
Reactive Transport of Protons in Electro-Osmotic Displacements
with Electrolyte Concentration Difference in a Microcapillary
Li Zhang,† Colin J. McNeece,‡ Marc A. Hesse,‡,§ and Moran Wang*,†,∥

†Department of Engineering Mechanics, and ∥Center for Nano and Micro Mechanics, Tsinghua University,
Beijing 100084, China
‡Department of Geological Sciences, and §Institute of Computational Engineering and Sciences, University of Texas at Austin,
Austin, Texas 78712, United States

*S Supporting Information

ABSTRACT: In this work, we model electro-osmotic displacement with electrolyte
concentration difference in a microcapillary by incorporating proton transport coupled
with surface complexation reaction and carbonate equilibrium. The hysteretic effect
observed in experiments is well-captured by the model. By deriving the semianalytical
solution of the nonlinear transport equation using method of characteristics, we eluci-
date the transport mechanism of protons by classifying their nonlinear transport behavior
(shock/rarefaction/discontinuity) into several regimes depending on the concentration
ratio and the pH. The model can be used to predict pH variation and characterizes
surface property in electro-osmotic experiments.

Electro-osmotic flow (EOF) refers to flow driven by an
electrical force exerted on the electrical double layer

(EDL) at the solid/liquid interface under an applied electrical
field. In microfluidic devices, electro-osmosis has been
extensively used as a nonmechanical flow control technique
for pumping,1,2 analyte separation,3 and mixing of fluids4 and
offers new methods to characterize the surface potential of
composite microchannels5 and protein adsorption.6 Significant
efforts have been exerted toward the understanding of electro-
osmotic flow in uniform solutions.7−10 However, less attention
has been paid to the nonuniform electro-osmotic flow, i.e.,
displacing one solution by another with different concentration
or ionic components.11 This electro-osmotically driven displace-
ment flow is commonly found in the operations of microfluidic
devices and has also been used in the current monitoring method
to measure the electro-osmotic velocity and ζ-potential.12,13

As the receding solution is displaced by the displacing solu-
tion, the solution chemistry in the channel changes gradually.
Since surface charge and the electrical field are generally
dependent on the solution chemistry, the displacement process
will be controlled by a time-dependent electro-osmotic velocity.
Interestingly, it is experimentally observed that the displace-
ment time by electro-osmosis differs depending on the flow
direction. Specifically, the displacement time of a low-concen-
tration solution by a high-concentration solution is longer than
vice versa.14 This is called electro-osmotic flow hysteresis to
emphasize the dependence of displacement time on the flow
direction.15

Previous models for displacement flow by EOF14,16−18 only
focus on the transport of salt ions, ignoring the effect of proton

transport. These models fail to capture the observed hysteretic
behavior. Recently, Lim et al.15 proposed a new model
incorporating proton transport with surface complexation and
full solution chemistry in the electrolyte solution. The two-
dimensional simulation in a miniature system shows good
agreement with the experimental results. The authors found
that the dependence of proton transport behavior on the flow
direction is responsible for the observed hysteretic behavior.
In short, due to the change of electrical field across the dis-
placing interface, there is an imbalance of proton flux, leading
to a proton accumulation/depletion zone depending on the
flow direction. Further evidence of pH variation is provided in
Lim et al.19 using fluorescence imaging. The authors also
present a one-dimensional model by replacing the Navier−
Stokes equation in the two-dimensional model by an averaged
Helmholz−Smoluchowski (H−S) formula.
In this work, we build a one-dimensional model for proton

transport with simple solution chemistry and without disper-
sion to highlight the fundamental interactions, and then to
present a mathematical analysis that gives insight into the root
cause of hysteresis in EOF displacement. By comparing with
the experimental results, we show that our model well-captures
the hysteretic effect. Furthermore, our model allows analysis of
the mathematical structure of the physical problem and gen-
eralizes the transport behavior of protons under a broader
range of conditions.
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■ MATHEMATICAL FORMULATION AND
SEMIANALYTICAL SOLUTION

