑
p

∫ ∫ 2π

0
φω,p�dθdω, (15)

where ed represents the deviational energy density and the
heat capacity per unit volume for two-dimensional material is
defined as CV = 1

h0

∑
p

∫
Cω,pdω.

B. Discrete-ordinate-method (DOM) scheme

In this subsection, we develop a discrete-ordinate-method
(DOM) scheme for numerical solution of Eq. (7). Since
the thermal transport properties are concerned throughout
this work, we consider the steady-state heat transport in a
two-dimensional material. The generalization of the present
numerical scheme to transient heat transport is straightforward
and will be conducted in future work for the investiga-
tion of second sound in graphene ribbons [25,26,48]. The
phonon Boltzmann equation (7) under Callaway’s model
reduces to

μ
∂φω,p

∂x
+ η

∂φω,p

∂y

= φ
eq
R (Tloc,R) − φω,p

�R(ω,p,T0)
+ φ

eq
N (Tloc,N,ux,uy) − φω,p

�N(ω,p,T0)
, (16)

where the directional cosine and sine are μ = cos θ, η =
sin θ . The frequency-dependent phonon mean-free paths for
resistive scattering and normal scattering are computed respec-
tively as �R(ω,p,T0) = vg(ω,p)τR(ω,p,T0), �N(ω,p,T0) =
vg(ω,p)τN(ω,p,T0).

1. Spectral and angular discretization

The Gauss-Legendre (G-L) quadrature is adopted for the
numerical integration over both the phonon frequency and
angular variable in the determination of local pseudoequi-
librium deviational intensities Eqs. (9) and (10). Therefore,
the spectral and angular spaces are discretized based on the
abscissae of the G-L quadrature. To ensure symmetry in the
angular space, the integration scope [0 2π ] is divided into
two parts, [0 π ] and [π 2π ]; for each a G-L quadrature with
an equal number of abscissae Nθ/2 is applied. For frequency
integration, a G-L quadrature is applied with the number of
abscissae Np for the phonon polarization p. The discrete
local pseudoequilibrium deviational intensities for phonon
resistive scattering and normal scattering are thus obtained
respectively:

(
φ

eq
pR

)
n

= (vgp)n
(Cp)

n

4CτR

∑
p′

⎡
⎣1

2
ωp′,m

Nθ∑
k′=1

Np∑
n′=1

(φp′)k
′

n′

(�p′R)
n′

ωk′ωn′

⎤
⎦, (17)

(
φ

eq
pN

)k

n
= (vgp)n

(Cp)
n

4CτN

∑
p′

⎡
⎣1

2
ωp′,m

Nθ∑
k′=1

Np∑
n′=1

(φp′)k
′

n′

(�p′N)
n′

ωk′ωn′

⎤
⎦

+ (vgp)n
(Cp)

n

2C1
τN

μk(kp)
n

(ωp)
n

∑
p′

⎡
⎣1

2
ωp′,m

Nθ∑
k′=1

Np∑
n′=1

μk′(kp′)
n′

(ωp′)
n′

(φp′)k
′

n′

(�p′N)
n′

ωk′ωn′

⎤
⎦

+ (vgp)n
(Cp)

n

2C1
τN

ηk(kp)
n

(ωp)
n

∑
p′

⎡
⎣1

2
ωp′,m

Nθ∑
k′=1

Np∑
n′=1

ηk′(kp′)
n′

(ωp′)
n′

(φp′)k
′

n′

(�p′N)
n′

ωk′ωn′

⎤
⎦ (18)
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where n = 1,2, . . . ,Np are the discrete spectral nodes for
phonon polarization p and k = 1,2, . . . ,Nθ are the discrete
angular nodes for the full space [0 2π ], with ωn, ωk being
the corresponding weight coefficients. The upper limit of
spectral integration scope [0,ωp,m] represents the maximum
phonon frequency of phonon polarization p. The discrete
form of Eq. (16) in the spectral and angular space is thus
derived:

μk

∂(φp)kn
∂x

+ ηk

∂(φp)kn
∂y

=
(
φ

eq
pR

)
n
− (φp)kn

(�pR)
n

+
(
φ

eq
pN

)k

n
− (φp)kn

(�pN)
n

. (19)

2. Spatial discretization

To ensure numerical stability and accuracy, the step scheme
[40,49] is adopted for spatial discretization. For the first
quadrant of angular space wherein μ > 0, η > 0, the forward
difference scheme is used for both x-direction and y-direction
spatial derivatives in Eq. (19):

μk

(φp)kn,i,j − (φp)kn,i−1,j


x
+ ηk

(φp)kn,i,j − (φp)kn,i,j−1


y

=
(
φ

eq
pR

)
n,i,j

− (φp)kn,i,j

(�pR)
n

+
(
φ

eq
pN

)k

n,i,j
− (φp)kn,i,j

(�pN)
n

. (20)

For the second quadrant of angular space wherein μ<0,

η > 0, the backward and forward differences are used re-
spectively for x-direction and y-direction spatial derivatives

in Eq. (19):

μk

(φp)kn,i+1,j − (φp)kn,i,j


x
+ ηk

(φp)kn,i,j − (φp)kn,i,j−1


y

=
(
φ

eq
pR

)
n,i,j

− (φp)kn,i,j

(�pR)
n

+
(
φ

eq
pN

)k

n,i,j
− (φp)kn,i,j

(�pN)
n

. (21)

For the third quadrant of angular space wherein μ<0, η<0,
the backward difference is used for both x-direction and
y-direction spatial derivatives in Eq. (19):

μk

(φp)kn,i+1,j − (φp)kn,i,j


x
+ ηk

(φp)kn,i,j+1 − (φp)kn,i,j


y

=
(
φ

eq
pR

)
n,i,j

− (φp)kn,i,j

(�pR)
n

+
(
φ

eq
pN

)k

n,i,j
− (φp)kn,i,j

(�pN)
n

. (22)

For the fourth quadrant of angular space wherein μ>0, η<0,
the forward and backward differences are used respectively
for x-direction and y-direction spatial derivatives in Eq. (19):

μk

(φp)kn,i,j − (φp)kn,i−1,j


x
+ ηk

(φp)kn,i,j+1 − (φp)kn,i,j


y

=
(
φ

eq
pR

)
n,i,j

− (φp)kn,i,j

(�pR)
n

+
(
φ

eq
pN

)k

n,i,j
− (φp)kn,i,j

(�pN)
n

. (23)

In Eqs. (20)–(23), i = 1,2, . . . ,Nx and j = 1,2, . . . ,Ny rep-
resent the spatial nodes in the x direction and y direction,
respectively.

