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Interfacial phonon transport widely exists in nanosystems, yet the physical mechanism has never been
well understood. In this work, a numerical framework is developed for interfacial phonon transport
between dissimilar materials with a frequency-dependent transmissivity by introducing the spectral
diffuse mismatch model into an efficient kinetic-type Monte Carlo scheme. The numerical method is val-
idated by modeling cross-plane phonon transport through several single-layer and bi-layer thin films,
which shows good agreement with the discrete-ordinates solutions. Through mesoscopic modeling,
the size effect of Kapitza conductance is found to be weak or vanishing when the equivalent equilibrium
temperature or emitted phonon temperature is adopted for defining the interfacial temperature
difference respectively. Furthermore, the effective Kapitza conductance decreases when interfacial
roughness is introduced, which can be mainly ascribed to the increased interfacial area ratio by rough-
ness. For engineering application, an empirical power law is proposed for the dependence of effective
Kapitza conductance on interfacial area ratio. The present work will promote fundamental understanding
and modeling capability of interfacial heat transport, as well as engineering design and optimization of
interface in nano devices.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

In the past several decades, with the rapid developments of
micro- and nano- manufacturing and nano-technology, there are
increasing interests in nanoscale heat transport [1,2]. The thermal
management of micro- and nano-electronics is pursuing thermal
interfacial materials with high thermal conductivity [3]. The intro-
duction of complex interfaces including dislocations, grain bound-
aries etc., is one of the main methods to improve the figure of merit
of nanostructured thermoelectric material [4–6]. Both of the above
two issues require a profound understanding of the physical mech-
anism in interfacial phonon transport. The classical Fourier’s law,
which is valid for heat transport in bulk material, becomes no
longer available for this situation [1,7], where phonon-interface
scattering is dominant over the intrinsic scattering. Therefore, it
is essential to develop effective theories and methods for modeling
interfacial phonon transport.

The interface between two dissimilar materials will cause a
cross-plane thermal transport resistance comparable to the intrin-
sic thermal resistance of each material layer. There will be a tem-
perature jump across the interface and the ratio of temperature
jump to the heat flux across the interface is defined as Kapitza
resistance or thermal boundary resistance. The Kapitza conduc-
tance or thermal boundary conductance is also often used as the
inverse of the Kapitza resistance. There have been mainly two
categories of approaches to predicting the thermal boundary con-
ductance: (i) microscopic methods including molecular dynamics
simulation [8–10], atomistic Green’s function method [11–13],
etc.; (ii) mesoscopic modeling based on the phonon Boltzmann
equation [14]. The microscopic methods are usually situated for
small nanostructures and simple interfaces due to an intensive
consumption of computational time and resources. In contrast,
the phonon Boltzmann modeling represents a feasible approach
for much larger structures and more complex interfaces. The meso-
scopic modeling requires an important physical parameter in
determining the Kapitza conductance between a material pair:
phonon transmission coefficient across the interface.

The classical models for phonon transmission coefficient
include the acoustic mismatch model (AMM) [15] and the diffuse
mismatch model (DMM) [16]. The AMM treats phonons as a kind
of acoustic waves transmitting through the interface. The trans-
mission coefficient is calculated from the acoustic impedance of
materials that form the interface [15]. It provides an appreciably
good prediction of Kapitza conductance at very low temperature
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where phonons are mainly populated at low frequency with wave-
lengths much larger than the size of interfacial asperity. In elevated
temperature scope, the AMM becomes often overestimating the
Kapitza resistance because of the stronger Rayleigh scattering of
the phonon population when shifting to higher frequency scope
with wavelengths comparable to or even smaller than the size of
interface asperity [16,17]. The DMM was thus proposed, treating
phonons as a kind of particles transmitting diffusely through the
interface without keeping the information of the side they come
from. The transmission coefficient is determined by the phonon
dispersion relations of both materials. The DMM often works well
at higher temperature such as around the room temperature [16].
Some mixed models have also been developed which consider par-
tially specular and partially diffuse transmission through the inter-
face, yet based on simplified gray Debye’s approximation [14]. On
the other hand, the portion of specular scattering at the interface,
known as the interfacial specularity parameter, is difficult to spec-
ify in prior and has to be extracted from fitting the experimental
results. Therefore, the DMM is currently the most popular one
for describing interfacial phonon transport in realistic applications
around room temperature inferred from some good agreements
between Kapitza conductances measured by experiments and pre-
dicted by simulations for different material pairs [18–20].