We model the electro-osmotically driven displacement of two
solutions in a negatively charged capillary with radius Ra and
potential difference ψL − ψR = Δψ. A solution with
concentration CR and conductivity σR is displaced by another
solution with concentration CL and conductivity σL as depicted
in Figure 1. Two main assumptions are made to simplify

the model. First, the thickness of EDL is assumed to be much
smaller than the radius of the capillary, i.e., λD ≪ Ra, where λD
is the Debye length. For a typical microcapillary with Ra ≈
50 μm and a concentration of 1 mM, the ratio of λD to Ra is
about 2 × 10−4. In this case, if the ζ-potential is not too large,
the Dukhin number characterizing the contribution of surface
conductivity is small.20 Therefore, only the bulk conductivity
needs to be considered in the electric current. Additionally,
this thin double layer assumption makes it possible to study
EOF in a nonuniformly charged system using an averaged EOF
velocity without solving the detailed two-dimensional axisym-
metric problem.21

The second assumption is that the diffusive flux of ions is
much smaller than the advective flux so that a sharp interface
between the two solutions persist during the displacement.
The Peclet number, Pe, characterizing advective flux over
diffusive flux for the electrolyte solution is estimated as Pe =
VEOFRa/D = (−ϵζΔψRa)/(ηDL). By taking a typical ion
diffusion coefficient D = 1 × 10−9 m2/s and a typical
ζ-potential used in experiment ζ = −50 mV and other
parameters in Table 1, Pe is about 20 so that the sharp
interface assumption of the electrolyte solution is generally
valid. Strong mixing occurs near the interface due to the
discontinuity of the wall electro-osmotic velocity, but it is
generally confined in a small region for a slender capillary
with large aspect ratio considered here. Additionally, a

diffusio-osmotic flow can be induced by concentration
difference. It is shown in the Supporting Information that
this diffusio-osmotic flow can be generally neglected compared
to the electro-osmotic counterpart. Hydrodynamic dispersion
owing to variations in wall electro-osmotic velocity may play an
important role if the concentration difference becomes larger,
but it will not change the general transport behavior
determined by hyperbolic analysis.22 In cases that the solution
chemistry is complicated, such as for dissimilar anionic
solutions in Lim et al.,11 or the concentration difference is
very large, which can potentially generate strong dispersion
due to variation of electro-osmotic slip velocity, a full
simulation in 2D/3D would be necessary and provides detailed
insight into the complicated process. On the basis of these two
assumptions, a one-dimensional model is established to predict
both the movement of the interface XI and the time-dependent
electric current I. In the following, we first revisit a one-
dimensional EOF displacement model without proton trans-
port first obtained by Tang et al.18 and prove that this model
cannot capture the hysteretic effect. Then, the reactive trans-
port of protons is considered by incorporating a surface
complexation reaction of silica and carbonate equilibrium due
to CO2 dissolution. The nonlinear reactive transport equation
for this model is solved semianalytically by constructing the
displacing fronts, i.e., shocks, rarefaction, or discontinuity.

EOF Displacement without Proton Transport. By
ignoring the diffusive flux of ions and the diffusion potential
induced by the mismatch of ion diffusivities, the transport
equation of electrolyte solution reads

∂
∂

+ ∂
∂

=C
T X

V T C( ( ) ) 0EOF (1)

where C is the concentration of electrolytes, e.g., KCl, and
VEOF is the time-dependent electro-osmotic velocity. Together
with the inflow boundary condition C(0, T) = CL and the
initial condition C(X, 0) = CR, eq 1 gives a simple traveling
wave solution consisting of piecewise constants:
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Figure 1. Schematic of electro-osmotic displacement of two solutions
with different concentrations in a microcapillary.

Table 1. Parameters Used to Predict the Electric Current Curve in Figure 6

parameter valuea

temperature TK 298 K
dynamic viscosity η 0.89 × 10−3 Pa s
permittivity of solution ϵ0 80 × 8.854−12 C/(V m)
diffusion coefficient of H+ 9.312 × 10−9 m2/s
diffusion coefficient of HCO3

− 1.105 × 10−9 m2/s
equilibrium constant of H+−HCO3

− equilibrium Keq 5.34 × 10−12 (mol/L)2

equilibrium constant of silanol deprotonation Kdep 6.31 × 10−8 mol/L
maximum surface sites density Γmax 8 × 1018 m−2

capillary length L 8 × 10−2 m
capillary radius Ra 50 × 10−6 m
potential difference Δψ 1000 V
concn of KCl solution 0.2 and 1 mM
pH of KCl solution 5.62 and 5.73

aDiffusion coefficients of H+, HCO3
− from ref 33; Keq from ref 30; Kdep and Γmax from ref 11.
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The continuity of electric current gives