The discrete deviational phonon intensities are thus derived
from Eqs. (20)–(23) for the first to fourth quadrants separately:

(φp)kn,i,j =
(mp)kn(φp)kn,i−1,j + (np)kn(φp)kn,i,j−1 + (�pC)

n

(�pR)
n

(
φ

eq
pR

)
n,i,j

+ (�pC)
n

(�pN)
n

(
φ

eq
pN

)k

n,i,j

(mp)kn + (np)kn + 1
, (24)

(φp)kn,i,j =
−(mp)kn(φp)kn,i+1,j + (np)kn(φp)kn,i,j−1 + (�pC)

n

(�pR)
n

(
φ

eq
pR

)
n,i,j

+ (�pC)
n

(�pN)
n

(
φ

eq
pN

)k

n,i,j

−(mp)kn + (np)kn + 1
, (25)

(φp)kn,i,j =
−(mp)kn(φp)kn,i+1,j − (np)kn(φp)kn,i,j+1 + (�pC)

n

(�pR)
n

(
φ

eq
pR

)
n,i,j

+ (�pC)
n

(�pN)
n

(
φ

eq
pN

)k

n,i,j

−(mp)kn − (np)kn + 1
, (26)

(φp)kn,i,j =
(mp)kn(φp)kn,i−1,j − (np)kn(φp)kn,i,j+1 + (�pC)

n

(�pR)
n

(
φ

eq
pR

)
n,i,j

+ (�pC)
n

(�pN)
n

(
φ

eq
pN

)k

n,i,j

(mp)kn − (np)kn + 1
, (27)

where (mp)kn = μk(�pC)
n


x
, (np)kn = ηk(�pC)

n


y
are introduced for

short notations, with the combinational phonon mean-free path
defined as 1

�pC
= 1

�pR
+ 1

�pN
.

3. Macroscopic variables calculation

Once the discrete deviational phonon intensities are re-
solved, the temperature distribution and heat flux distribution
can be calculated through a discretization of Eqs. (14) and

(15), respectively:

ed(x,y) = π

2h0

∑
p

1

2
ωm,p

Nθ∑
k=1

Np∑
n=1

(φp)kn,i,j

(vgp)
n

ωkωn

= CV [T (x,y) − T0], (28)

qx(x,y) = π

2h0

∑
p

1

2
ωm,p

Nθ∑
k=1

Np∑
n=1

μk(φp)kn,i,jωkωn, (29)
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qy(x,y) = π

2h0

∑
p

1

2
ωm,p

Nθ∑
k=1

Np∑
n=1

ηk(φp)kn,i,jωkωn. (30)

C. Boundary treatments

1. Isothermal boundary condition

The isotropic Planck equilibrium distribution is adopted for
the distribution function of phonons incident to the medium
from the isothermal surface. Under the linearized assumptions
made in Sec. II A, the boundary conditions for the left-hand
hot source at Th and right-hand cold source at Tc of a graphene
ribbon with a length L are respectively

φω,p(x = 0,μ > 0) = vg
Cω,p

2π
(Th − T0), (31)

φω,p(x = L,μ < 0) = vg
Cω,p

2π
(Tc − T0). (32)

2. Adiabatic boundary condition

Two kinds of numerical treatments are available for the
adiabatic boundary: the specular scheme and diffuse scheme.
Due to the edge roughness of two-dimensional materials, the
diffuse scheme is often a good approximation for the adiabatic
boundary treatment [20]. The diffuse scheme assumes that the
direction of phonons leaving from the boundary is independent
of that of the incident phonons. We adopt the nonthermalizing
diffuse scheme for the bottom and top adiabatic boundaries of
a graphene ribbon with a width W to ensure accurate energy
conservation:

φω,p(x,y = 0,η > 0) = −
∫ 2π

π
φω,p(x,y = 0)ηdθ∫ π

0 ηdθ
, (33)

φω,p(x,y = W,η < 0) = −
∫ π

0 φω,p(x,y = W )ηdθ∫ 2π

π
ηdθ

. (34)

It is crucial to calculate the integration in the denominators
in Eqs. (33) and (34) through the same G-L quadrature as the
numerators therein; otherwise the numerical results will be
distorted due to the minor discretization error.

3. Periodic heat flux boundary condition

The periodic heat flux boundary condition is important in
both DOM [50] and Monte Carlo (MC) [51] solutions of the
phonon Boltzmann equation for modeling heat transport in
periodic nanostructures based on only one unit element. Its
main idea is to implement a constant heat flux along the
temperature gradient direction through the same distortion
of the phonon distribution function from equilibrium at two
ends of the simulation domain. This scheme is used for heat
transport in an infinitely long sample to avoid a large number
of spatial grids along the length direction:

φω,p(x = 0,μ > 0)

= vg
Cω,p

2π
(Th − Tc) + φω,p(x = L,μ > 0), (35)

φω,p(x = L,μ < 0)

= vg
Cω,p

2π
(Tc − Th) + φω,p(x = 0,μ < 0), (36)

FIG. 1. Schematic of the algorithm procedure for the discrete-
ordinate-method (DOM) solution of the phonon Boltzmann equation
under Callaway’s model.

where L is the length of the simulation domain with Th and Tc

being the specified temperature of its left-hand and right-hand
ends, respectively.

D. Algorithm procedure

The discrete-ordinate-method (DOM) solution of the
phonon Boltzmann equation under Callaway’s model is im-
plemented through an iteration process. Within each iteration
step, the solution is put forward from the boundary nodes for
each quadrant of angular space based on Eqs. (24)–(27). For
instance, the solution starts from the bottom-left boundaries
for discrete deviational phonon intensities the direction of
which lies within the first quadrant (θ ∈ [0 π

2 ]). The discrete
deviational phonon intensity field is updated for each discrete
spectral node and angular node. Then the local pseudoequilib-
rium deviational phonon intensities for resistive scattering and
normal scattering are computed based on Eq. (17) and Eq. (18),
respectively. The iteration process is repeated until the relative
difference of local pseudoequilibrium deviational intensities
(for both normal scattering and resistive scattering) between
two successive iteration steps is smaller than 1 × 10−10. After
the convergence of the iteration process, the macroscopic
variables are calculated based on Eqs. (28)–(30) before the
end of the whole solution. The algorithm procedure of the
numerical solution is summarized in Fig. 1.