Taking into account the aforementioned models for phonon
transmission coefficient, people have paid much effort to study
interfacial phonon transport by solving the phonon Boltzmann
equation [14,21–25]. Two categories of numerical schemes are cur-
rently available for the solution of Boltzmann equation, including
the deterministic method (discrete-ordinates method [14,25],
finite volume method [21], lattice Boltzmann method [26] and so
on) and the stochastic method (Monte Carlo method [22–24]).
Monte Carlo method avoids directly solving the high-dimensional
Boltzmann equation by tracking the phonon dynamics through
the pseudo-particles. Therefore, the interface boundary treatment
in Monte Carlo method is simpler with a clearer physical picture
via mimicking the realistic phonon-interface scattering. As a result,
the Monte Carlo method is a better choice compared with the
deterministic methods for studying interfacial phonon transport
with complex geometries. Jeng et al. [22] first used Monte Carlo
method to model the thermal conductivity of nanoparticle com-
posites based on the DMM under gray Debye’s approximation.
Huang et al. [23] presented an improved Monte Carlo scheme to
simulate interfacial phonon transport based on the gray mixed
interface model proposed in Ref. [14]. Recently, Péraud and Hadji-
constantinou [24] modeled the Al/Si interfacial heat transport in
transient thermo-reflectance experiments using energy-based
variance-reduced Monte Carlo formulations based on a semi-
spectral interface model considering gray transmission coefficient
for each individual frequency at mono-direction [27]. Besides,
there are several Monte Carlo simulations of phonon transport
through grain boundaries in polycrystalline nanostructures with
empirical expressions for spectral transmission coefficient [28–
30]. To sum up, the previous Monte Carlo simulations of interfacial
phonon transport merely considered a constant gray transmissivity
at one direction or at both directions between dissimilar materials,
in spite of an empirical treatment of frequency-dependent trans-
missivity through grain boundary within a single material. It
remains to carefully consider the strongly frequency-dependent
interfacial phonon transmissivity between dissimilar materials,
which has been demonstrated significant in both microscopic com-
putation [13] and recent experimental measurement [31].

The aim of the present work is to develop a numerical frame-
work for interfacial phonon transport between two material pairs
by introducing the spectral diffuse mismatch model (SDMM) into
an energy-based variance-reduced Monte Carlo scheme. Although
the SDMM is still a crude approximation to the realistic situation
in interfacial phonon transport [18], it is the most appropriate the-
oretical model available currently. In principle, when supplied with
the detailed frequency-dependent phonon transmissivity from
recent first-principle calculation [32,33], the phonon Boltzmann
modeling can provide a more accurate description of interfacial
heat transport. Yet for the convenience of development of numer-
ical framework, we take the classical SDMM into account as a first
step. The inclusion of ab initio frequency-dependent transmissivity
into the present Monte Carlo scheme is straightforward and will be
investigated in the future work. The remaining of this article is
organized as below: a brief fundamental knowledge of the
kinetic-type Monte Carlo method and a detailed introduction of
the novel interface boundary treatment, are presented in Section 2.
Section 3 gives the validation of our Monte Carlo framework by
modeling cross-plane phonon transport through both single-layer
and bi-layer thin films. Two pertinent applications are studied in
Section 4: including the size effect and roughness effect on Kapitza
conductance. Concluding remarks are finally made in Section 5.