σ σ= =I AE AEL L R R (3a)

where A = πRa
2 is the cross-sectional area. The total potential

drop across the capillary is

ψΔ = + −E X E L X( )L I R I (3b)

Combining eq 3a and eq 3b, EL and ER are solved as

ψ
γ

γ
=

= Δ
+ −
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I I
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R L I

(4)

where γ = σL/σR denotes the conductivity ratio. The non-
uniform distribution of concentration leads to a nonuniform
distribution of surface charge, which will generally induce
a two-dimensional flow pattern by external electrical field.
A similar heterogeneously charged electrokinetic system has
been studied for active control23,24 or due to structural surface
heterogeneities25 or surface reaction.26,27 Although the H−S
formula for uniform surface charge cannot be directly applied
here, it has been proven that the H−S formula is still valid in
the averaged sense to describe the primary flow:21,28

η
ζ= − ϵ ⟨ ⟩V EEOF

(5)

where ∫⟨·⟩ = · X Ld /
L

0
is the longitudinal averaging operator,

ϵ is the permittivity, and η is the dynamic viscosity of the
solutions. The ζ-potential depends on the local chemistry of
the solution, i.e., the electrolyte concentration and pH:

ζ
ζ

ζ
=

⩽ ⩽

< ⩽

l
m
ooo
n
ooo

C X X T

C X T X L

( , pH ) for 0 ( )

( , pH ) for ( )

L L L I

R R R I (6)

where pHL and pHR are the pH of the left and the right
solution. Then, eq 5 can be written as

η
ζ ζ= − ϵ +
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(7)

The displacing interface moves at the speed of VEOF, i.e.,
dXI/dT = VEOF. Substituting eq 7 for VEOF and eq 4 for EL and
ER leads to an ordinary differential equation of XI:
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+ −
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Once XI is obtained by solving eq 8, the electric current is
determined by

ψσ
γ

=
Δ

+ −
I

A
X L X( )

L

I I (9)

Next, we introduce the following characteristic quantities to
nondimensionalize the problem:

η ζ ψ ζ ψ η

ψ ψσ

= = −ϵ Δ = −ϵ Δ

= Δ = Δ

x X L t T L v V L

E L i I A L

/ , /( /( )), /( / ),

/( / ), /( / )

2
ref EOF EOF ref

ref (10)

where ζref = −kBT/e and σref = max(σL,σR) are the reference
ζ-potential and conductivity with kB, TK, and e denoting the
Boltzmann constant, absolute temperature, and the elementary
charge, respectively. The two reference values are chosen to

make the characteristic time and electric current independent
of the direction of the displacement. We then rewrite eq 8 and
eq 9 in dimensionless forms:

ζ
β γ γ

γ γ
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− +
− +
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γ γ γ

=
− +

i
xmax(1, )((1 ) )I (12)

where β = ζL/ζR, ζR̅ = ζR/ζref, and γ are the three dimen-
sionless groups. Equations 11 and 12 are the same as eqs 13
and 5 in Tang et al.18 with a difference in notation. By integration,
eq 11 can be solved as

γ β
γ β γ
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− −
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−
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where t is the displacement time when xI = 1. We denote t′ and t″
as the displacement times with opposite flow directions.
It follows that γ′ = 1/γ′′, β′ = 1/β′′, and β′ = ζR̅″/ζR̅′.
Substituting into eq 11 shows that t′ = t″. Therefore, the
displacement time is independent of the flow direction. This
means that the hysteretic effect will not be observed in this
model even though the ζ-potential dependence on concen-
tration is considered. And it is worth noting that, as no surface
chemistry model has been introduced to relate β to γ, this
conclusion is valid for any surface chemistry models.