III. METHODOLOGY VALIDATIONS

In this section, the discrete-ordinate-method (DOM)
scheme developed in Sec. II will be validated by several clas-
sical cases in the typical two-dimensional material graphene:
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heat transport in an infinitely wide graphene ribbon, heat trans-
port in an infinitely long graphene ribbon, and heat transport
in a rectangular graphene ribbon. Since an analytical solution
of the phonon Boltzmann equation under Callaway’s dual
relaxation model for nanoscale heat transport is impossible,
we compare the present DOM solution to available benchmark
results from MD simulations, the ab initio MC solution of the
phonon Boltzmann equation, and experimental measurements.

For simplicity without losing accuracy, the phonon disper-
sion relation along the Г-M direction with high symmetry is
adopted to represent the dispersion of graphene in the first
Brillouin zone. There are six phonon polarizations including
three acoustic ones and three optical ones, as each unit cell
of the graphene lattice has two carbon atoms. The optical
phonon polarizations are not taken into account due to their
negligible contribution to heat transport because of small group
velocities. For both the in-plane longitudinal acoustic (LA)
and transverse acoustic (TA) phonon polarizations, the linear
expression is a good approximation for the dispersion relation
[11]: ω = vgk, with the group speeds vg,LA = 2.13 × 104(m/s)
and vg, TA = 1.36 × 104(m/s). For the out-of-plane flexural
acoustic (ZA) phonon polarization, the dispersion relation
is approximately quadratic [11]: ω = αk2, with α = 6.2 ×
10−7 (m2/s). The edge of the first Brillouin zone is located
at maximum wave number km = 1.5 × 1010 (m−1).

The empirical power-law relaxation time expressions for
phonon scattering [52] are incorporated into the present
numerical model. In principle, the ab initio phonon scattering
rate in the entire first Brillouin zone should be taken into
account for an accurate prediction of lattice thermal con-
ductivity. Yet the present study can provide still important
quasiquantitative results and qualitative indications once the
empirical expressions of relaxation time are parametrized
for an infinite graphene ribbon (bulk limit). Two categories
of intrinsic phonon scattering are considered: (i) resistive
scattering including three-phonon umklapp scattering and
phonon-isotope scattering, and (ii) three-phonon normal scat-
tering. The phonon relaxation time for three-phonon umklapp
scattering is [17,52]

1

τU(ω,p,T )
= BUω2T exp(−�p/3T ), (37)

where BU = h̄γ 2
p

M�pv2
g,p

. The Grüneisen parameters and Debye

temperatures for different phonon polarizations are separately
γLA = 2, γTA = 2/3, and γZA = −1.5, and �LA = 1826.39 K,
�TA = 1126.18 K, and �ZA = 623.62 K [17,28]. The average
mass per carbon atom is computed as M = ∑

i fiMi =
12 + c, with Mi and fi the atomic mass and mass fraction
of each isotope, and c being the abundancy of 13C. The
natural abundancy of 13C in graphene is c = 1.1%. The
phonon relaxation time for three-phonon normal scattering
is [32,33,52]

1

τN(ω,p,T )
= BNωaNT bN , (38)

where BN = ( kB
h̄

)bN
h̄γ 2

p V
(aN+bN−2)/3

0

Mv
aN+bN
g,p

with V0 = 8.769634 ×
10−30 m3 the average volume per carbon atom in graphene.
The coefficient pair aN = 1, bN = 3 is chosen as suggested in

recent work [33]. For the phonon-isotope scattering, we use
the following relaxation time expression [23]:

1

τI(ω,p)
=

{
π
2 �S0ω

2D(ω,p), for p = ZA,

π
4 �S0ω

2D(ω,p), for p = LA,TA,
(39)

where the mass difference constant is defined as � =∑
i fi(1 − Mi/M)

2 = c(1 − c)/(12 + c)2, and S0 = 2.62 ×
10−20 m2 denotes the average area per carbon atom in
graphene. As a result, the phonon relaxation time for re-
sistive scattering is obtained based on Mathiessen’s rule:
1/τR(ω,p,T ) = 1/τU(ω,p,T ) + 1/τI(ω,p) from Eq. (37) and
Eq. (39).

A. Heat transport in an infinite graphene ribbon

First we consider heat transport in an infinite graphene
ribbon to validate the adopted phonon properties including the
dispersion relations and relaxation time expressions. The bulk
thermal conductivity based on the phonon Boltzmann equation
under Callaway’s model is [30] κ = κSMRT + κC, with κSMRT

and κC respectively the SMRT result and Callaway’s correction
term for normal scattering:

κSMRT = 1

2h0

∑
p

∫
τCv2

gCω,pdω, (40)

κC =
[

1
2h0

∑
p

∫
τC
τN

kvg

ω
Cω,pdω

]2

1
2h0

∑
p

∫
τC

τNτR

k2

ω2 Cω,pdω
, (41)

where the combinational phonon relaxation time is defined
as 1/τC = 1/τN + 1/τR, and the thickness of monolayer
graphene h0 = 3.35 × 10−10 m. As shown in Fig. 2, Call-
away’s model provides a prediction of the temperature-
dependent thermal conductivity of an infinite graphene ribbon

100 200 300 400 500 600 700 800
10

2

10
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10
4

T (K)

κ 
(W

/m
.K

)

 

 

Callaway’s model
Cepellotti et al. 2015,  ab initio

FIG. 2. Temperature-dependent thermal conductivity of an infi-
nite suspended monolayer graphene ribbon: the solid line represents
the ab initio solution of the linearized phonon Boltzmann equation
with a full scattering term [25], whereas the squares denote the
Callaway lattice thermal conductivity model with phonon properties
adopted in the present work.
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FIG. 3. Schematic of heat transport in (a) an infinitely wide
graphene ribbon with a length L and (b) an infinitely long graphene
ribbon with a width W .

in overall good agreement with the results from the ab initio
solution of the phonon Boltzmann equation with the full scat-
tering term [25]. Two points are thus inferred: (i) Callaway’s
model is a very good approximation to the full scattering
term in the phonon Boltzmann equation for heat transport
in graphene, consistent with the conclusion in a recent study
[25]; (ii) the isotropic linear phonon dispersion relations and
power-law relaxation time expressions represent an acceptable
assumption for the present study. The suspended monolayer
graphene ribbon is investigated throughout this work, with
natural abundancy considered unless noted otherwise. The
present numerical framework is also available for modeling
heat transport in a bilayer or multilayer graphene ribbon
[22,53] and a supported graphene ribbon [54,55] when the
interlayer phonon scattering and phonon-substrate scattering
rates are provided.

B. Heat transport in an infinitely wide graphene ribbon

In this subsection, the one-dimensional (1D) heat transport
in an infinitely wide graphene ribbon shown in Fig. 3(a)
is studied. The DOM scheme in Sec. II reduces to a 1D
formulation with vanishing dependence on the y coordinate.
Isothermal boundary conditions are implemented on the left-
hand hot source and right-hand cold source. The same phonon
transport process is modeled in a previous nonequilibrium
molecular dynamics (NEMD) study [56], where a rectangular
graphene ribbon was set between a hot thermostat and a cold
thermostat. A periodic boundary condition was applied in the
lateral direction such that the width of graphene ribbon was
infinite [56]. For atomic interaction, the optimized Tersoff
potential [57] was used, which has been shown to be the
most suitable one in describing thermal properties of graphene
[15]. The atomic mass of the carbon atom was also corrected
accounting for the natural abundancy of 13C [56]. Therefore
a direct comparison between the present DOM solution and
the NEMD result becomes possible, as shown in Fig. 4.
The length-dependent effective thermal conductivity of an
infinitely wide graphene ribbon at room temperature predicted
by the present DOM solution agrees generally well with the
NEMD data. The ab initio MC solution of the linearized
phonon Boltzmann equation with the full scattering term for
the same phonon heat transport case [20] is also included
in Fig. 4 for comparison. The overall consistency between
the DOM, NEMD, and ab initio MC results demonstrates the
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FIG. 4. Length-dependent effective thermal conductivity of an
infinitely wide suspended monolayer graphene ribbon at room
temperature (T = 300 K): the diamonds and squares represent the
nonequilibrium molecular dynamics (NEMD) simulation results [56]
and ab initio Monte Carlo (MC) solution of the linearized phonon
Boltzmann equation with a full scattering term [20], respectively,
whereas the line with circles denotes the present discrete-ordinate-
method (DOM) solution of the phonon Boltzmann equation un-
der Callaway’s model with Nx = 101, NL = 8, NT = 8, NZ = 8,
Nθ = 32.

good performance of our numerical framework. A spatial grid
Nx = 101, spectral nodes NL = NT = NZ = 8, and angular
resolution Nθ = 32 have been used in the present numerical
solution after an independence check.

Then a comparison is made between the present numerical
results to experimental measurements on a graphene ribbon
suspended over a circular hole with a diameter D by the
Raman spectroscopy method [58,59]. The temperature decay
after a laser heating of the graphene ribbon is detected via
Raman signal to extract the effective thermal conductivity of
the graphene ribbon through fitting the Fourier conduction
model. A direct solution of the phonon Boltzmann equation
for such a physical process is difficult. Instead, we make the
length L of the graphene ribbon in our numerical simulation
to match the diameter D of the hole as done in previous work
[28]. In this way, we obtain the effective thermal conductivity
of the graphene ribbon, which shows good agreement with
the experimental data for different sizes of graphene ribbon
in Fig. 5. The effective thermal conductivity decreases with
increasing temperature due to the enhanced phonon umklapp
scattering rate. On the other hand, the effective thermal
conductivity is reduced at a smaller ribbon size because of
more frequent phonon-boundary scattering. This indicates that
the heat transport still deviates from the diffusive regime even
in a graphene ribbon with micrometer size. Furthermore, the
effect of isotope concentration on heat transport in a graphene
ribbon is studied. As seen in Fig. 6, when the abundancy
of 13C increases from 1.1% to 50%, the effective thermal
conductivity of the graphene ribbon reduces about 26% from
2355.5 (W/m K) to 1750.9 (W/m K) at room temperature. The
reduction of the effective thermal conductivity comes from the
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FIG. 5. Temperature-dependent effective thermal conductivity of
a suspended monolayer graphene ribbon with different sizes: the
filled squares, filled triangles, and filled circles with error bars
represent the experimental results of a graphene ribbon with a
diameter D = 9.7 μm, 5 μm, and 2.9 μm, respectively [58], whereas
the hollow-square line, hollow-triangle line, and hollow-circle line
denote the present discrete-ordinate-method (DOM) solutions of the
phonon Boltzmann equation under Callaway’s model for an infinitely
wide graphene ribbon with a length L = 10 μm, 5 μm, and 3 μm,
respectively, with Nx = 101, NL = 8, NT = 8, NZ = 8, Nθ = 32.

isotope scattering attributed to the mass difference between
12C and 13C. As a result, when the abundancy of 13C further
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FIG. 6. Temperature-dependent effective thermal conductivity
of a suspended monolayer graphene ribbon at different isotope
concentrations: the filled triangles, filled circles, and filled squares
with error bars represent the experimental results of a graphene
ribbon with a diameter D = 2.8 μm at 1.1%, 50%, and 99.2% 13C
concentrations, respectively [59], whereas the solid lines denote
the present discrete-ordinate-method (DOM) solution of the phonon
Boltzmann equation under Callaway’s model for an infinitely widely
graphene ribbon with a length L = 2.8 μm at 1.1%, 50%, and 99.2%
13C concentrations, respectively, with Nx = 101, NL = 8, NT = 8,
NZ = 8, Nθ = 32.
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FIG. 7. Width-dependent effective thermal conductivity of an
infinitely long suspended monolayer graphene ribbon at room
temperature (T = 300 K): the squares represent the ab initio Monte
Carlo (MC) solution of the linearized phonon Boltzmann equation
with the full scattering term [20], whereas the line with circles
denotes the present discrete-ordinate-method (DOM) solution of the
phonon Boltzmann equation under Callaway’s model with Nx = 2,
Ny = 101, NL = 8, NT = 8, NZ = 8, Nθ = 96.

increases up to 99.2%, the effective thermal conductivity
recovers nearly the same value as that of the graphene ribbon
with natural abundancy. The overall good agreement between
the present DOM solution and experimental results indicates
that our numerical framework is capable of modeling heat
transport in a graphene ribbon with isotope variation.

C. Heat transport in an infinitely long graphene ribbon

In this subsection, the two-dimensional heat transport in
an infinitely long graphene ribbon shown in Fig. 3(b) is
simulated by the present DOM scheme. The periodic heat
flux boundary condition introduced in Sec. II C 3 is applied
on both the left-hand and right-hand ends of the simulation
domain to exert a constant temperature gradient along the heat
transport direction with infinite dimension. For the adiabatic
lateral edge of the graphene ribbon, the nonthermalizing
diffuse scheme introduced in Sec. II C 2 is used. The present
DOM solution produces the width-dependent effective thermal
conductivity in good agreement with the ab initio MC solution
of the linearized phonon Boltzmann equation with the full
scattering term [20], as shown in Fig. 7. A spatial grid
Nx = 2, Ny = 101, spectral nodes NL = 8,NT = 8,NZ = 8,
and angular resolution Nθ = 96 have been adopted in the
present numerical simulation after independence verification.