Proton Transport Model. To account for the hysteresis
phenomenon, Lim et al.15 proposed that the effect of proton
transport on the electro-osmotic displacement has to be con-
sidered. They argue that the electrical field has a sharp change
across the displacing interface (see eq 4) so that the elec-
tromigration flux of H+ is unbalanced at the interface. If EL >
ER, the flux drops across the interface, leading to an accu-
mulation of protons ahead of the interface, whereas if EL < ER,
the flux increases across the interface leading to depletion. This
will further change the averaged ζ-potential and the electro-
osmotic velocity VEOF. In order to achieve a clear understanding
of the proton transport behavior, we establish a reactive trans-
port model for protons to capture the essential physical mecha-
nism in the EOF displacement process. Specifically, the model
includes proton exchange on silica surface by surface complex-
ation reaction. Besides, we consider an open system connected
to the atmosphere so that carbonate equilibrium between
proton and carbonate species due to CO2 dissolution is
included.
First, a diffuse-layer surface complexation model is employed

to describe the surface reactions at the silica/solution
interface.29 This model assumes that the surface charge density
is dominated by the deprotonation reaction of silanol groups:

> ↔ > +− + KSiOH SiO H , dep (14)

so that the surface charge density ΣS = −[>SiO−]F, where
[>SiO−] is the surface concentration of >SiO− groups and F is
the Faraday constant. In this model, the equilibrium constant
of deprotonation Kdep and the maximum surface sites density
Γmax need to be characterized by ζ-potential measurements.
Further details on the surface complexation model are given in
the Supporting Information. Figure 2a shows the dependence
of ζ-potential on pH. In general, the magnitude of ζ-potential
increases with the increase of pH.
Besides surface complexation, the proton transport model

must also consider autoionization of water and carbonate
speciation due to CO2 dissolution:
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↔ ++ − KH O H OH ,2 w (14b)

+ ↔ KH O CO (aq) H CO ,2 2 2 3 h (14c)

↔ ++ − KH CO H HCO ,2 3 3 C1 (14d)

where the dissociation of bicarbonate into carbonate is ignored,
which is generally valid for pH below 8.5 as the bicarbonate
ion is still the dominant species in the carbonate speciation
diagram. Reactions in eq 14 involve eight components, and the
total concentration of four linearly independent basis compo-
nents are specified:

Σ = −{> } + { } − { } − { }− + − −H SiO H HCO OH3
(15a)

Σ = {> } + {> }−Si SiOH SiO (15b)

Σ = { } + { } + { }−C HCO CO (aq) H CO3 2 2 3 (15c)

Σ = { } + { } + { }−H O HCO H O H CO2 3 2 2 3 (15d)

where {} denotes bulk concentration in the solution, {>SiOH} =
ϕ[>SiOH], and {>SiO−} = ϕ[>SiO−] with ϕ = 2/Ra being the
surface to volume ratio of the capillary.
Transport of the total proton concentration is described by

the conservation equation:

∂
∂

−{> } + { } − { } − { }

+ ∂
∂

{ } − { } − { } =

− + − −

+ − −

T

X
f f f

( SiO H HCO OH )

( ( H ) ( HCO ) ( OH )) 0

3

3

(16)

where f denotes the flux of the component. The effect of sur-
face adsorption is rewritten as a retardation term as ∂{>SiO−}/
∂T = −ϕ∂SH+/∂T = −Rd ∂CH

+/∂T, where SH+ is the adsorbed
concentration of proton due to surface complexation and Rd =
2/Ra dSH+/dCH

+ is the retardation factor. In the following, we
make some simplifications to eq 16. First, we assume that the
solution is equilibrated with the atmosphere so that {CO2(aq)}
is a constant and given by Henry’s law. Combining eq 14c and
eq 14d gives

{ }{ } = { } =+ − K K KH HCO CO (aq)3 h C1 2 eq (17)

Typically, Keq ≫ Kw (e.g., at room temperature, Keq = 5.34 ×
10−12 mol2/L2 and Kw = 10−14 mol2/L2)30 so that {HCO3

−}≫
{OH−} and the effect of OH− is negligible. Then, the diffusive

flux is ignored. With these simplifications, eq 16 can be
written as

μ μ

∂
∂

+ ∂
∂

−

+ ∂
∂

− + + =

+
+

+

+
+

+ + −
+

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz
y

{
zzzzzz

R
C

T T
C

K

C

X
V C

K

C
E C

K

C
0

d
H

H
eq

H

EOF H
eq

H
H H HCO

eq

H
3

(18)

where CH
+ = {H+} and μH+ is the mobility of protons. By choos-

ing the characteristic proton concentration C̃H
+ = Keq ∼ 2.31 ×

10−6 mol/L such that cH+ = CH
+/C̃H

+, the dimensionless form of
eq 18 can be written as
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EOF H
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where μ̅H+ = μH+/(−ϵζref/η) is the dimensionless mobility of
proton and θ = μH+/μHCO3