D. Heat transport in a rectangular graphene ribbon

In this subsection, we consider heat transport in a rectangu-
lar graphene ribbon with both a finite length and finite width as
seen in Fig. 8. In contrast to the case in Sec. III C, isothermal
boundary conditions are applied on the left-hand and right-
hand ends of the simulation domain. The nonthermalizing
diffuse scheme is still used for the adiabatic lateral edge. We
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FIG. 8. Schematic of heat transport in a rectangular graphene
ribbon with a length L and width W.

compare the effective thermal conductivity of graphene ribbon
predicted by the present DOM solution to the results in a recent
well-known experimental measurement on a graphene ribbon
with a width 1.5 μm and a length from 300 nm to 9 μm
[34]. A spatial grid Nx = 101, Ny = 51, spectral nodes NL =
NT = NZ = 8, and angular resolution Nθ = 48 are used in
the present numerical simulation after an independence check.
The agreement between the DOM solution and experimental
data is appreciably good when the length of the graphene
ribbon is smaller than about 1 μm, as shown in Fig. 9.
However, the experimental results are lower than the predicted
effective thermal conductivity at larger length of the graphene
ribbon. This overestimation has also been obtained in previous
theoretical modeling of the same heat transport in a rectangular
graphene ribbon [20,28,33]. It may be explained by the factors
in a realistic situation such as finite graphene grain size and
defects that have been neglected in the present modeling
and that would induce further phonon scattering and thermal
resistance. The ab initio MC solution of the linearized phonon
Boltzmann equation with the full scattering term [20] is also
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FIG. 9. Length-dependent effective thermal conductivity of sus-
pended monolayer rectangular graphene ribbon with a width 1.5 μm
at room temperature (T = 300 K): the filled squares with error bars
represent the experimental data [34], the hollow squares represent
the ab initio Monte Carlo (MC) solution of the linearized phonon
Boltzmann equation with the full scattering term [20], whereas the
line with circles denotes the present discrete-ordinate-method (DOM)
solution of the phonon Boltzmann equation under Callaway’s model
with Nx = 101, Ny = 51, NL = 8, NT = 8, NZ = 8, Nθ = 48.

included for a comparison, which shows a general consistence
with the present DOM solution. The slight difference between
DOM and ab initio MC results may be attributed to the present
simplification of the phonon dispersion and relaxation time.
In all, the present DOM numerical framework displays an
overall good performance in modeling heat transport through
finite-size nano- and micro-graphene-ribbons.

IV. RESULTS AND DISCUSSION

In this section, we will apply the validated numerical
methodology to study several important issues in heat transport
through two-dimensional materials. As our method makes a
direct treatment of the phonon-boundary scattering, we adopt
it as a benchmark to evaluate the empirical expressions of the
boundary scattering rate in previous ab initio solutions of the
phonon Boltzmann equation or in Callaway’s lattice thermal
conductivity model in Sec. IV A. Furthermore, the present
method is an efficient platform for modeling heat transport in a
rectangular graphene ribbon with various lengths and widths.
Thus we explore the width influence on the long debating
length divergence of lattice thermal conductivity of graphene
ribbon in Sec. IV B. Finally, we investigate the phonon
Knudsen minimum and provide a theoretical prediction of it
in the graphene ribbon system. The existence condition of this
special hydrodynamic phenomenon is also quantified. Through
the present methodology, it becomes feasible to obtain the
details of spatial dependent heat flow profiles, which are crucial
to understand the physical picture and underlying mechanism
of heat transport through two-dimensional materials.

A. Examining the empirical boundary scattering rate

In the ab initio solution of the linearized phonon Boltzmann
equation with the full scattering term, the phonon-boundary
scattering is treated by adding an additional homogeneous scat-
tering rate into the intrinsic scattering matrix [19,20,23,24,27].
Since phonon-boundary scattering at the interface is essentially
different from the intrinsic phonon scattering within the
material, such a treatment may introduce some error. As shown
in a recent work [20], the maximal error by the widely used
boundary scattering rate 1/τB = 2|vgy |/W reaches the order of
30% at room temperature. When such a boundary scattering
rate is added to the resistive scattering rate in Eq. (40) and
Eq. (41), i.e., 1/τR = 1/τU + 1/τI + 1/τB, Callaway’s lattice
thermal conductivity model produces exactly the same result
as the ab initio solution, as seen in Fig. 10(a). Actually, there
are several different empirical expressions for the boundary
scattering rate in the ab initio solution or Callaway’s lattice
thermal conductivity model, as summarized in Table I for heat
transport in an infinitely long graphene ribbon. The empirical
expressions for heat transport in an infinitely wide graphene
ribbon are similar except a substitution of W and |vgy | by L

and |vgx |, respectively. These empirical expressions originate
from the Fuchs-Sondheimer (F-S) model for phonon transport
[55,60], with 1/τB = 2|vgy |/W being the small-width limit
and 1/τB = |vgy |/W being the large-width limit. As the
F-S model is based on the phonon Boltzmann equation
under the SMRT approximation, it remains elusive whether
it is plausible to incorporate the F-S boundary scattering
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FIG. 10. Width-dependent effective thermal conductivity of an
infinitely long suspended monolayer graphene ribbon at room
temperature (T = 300 K): (a) comparison between the present DOM
solution of the phonon Boltzmann equation under Callaway’s model
(line with circles) and the ab initio MC solution of the linearized
phonon Boltzmann equation with the full scattering term (hollow
squares) [20], and between Callaway’s lattice thermal conductivity
model (dot-dashed line) and the ab initio solution of the linearized
phonon Boltzmann equation with the full scattering term (hollow
diamonds) [20] with the same empirical expression of the boundary
scattering rate; (b) comparison between the present DOM solution
of the phonon Boltzmann equation under Callaway’s model (line
with circles) and Callaway’s lattice thermal conductivity model
with different empirical expressions of boundary scattering rates (cf.
Table I).

rates into Callaway’s lattice thermal conductivity model [33].
Therefore we examine Callaway’s lattice thermal conductivity
model with the empirical boundary scattering rates in Table I
through comparing to the present DOM solution. As shown
in Fig. 10(b), most of the empirical boundary models will
result in an appreciable amount of underestimation as large
as 30% at room temperature. It is also found that Callaway’s

lattice thermal conductivity model with boundary scattering
rate 1/τB = |vgy |/W represents an acceptable approximation
to the direct DOM solution.