− (∼8) is the mobility ratio of proton
and bicarbonate ion. Generally, eq 19 is a nonlinear hyperbolic
equation with discontinuous coefficient .
As shown in Figure 2b, the retardation factor increases with

pH and has only a minor effect on transport if the pH is lower
than 6 for a typical microfluidic capillary with radius Ra =
50 μm. On the contrary, the retardation factor becomes larger
than unity as pH increases. In this case, however, the chemical
equilibrium between H+ and HCO3

− will be dominant since
the nonlinear term 1/cH+ is much larger than cH+ so that the
retardation effect can be ignored. Therefore, we will generally
disregard the retardation effect in deriving the semianalytical
solution of eq 19. A numerical solution including the retarda-
tion term and a detailed discussion about the retardation effect
are given in the Supporting Information. It should be noted
that, with the decrease of the capillary radius, or more gen-
erally, the increase of the surface to volume ratio ϕ (usually
large in porous media), the retardation factor becomes large
and plays an important role in proton transport. The non-
linearity in the retardation term can generate more compli-
cated transport behaviors depending on the surface chemistry
models.31

Semianalytical Solution for Proton Transport. In this
part, we first present the solution for a reduced linear equation

Figure 2. pH dependence of (a) ζ-potential and (b) retardation factor Rd in the diffuse-layer surface complexation model. Ra = 50 μm is used in
computing Rd.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.8b00349
Anal. Chem. 2018, 90, 11802−11811

11805

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.8b00349/suppl_file/ac8b00349_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.8b00349
http://pubs.acs.org/action/showImage?doi=10.1021/acs.analchem.8b00349&iName=master.img-002.jpg&w=350&h=152


of eq 19. This linear model gives rise to the intuitive physical
picture of proton accumulation/depletion. Then, we derive a
semianalytical solution for the nonlinear equation by method
of characteristics, which has been routinely used for chromato-
graphic analysis in chemical engineering.22

If the concentration of proton is dominant over the concen-
tration of bicarbonate, i.e., cH+ ≫ 1/cH+, eq 19 can be simplified
to a linear form:

μ
∂
∂

+ ∂
∂

+ ̅ =
+

+ +
c

t x
v c(( ) ) 0H

EOF H H (20)

Because of the discontinuity in the electrical field , the
solution of eq 20 is made up of three piecewise constants:
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where ∫ μ* = + ̅ +x x tdI I H R is the position of a front
interface ahead of the displacing interface and the intermediate
concentration of proton cH+

* is determined from the mass
conservation at the displacing interface32 as

γ* = =+ + +c c c /H
L

R
H ,L H ,L

(22)

Correspondingly, the distribution of ζ-potential is
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By using eq 5 to calculate the averaged EOF velocity and
replace vEOF by dxI/dt, we obtain an ODE for xI:

∫
ζ

β γ γ γ β μ

γ γ
= ̅

− + + * − − ̅
− +

+( )x
t

x x t

x
d
d

( ) ( 1)min 1 , d

(1 )

t

I
R

I I 0 H R

I

(24)

where β* = ζ*/ζR and the minimum operator accounts for
both scenarios when xI* ⩽ 1 and xI* > 1. When β* = 1, the
intermediate pH is the same with that of the solution on the
right, and eq 24 reduces to eq 11 in the constant pH model.
However, since γ ≠ 1 in general, β* ≠ 1. Equation 24 is a
nonlinear integro−differential equation and needs to be solved
numerically. Figure 3 shows the characteristics and proton
concentration profile at t = 0.04. In Figure 3, panels a and b,
because the characteristic speed goes down (dt/dx increases)
across the displacing interface, protons accumulate in the inter-
mediate region. Contrarily, in Figure 3, panels c and d, proton
is depleted as the characteristic speed rises up.
To deal with the nonlinear eq 19, we introduce the following

accumulation function +c( )H and flux function +c( )H :
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to write eq 19 in a hyperbolic form

∂
∂

+ ∂
∂

=
t x

0
(26)

The characteristics of eq 26 are

θ
μ= = +

−
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d
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1/
1EOF

H
2

H
2 H

(27)

When cH+ ≫ 1, eq 27 reduces to the characteristics of the linear
proton transport eq 20:

μ= + ̅ +
x
t

v
d
d EOF H (28)

Note that the characteristics have two different branches due
to the difference between L and R . It can be proven that the

Figure 3. Characteristics and profile of proton concentration at t = 0.04 for the linear proton transport model (eq 20). Panels a and b demonstrate
the case of a low-concentration solution displacing a high-concentration solution (γ = 0.2), which leads to a proton accumulation zone. Panels c
and d show the case of a high-concentration solution displacing a low-concentration solution (γ = 5), leading to a proton depletion zone.
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characteristic speed dx/dt increases monotonically with cH+ in
eq 27. Therefore, instead of a proton accumulation/depletion
zone, there will be a shock/rarefaction wave ahead of the
displacing interface. The wave structures are constructed in an

− diagram shown in Figure 4 for a case with cH+
,L =

cH+
,R = 1 ( = 0). The two solid curves represent the two

branches of the flux function with L and R . L and R denote
the state of the left solution (displacing solution) and the right
solution (receding solution). , , and denote a
discontinuity path across xI, a shock path, and a rarefaction
path, respectively. For the case of a low-concentration solution
displacing a high-concentration one, the state first jumps from
L on the left branch to an intermediate state Rint on the right
branch, and then connects Rint to R by a shock path. For the
reverse case under the specified conditions, a direct jump from
L to the right branch is not possible. Hence, there must be a
shock path from L to Lint first and jumps from Lint to another
intermediate state Rint tangential to the right branch by the
discontinuity path . Finally, the state follows a rarefaction
path to the state of the right solution R. It can be proven that
these are the only admissible paths for each case. Details about
determining the intermediate states and a comparison with
numerical simulations are given in the Supporting Information.
Note that although the shape of the flux function changes with
time due to the change in , the intermediate states are proven
to be independent of time. The shock speed is determined by
the jump condition

= [ ]
[ ] (29)

where is the velocity and [·] is the jump across the shock.
As to the rarefaction wave, an implicit problem has to be
solved. To obtain the analytical solution is intractable for
this coupled process, so we solve it numerically. After con-
structing the wave structures and determining the intermediate
states, the profile of proton concentration can be constructed.
Then, the electro-osmotic velocity is obtained by eq 5. This
procedure is repeated for every time step. Note that the proton
transport behavior generally depends on the initial and the
final state and a thorough discussion on this topic will be given
in the results.

Figure 5 shows the characteristics and concentration profile
of the nonlinear model (eq 19) at t = 0.04. Compared with the
linear model, the shock wave in Figure 5b moves slower than
the front interface xI* in Figure 3b, but the intermediate value
is slightly larger than that in Figure 3b. The formation of the
rarefaction wave greatly smooths the depletion zone in Figure 3d
and will have an impact on the electro-osmotic velocity.

■ RESULTS AND DISCUSSION

In this section, we first show that the model presented above
captures the hysteretic effect by comparing with the experi-
mental results. Then, we extend the previous semianalytical
solution to general initial and injected proton concentrations
by presenting a regime diagram of proton transport behaviors.
Due to the discontinuity and nonlinearity in the system, the
intermediate pH may be out of the range of the initial and
injected pH. We will discuss when this “unexpected” pH occurs
and the effect of concentration ratio on the intermediate pH.
As stated previously, the electrical properties of the fluid are

a function of solution chemistry. Therefore, the electric current
can be used to monitor the EOF displacement process. Figure 6
shows the measurement of electric current in a microfluidic
experiment15 and the corresponding model predictions using
parameters in Table 1. It is worth mentioning that we use a
value of 9.312 × 10−9 m2/s for proton diffusion coefficient
instead of 7 × 10−10 m2/s used in Lim et al.15 as the former
one is more commonly used in classical literature.33 Because
the diffusion coefficient of proton is larger compared with that
of the electrolyte solution, the corresponding Peclet number
drops to around 2. This will smear any variation of the proton
concentration and reduce the hysteresis effect, but will not
change the basic transport behavior determined by the
hyperbolic analysis.22