We also examine Callaway’s lattice thermal conductivity
model with empirical boundary scattering rates for heat
transport in a rectangular graphene ribbon, as summarized
in Table II. The physical and numerical model is the same
as that in Sec. III D, with the results given in Fig. 11. The
simple boundary scattering rate 1/τB = vg(1/W + 1/L) over-
estimates the effective thermal conductivity of the graphene
ribbon when its length L is smaller than the width W = 1.5μm,
whereas it underestimates the value when its length is larger
than the width. This can be explained by the fact that this
boundary model averages the phonon scatterings from length
edge and from width edge, and does not distinguish between
them. Similar results and trends are obtained for Callaway’s
lattice thermal conductivity model with the other F-S empirical
boundary scattering rate. A direct numerical solution of the
phonon Boltzmann equation is indispensable for describing
heat transport through a rectangular graphene ribbon. The
current deterministic ab initio approaches are not capable
of modeling such a heat transport case due to the limitation
from the treatment of phonon-boundary scattering. The present
methodology provides an efficient tool for fast evaluation of
the effective thermal conductivity of a graphene ribbon with
different geometrical shapes including rectangular, triangular,
trapezoidal, and so on. The DOM scheme avoids the numerical
fluctuations in ab initio MC scheme [20] especially in the
near-continuum regime. In addition, the present method based
on the phonon Boltzmann equation is applicable for a much
broader range of graphene ribbon size in comparison to the
MD simulation.

B. Length divergence of lattice thermal conductivity
of graphene ribbon

The lattice thermal conductivity of three-dimensional
dielectric materials is known to converge to a constant
value as the system size increases unlimitedly. The situation
becomes much more complicated for heat transport in low-
dimensional nanomaterials. The lattice thermal conductivity
of a one-dimensional momentum-conserving system has been
theoretically predicted to diverge with the system size as
κ ∝ Lα with α ≈ 1/3 [61], and experimentally verified in
carbon nanotubes up to millimeter-scale length [62]. For the
two-dimensional system, the numerical study on nonlinear
lattices [63] shows the thermal conductivity increases with
lattice length logarithmically. In contrast, a macroscopic
upper limit of thermal conductivity of graphene ribbon is
obtained in direct molecular dynamics simulations [56,64].
In a recent experimental measurement [34], the lattice thermal
conductivity of a graphene ribbon demonstrates a logarithmic
dependence on the ribbon length from 300 nm to 9 μm.
This logarithmic divergence has been later uncovered to be
attributed to the hydrodynamic phonon transport driven by
the nonresistive normal scattering for ribbon length smaller
than 100 μm, while a convergence will be reached for
ribbon length beyond 100 μm due to the coupling between
in-plane and out-of-plane phonon modes [33]. A strong width
dependence of lattice thermal conductivity for a specific
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TABLE I. Summary of empirical expressions for the boundary scattering rate in the ab initio solution of the linearized phonon Boltzmann
equation with the full scattering term or in Callaway’s lattice thermal conductivity model for heat transport in an infinitely long graphene
ribbon. τint is the relaxation time of intrinsic phonon scattering processes: 1/τint = 1/τU + 1/τI + 1/τN.

Empirical expressions Description References

1
τB

= |vgy |
W

1−exp(−W/τint|vgy |)
1−τint|vgy |/W [1−exp(−W/τint|vgy |)] Fuchs-Sondheimer (F-S) model [33]

1
τB

= |vgy |
W

Large width limit of F-S model [24]

1
τB

= 2|vgy |
W

Small width limit of F-S model [19–21,27]
1
τB

= vg

W
Empirical [23]

graphene ribbon length is found in recent theoretical studies
[28,33,65]. However, the influence of the graphene ribbon
width on the length divergence or convergence of lattice
thermal conductivity remains ambiguous. Previous MD sim-
ulations [56,64] consider the infinitely wide graphene ribbon
limited by computational capability, whereas the experimental
study [34] uses a graphene ribbon with a specified width caused
by the difficulty in sample preparation. As our computational
method provides a feasible avenue to modeling heat transport
in a rectangular graphene ribbon with arbitrary length and
width, we explore such a width-dependent length divergence
of the lattice thermal conductivity.

We consider the heat transport at room temperature in a
rectangular graphene ribbon with a width 100 nm, 500 nm, and
1.5 μm, and various lengths from a few tens of nanometers to
hundreds of micrometers. The physical and numerical model
for the DOM solution is the same as that in Sec. III D. The
length-dependent effective thermal conductivity of graphene
ribbons at different widths is shown in Fig. 12. For the
graphene ribbon with a width 1.5 μm consistent with that
in a recent experimental study [34], a nearly logarithmic
dependence of thermal conductivity is obtained for ribbon
lengths within 0.1 μm ∼ 10 μm, which exactly covers the
length scope 300 nm ∼ 9 μm of the measured samples in
Ref. [34]. The lattice thermal conductivity converges to an
upper limit beyond a length at about 80 μm. The convergence
of lattice thermal conductivity will be reached at a smaller
length of about 50 μm and 10 μm for a smaller ribbon width
of 500 nm and 100 nm, respectively. On the other hand, the
upper limit of the thermal conductivity will also reduce with
decreasing ribbon width, with a value about 2600 (W/m K),
1900 (W/m K), and 900 (W/m K) for a width 1.5 μm, 500 nm,
and 100 nm, respectively.

To understand the physical mechanism of width-dependent
length convergence of lattice thermal conductivity, we further
demonstrate the heat flow details in thermal transport through
a graphene ribbon. The normalized cross-sectional heat flux
profiles in a graphene ribbon with a width 100 nm and 1.5 μm
at various lengths are given in Fig. 13(a) and Fig. 13(b),