As shown in Figure 5, the asymmetric proton transport
behavior for γ < 1 and γ > 1 will give rise to the hysteretic
effect. In the LH case, i.e., a low-concentration solution
displacing a high-concentration one, because of the accumu-
lation of proton in the intermediate state, the magnitude of the
averaged ζ-potential in the channel is reduced so that the
displacement time measured by the electric current increases.
On the contrary, the shorter displacement time in the HL case

Figure 4. Construction of the waves for (a) low concentration displacing high concentration and (b) high concentration displacing low
concentration at t = 0. , , and denote the shock, rarefaction, and discontinuity path, respectively. In this case, the initial and injected proton
concentration cH+

,L and cH+
,R are set to unity.
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is attributed to the fact that the induced depletion zone
increases the averaged ζ-potential. This hysteretic behavior can
be captured by both the linear and nonlinear proton transport
model, but the nonlinear model has a better quantitative
agreement with the experiment data for the HL case. As to the
LH case, the two predictions are similar because the shock
wave in the nonlinear model moves with a slower speed and
larger intermediate proton concentration than the front
interface xI* in the linear model, as shown by the proton
concentration profiles in Figure 5, panels a and b. Therefore,
the average ζ-potential is similar in both models. Although the
electric current in this case is generally smaller than the
experimental data, the predictability of the current model is
still acceptable considering no tunable parameters are
introduced. The equilibrium constant of deprotonation, Kdep,
and the maximum surface sites density, Γmax, in the surface

chemistry model are the same as that in Lim et al.,15 deter-
mined by fitting model with ζ-potential measurements. The
displacement times are sensitive to the values of Kdep and Γmax,
which suggests that the present model can be used to char-
acterize the surface property by monitoring the electric current,
similar to the idea in Kuo et al.5 although the authors use a
model without proton transport. The other possible reason for
the discrepancy may be that, in the LH case, the sharp shock
front is smoothed by dispersion effect and thus the shock
speed is reduced. This will compress the accumulation region
and increase the average ζ-potential in the system so that the
displacement time is decreased.
Next, the semianalytical solution constructed in the previous

section for the case cH+
,L = cH+

,R = 1 is extended to general
initial and injected proton concentration of the corresponding
solution. The proton transport behaviors can be categorized
into several regimes in a cH+

,L−cH+
,R diagram. For the LH case

with γ < 1, there are three regimes of the transport behavior
shown in Figure 7a, where cH+

,Rcrt
+ and cH+

,Rcrt
− are two critical

final states, determined by intersecting the discontinuity path
from L with the flux function of the right branch. Specifically, if
cH+

,R < cH+
,Rcrt

−, the initial state on the left branch will first
connect to an intermediate state by a slow-moving or even left-
moving shock, and then jump to the final state (regime ①).
If cH+

,R > cH+
,Rcrt

−, the initial state on the left branch will
first connect to cH+

,Rcrt
+ through the discontinuity, and then

connect to the final state by a shock (regime ②) or rarefac-
tion (regime ③) depending on the relative position of
cH+

,R to cH+
,Rcrt

+.
As regard to the HL case with γ > 1, the transport diagram is

divided into four regimes in Figure 7b, where cH+
,Lcrt and cH+

,Rcrt
are the critical initial and final state, respectively. The critical
final state cH+

,Rcrt is the one on the right branch with a slope of
vEOF and tangential to the discontinuity path. It can be ana-
lytically determined as

θ
θ

= −1
R int (30a)

Figure 5. Characteristics and profile of proton concentration at t = 0.04 for nonlinear proton transport model. Panels a and b demonstrate the case
of a low-concentration solution displacing high-concentration one (γ = 0.2). A shock wave ahead of the displacing interface is formed where the
characteristics collide. Panels c and d show the case of a high-concentration solution displacing low-concentration one (γ = 5). There is a
rarefaction wave ahead of and a shock wave behind the displacing interface. In this case, the initial and injected proton concentration cH+

,L and cH+
,R

are set to unity.