respectively. For a specific ribbon width, the heat flux profile
will develop gradually with increasing ribbon length, and
approaches the infinite-length limit finally. The heat flux
profile at the infinite-length limit is very dependent on the
ribbon width: a larger width results in a profile closer to the
bulk limit. The results can be explained from the perspective
of thermal resistance mainly as a function of the ratio of
average phonon mean-free path (MFP) to ribbon size. The
intrinsic average phonon MFP of monolayer graphene has been
reported to be on the order of magnitude of 1 μm [11,56,66].
The effective MFP of phonon transport along a sufficiently
long graphene ribbon will be affected by the lateral size,
i.e., the ribbon width. When the ribbon width is smaller than
the intrinsic average MFP, the MFP is reduced by the lateral
boundary confinement to an effective value approximately the
ribbon width. When the ribbon width is larger than the intrinsic
average MFP, the effective MFP remains almost the intrinsic
value. Therefore, for the considered graphene ribbons with a
width 100 nm, 500 nm, and 1.5 μm, the effective MFPs are
estimated as 100 nm, 500 nm, and 1 μm, respectively. To reach
the infinite-length limit of heat transport, the ribbon length
should be larger than about 100 times the effective phonon
MFP, inversely the average Knudsen number smaller than 0.01
corresponding to the continuum limit. As a result, we acquire
the width-dependent length convergence of lattice thermal
conductivity of a graphene ribbon with the convergence length
about 10 μm, 50 μm, and 100 μm separately. For a graphene
ribbon with a width larger than 1.5 μm, the convergence length
lies more or less within the range of one to a few hundred
micrometers. The estimated convergence lengths based on the
present MFP analysis are generally consistent with the results
obtained in Fig. 12.

C. Phonon Knudsen minimum and existence condition

The Knudsen minimum phenomenon was first observed
by Knudsen in 1909 in his experimental study of rarefied
gas flow through glass capillary tubes in transition and free
molecular flow regimes [67]. The mass flow rate normalized

TABLE II. Summary of empirical expressions for the boundary scattering rate in Callaway’s lattice thermal conductivity model for heat
transport in a rectangular graphene ribbon.

Empirical expressions Description References

1
τB

= vg

LE
Empirical: 1/LE = 1/W + 1/L [32]

1
τB

= 1
τB, L

+ 1
τB, W

Both 1
τB, L

and 1
τB, W

using the Fuchs-Sondheimer (F-S) model [33]
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FIG. 11. Length-dependent effective thermal conductivity of a
suspended monolayer rectangular graphene ribbon with a width
1.5 μm at room temperature (T = 300 K): the line with circles
denotes the present discrete-ordinate-method (DOM) solution of
the phonon Boltzmann equation under Callaway’s model, whereas
the solid line and dashed line represent Callaway’s lattice thermal
conductivity model with empirical expressions of the boundary
scattering rate (cf. Table II).

by its free molecular flow limit shows a minimum at Kn ∼ 1.
This interesting phenomenon provides important information
about the scaling of transport resistance in different gas flow
regimes, and has induced lots of theoretical and experimental
studies [67]. A similar effect in phonon transport has also
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FIG. 12. Length-dependent effective thermal conductivity of a
suspended monolayer rectangular graphene ribbon with different
widths at room temperature (T = 300 K): the filled squares denote the
experimental data at 300 K of a graphene ribbon with a width 1.5 μm
from the literature [34], the filled diamonds denote the experimental
data at 297 K of graphene ribbon sample 1 with a width 2.8 μm and
sample 4 with a width 4.08 μm from the literature [35], whereas the
solid lines with circles denote the present results by the DOM solution
of the phonon Boltzmann equation under Callaway’s model.
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FIG. 13. Normalized cross-sectional heat flux distributions along
the vertical center line in heat transport through a suspended
monolayer rectangular graphene ribbon at room temperature (T =
300 K): (a) graphene width 100 nm; (b) graphene width 1.5 μm. The
red solid lines denote the infinite-length limit (cf. Sec. III C), whereas
the dashed lines denote the bulk limit (infinite graphene).

been obtained in theoretical calculation [68] and observed in
experimental measurement [69,70] in liquid helium below
0.7 K. Although the phonon Knudsen minimum has been
anticipated to exist in a dielectric solid or semiconductor
when the normal process is dominant and size effect plays
a role [1,26], it has not yet been directly predicted or observed
in solids due to the lacking of feasible computational or
experimental methodology, to our best knowledge. Since the
heat transport in a graphene ribbon satisfies the mentioned
prerequisites, we provide a theoretical prediction of the phonon
Knudsen minimum in a solid based on the DOM solution of
the phonon Boltzmann equation under Callaway’s model. The
physical and numerical models here are the same as those in
Sec. III C.

To separate the effect of phonon scattering from carbon
isotopes, we first consider heat transport in an isotopically
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FIG. 14. Nondimensional heat flow rate versus width of an
infinitely long suspended monolayer graphene ribbon with 0% 13C
(isotopically pure) at different temperatures: Knudsen’s minimum is
obtained at temperature smaller than about 50 K.

pure graphene ribbon. Similarly to the normalized mass flow
rate in gas flow [67], the nondimensional heat flow rate is
defined as the ratio of average heat flux to ballistic heat flux:

Q =
1
W

∫ W

0 qx(y)dy

−λb
W
〈�〉

dT
dx

, (42)

which can be also understood as the effective thermal con-
ductivity normalized by the Casimir limit: λb

W
〈�〉 ∼ CV 〈vg〉W

[68]. The average phonon mean-free path is calculated from
〈�〉 = ∑

p

∫
Cω,p�ω,pdω/

∑
p

∫
Cω,pdω. The phonon Knud-

sen minimum is obtained when the temperature is smaller than
about 50 K as shown in Fig. 14. Taking the typical numerical
result at 30 K for analysis, the nondimensional heat flow rate
decreases with increasing width and reaches a minimum at a
width of about 10 μm (referred to as the first stage). Then the
nondimensional heat flow rate starts to increase with increasing
width and reaches a maximum at a width of about 100 μm
(referred to as the second stage). Finally, the nondimensional
heat flow rate decreases with increasing width again (referred
to as the third stage). These three stages with distinct features
are dictated by different heat transport mechanisms. In the
first stage, heat transport is mainly dominated by phonon-
boundary scattering, which is very similar to the microscale
gas flow in the late transition regime and free molecular flow
regime. The heat flux profile becomes more flattened as the
graphene width decreases below 10 μm, which indicates a
smaller thermal resistance and a larger nondimensional heat
flow rate. In the second stage, the momentum-conserving
phonon-phonon normal scattering becomes dominant over the
phonon-boundary scattering. Phonon transport resembles the
Poiseuille gas flow in the slip regime and early transition
regime as shown in Fig. 15, where parabolic heat flux profiles
with a slip at the boundary are observed. With the graphene
width increasing from 10 to 100 μm, the rarefication effect and
amount of heat flux slip decrease, and the total heat flow rate
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FIG. 15. Evidence of phonon Poiseuille flow and Knudsen’s
minimum: normalized cross-sectional heat flux distribution in heat
transport through an infinitely long suspended monolayer graphene
ribbon with 0% 13C (isotopically pure) at 30 K. The inset figure
demonstrates the phonon Knudsen minimum which take places at
about a graphene width of 10 μm.

thus increases nearly as the well-known third power of width
in the Poiseuille flow. As a transition from the first stage to
the second stage, the phonon Knudsen minimum represents
a balance between the rarefication effect due to boundary
scattering and the collective effect due to normal scattering. In
the third stage, some phonon umklapp scattering would take
place as the width increases to be comparable to its mean-free
path, where the heat flow rate is nearly proportional to the
first power of the width. The obtained maximum denotes a
balance between the normal scattering and umklapp scattering.
When the average temperature in the graphene ribbon is higher
(>50 K), the phonon normal scattering and its effect will
be weakened in the second stage. The momentum-destroying
phonon-phonon umklapp scattering will destroy the phonon
Poiseuille flow and the heat flux profile becomes no longer
parabolic, as shown in Fig. 16. The umklapp scattering
tends to introduce homogeneous thermal transport resistance
throughout the system such that the heat flux profile away from
the boundary becomes nearly uniform. The phonon Knudsen
minimum will disappear with the nondimensional heat flow
rate continuously decreasing as the width is enlarging.

The effect of carbon isotopes on the phonon Knudsen
minimum is then studied in a graphene ribbon at an aver-
age temperature 40 K, with the isotope concentration from
isotopically pure (0% 13C) to 5% 13C taken into account. The
phonon Knudsen minimum disappears when the concentration
of 13C is larger than about 0.5%, as shown in Fig. 17. The
resistive phonon-isotope scattering has similar influence to
that of phonon umklapp scattering on heat transport, and will
destroy the collective effect from phonon normal scattering.
With isotope concentration increasing from 0% to 5%, the heat
flux profile turns from parabolic to exponential, as shown in
Fig. 18. The hydrodynamic phonon transport in a graphene
ribbon is very sensitive to the carbon isotope, a tiny amount
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FIG. 16. Normalized cross-sectional heat flux distributions in
heat transport through an infinitely long suspended monolayer
graphene ribbon with 0% 13C (isotopically pure) and a width 50 μm
at different temperatures.

of which will deteriorate the hydrodynamic effects. In order to
detect the experimental evidence of the phonon hydrodynamic
phenomenon in two-dimensional nanomaterials predicted by
recent theoretical studies [25,26], one should carefully control
the isotope concentration in graphene ribbon. According to
the present results, it is difficult to observe the hydrody-
namic phonon transport in graphene ribbon with natural
abundancy. The isotopically purified graphene ribbon [59]
is recommended as a better platform for future experimental
exploration.

To quantify the destruction effect of resistive phonon
scattering including the umklapp scattering and isotope
scattering, we compute the ratio of the average linewidth of
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FIG. 17. Nondimensional heat flow rate versus width of an
infinitely long suspended monolayer graphene ribbon with different
isotope concentrations at 40 K. Knudsen’s minimum is obtained at
an isotope concentration smaller than about 0.5%.
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FIG. 18. Normalized cross-sectional heat flux distributions in
heat transport through an infinitely long suspended monolayer
graphene ribbon with a width 30 μm and different isotope concen-
trations at 40 K.

normal scattering to that of intrinsic resistive scattering. The
average linewidth of a specific phonon scattering has been
defined as [25]

�i =
〈

2π

τi

〉
=

∑
p

∫
Cω,p2π/τi(ω,p,T )dω∑

p

∫
Cω,pdω

, (i = N,U,R).

(43)

The ratio of the average linewidth of normal scattering to that
of intrinsic resistive scattering (�N/�R) versus temperature
at different isotope concentrations in infinite graphene ribbon
is given in Fig. 19. We deduce that the phonon Knudsen
minimum can take place in a graphene ribbon only when
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FIG. 19. Ratio of the average phonon normal scattering linewidth
to the average intrinsic phonon resistive scattering linewidth versus
temperature in an infinite suspended monolayer graphene ribbon at
different isotope concentrations. The horizontal dashed line repre-
sents the threshold for existence of the phonon Knudsen minimum.
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�N/�R � 100, i.e., when the average normal scattering rate
is stronger than 100 times the average intrinsic resistive
scattering rate. For an isotopically pure graphene ribbon, this
condition is satisfied when the average temperature is lower
than about 45 K, which is consistent with the threshold value
(∼50 K) obtained in Fig. 14. At an average temperature 40
K, this condition is satisfied only when the abundancy of 13C
is smaller than about 0.3%, which is in accordance with the
threshold value (∼0.5%) obtained in Fig. 17. Although normal
scattering has been found to dominate over resistive scattering
in graphene in the whole temperature scope [24–26], the
phonon Knudsen’s minimum could only be observed at very
low temperature and low isotope concentration where the
normal scattering rate is two orders of magnitude stronger than
the intrinsic resistive scattering rate. Even a very small portion
of resistive scattering would destroy the collective effect of
normal scattering and this special hydrodynamic phenomenon.

V. CONCLUSIONS

We develop a discrete-ordinate-method (DOM) scheme
for numerical solution of the phonon Boltzmann equation
under Callaway’s dual relaxation model to study heat transport
in two-dimensional materials. Our scheme represents not
only a good approximation to the ab initio calculation of
phonon dynamics; it also overcomes the empirical treatment
of phonon-boundary scattering in the latter. A validation
of our methodology is demonstrated by modeling heat

transport in infinitely wide, infinitely long, and rectangular
graphene ribbons, which shows an overall good agreement
with previous molecular dynamics simulation, ab initio Monte
Carlo simulation, and experimental results. Callaway’s lattice
thermal conductivity model with several empirical boundary
scattering expressions is evaluated and shown to overestimate
or underestimate the DOM results. The length convergence of
lattice thermal conductivity of rectangular graphene ribbon
is found to be much dependent on the ribbon width. The
convergence length is estimated to be about hundred times the
effective phonon mean-free path (MFP) assumed as the smaller
one among the ribbon width and the intrinsic average phonon
MFP. The phonon Knudsen minimum is predicted to take place
in a graphene ribbon only when the average normal scattering
rate is stronger than 100 times the intrinsic resistive one at
sufficiently low temperature and isotope concentration. The
present methodology is also available for modeling heat trans-
port in other promising two-dimensional nanomaterials such
as the molybdenum disulphide, boron nitride, and so on [25].
It is straightforward as well to generalize our approach to one-
dimensional [71] and three-dimensional [72] materials where
the phonon collective effect is significant with potential new
physics and more applications to be discovered in the future.
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