Figure 6. Comparison of electric current curves between experimental
results (ref 15) (squares) and model predictions using parameters in
Table 1 (dashed, linear model; solid, nonlinear model). LH denotes a
low-concentration displacing high-concentration case with γ = 0.2,
and HL denotes a high-concentration displacing low-concentration
case with γ = 5.
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which is only a function of θ. If cH+
,R > cH+

,Rcrt, the
corresponding critical state on the left branch is

θ
θ

γ θ
θ

γ= − − + −1 1
1L

2
int (30b)

The critical discontinuity jump is necessary to connect cH+
,Lcrt

and cH+
,Rcrt followed by a rarefaction wave. Depending on the

state of the left solution, there will be a shock (①) or
rarefaction (②) wave. If cH+

,R < cH+
,Rcrt, the critical left state

cH+
,Lcrt is a function of the final state cH+

,R. The discontinuity
jump connects the intermediate state on the left branch
directly to the final state on the right branch. Similarly, the
initial shock (③) or rarefaction (④) wave is determined by
the relative position between the initial state L and
the intermediate state Lint on the left branch. If γ = 1, the
two branches of the flux function collapse into one, and a
simple shock or rarefaction wave will form depending on
whether cH+

,L is larger or smaller than cH+
,R.

In the linear proton transport model, the intermediate
proton concentration is proportional to the inverse of the
concentration ratio 1/γ. If γ ≪ 1 or γ ≫ 1, this can be
substantially above/below the injected proton concentration

because of accumulation/depletion. Similarly, the intermediate
concentration in the nonlinear model can be out of the range
between the initial and the injected proton concentration.
This case is more complicated as the intermediate concen-
tration in the nonlinear model may depend on both the initial
and the injected solution, whereas in the linear model it
only depends on the injected solution. This can be seen in
Figure 7 as the proton concentration varies monotonically
with the accumulation flux function . The intermediate
proton concentration will be larger than both the initial (R)
and the injected proton concentration (L) in regime ② when
γ < 1 and smaller than R and L in regimes ① and ③ when γ > 1.
Figure 8 shows the intermediate proton concentration
for different γ with cH+

,L = cH+
,R = 1. When γ ≫ 1 or γ ≪ 1,

the scaling of the nonlinear model is asymptotic to 1, being the
same as the linear model. However, for γ > 1, due to
the shock wave behind the displacing interface in regime ①,
the nonlinear model will induce a proton concentration
about 10 times lower than that of the linear model, i.e.,
one unit of pH larger. These unexpected pH changes should
be carefully taken into account for some pH-sensitive devices
or biological systems.

Figure 7. Diagram of proton transport behaviors for (a) γ < 1 and (b) γ > 1 and examples of the regimes. , , and refer to the discontinuity
path across xI, shock path, and rarefaction path, respectively. In panel a, cH+

,Rcrt
+ and cH+

,Rcrt
− are the critical states determined as the two intersections

of the discontinuity path and the flux curve of the right branch. In panel b, cH+
,Lcrt and cH+

,Rcrt are the critical initial and final state.
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■ CONCLUSION
This paper presents a one-dimensional model for displacement
by EOF with electrolyte concentration difference in a
microcapillary. The current model is derived with the
assumptions that (I) the double layer thickness is much
smaller than the radius of the capillary channel, (II) diffusive
flux can be neglected, and (III) the equilibrium between
proton and bicarbonate is the dominant reaction in the
solution. If the radius of the microcapillary reduces, more com-
plex transport behaviors will be observed because the
retardation factor will play a critical role as would be the
case in the nanochannel and most reactive porous media.
There have been some efforts to understand the pH effect on
the transport property in the nanochannels at steady state,34,35

but the transient behavior considered in this work has not been
well-studied. Also, with the decrease of the radius, the
contribution of surface conductivity may not be negligible
and should be carefully tested. Another difficulty in dealing
with porous media comes from the effect of complex geometry
on the transport in a heterogeneously charged system, as
shown by pore-scale modeling.36 The effect of diffusion
generally smears the displacement fronts and weakens the
hysteretic effect. Sometimes, the microfluidic systems have
buffers to maintain the solution pH, and it has been shown in
Lim et al.15 that buffers can depress the hysteresis effect. The
buffering system poses more mathematical complexity in
chromatographic analysis, and a further discussion on the
buffering system will be given in the future work. Lastly, when
finalizing this work, the authors find that the nonlinear proton
transport eq 19 here is mathematically similar to a nonlinear
traffic flow problem shown in LeVeque.32
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