2. Numerical method

Phonon Monte Carlo scheme is a kind of pseudo-particle
method to solve the phonon Boltzmann equation [34], with its ear-
lier counterpart in rarefied gas flow the direct simulation Monte
Carlo (DSMC) [35–38]. It takes statistical samples (phonon energy
packets in this work) to simulate phonon dynamics, where the drift
process and scattering process take place separately. The required
macroscopic information (temperature, heat flux, and so on) is
then extracted by averaging over these statistical samples. The
kinetic Monte Carlo scheme is adopted for solution of the
energy-based deviational phonon Boltzmann equation [24,34,39]:

@ed

@t
þ vg � red ¼ �

ed � ðeeqloc � eeqTeq Þ
sðx;p;TÞ ; ð1Þ

where ed ¼ �hxðf � f eqTeq Þ is the deviational energy distribution with

the reduced Planck constant �h, phonon angular frequency x, pho-
non distribution f and the Bose-Einstein distribution

f eqTeq ¼ ½expð�hx=kBTeqÞ � 1��1 at the referenced equilibrium tempera-

ture Teq; vg is group velocity, sðx;p;TÞ being the relaxation time for
phonons with frequencyx, polarization p at a thermodynamic tem-
perature T; eeqloc ¼ �hxf eqloc and eeqTeq ¼ �hxf eqTeq being the pseudo-

equilibrium and equilibrium energy distributions at pseudo-
equilibrium temperature T loc and referenced equilibrium tempera-
ture Teq respectively. The linearized version of Eq. (1) is actually
solved under tiny temperature difference assumption in kinetic
Monte Carlo scheme [34,39], with a more detailed introduction pre-
sented in Appendix A.

2.1. Interface treatment

The spectral diffuse mismatch model (SDMM) [40] is intro-
duced into the kinetic Monte Carlo scheme considering only elastic
phonon interfacial scattering without any polarization conversion.
In other words, we do not consider the conversion of longitudinal
acoustic phonon into transverse one or vice versa when the pho-
non scatters at the interface. The transmission coefficient is
derived by applying the principle of detailed balance and the dif-
fuse scattering assumption at interface. The phonon heat flux
across the interface from side 1 to side 2 is expressed as [40]:

q1!2 ¼ 2p
X
p

Z p

0

Z xm

0
cos h sin h�hxf ðx; Te1Þa12ðx;pÞD1ðx;pÞv1gdxdh;

ð2Þ



Fig. 1. The flow chart of the interface treatment in kinetic-type Monte Carlo
method. After the energy packet scatters with interface, it will be diffusely
transmitted or diffusely reflected.
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where 1 and 2 represent the labels of two dissimilar materials, with
Te1 the emitted phonon temperature of material 1, a12ðx;pÞ being
the frequency-dependent transmission coefficient from material 1
to material 2; h is the polar angle, D being the density of states.
The definition of emitted phonon temperature will be discussed
later in Section 4.1. When both sides of materials are in an equilib-
rium state at a temperature T , the phonon heat flux from side 1 to
side 2 is equal to that from the opposite direction, i.e., q1!2 ¼ q2!1.
Thus one obtains the following relation [40]:

2p
X
p

Z p

0

Z xm

0
coshsinh�hxf eqðx;TÞa12ðx;pÞD1ðx;pÞv1gdxdh

¼2p
X
p

Z p

0

Z xm

0
coshsinh�hxf eqðx;TÞa21ðx;pÞD2ðx;pÞv2gdxdh:

ð3Þ
Based on the diffuse scattering assumption: a21ðx;pÞ ¼

1� a12ðx;pÞ and the principle of detailed balance for individual
phonon frequency and polarization, the spectral transmission coef-
ficient is derived as:

a12ðx;pÞ ¼ f eqðx; TÞD2ðx;pÞv2g

f eqðx; TÞD1ðx;pÞv1g þ f eqðx; TÞD2ðx;pÞv2g
: ð4Þ

With the aid of the expression of density of states, Eq. (4) is
rewritten as [40]:

a12ðx;pÞ ¼ ½kp;2ðxÞ�2
½kp;1ðxÞ�2 þ ½kp;2ðxÞ�2

; ð5Þ

where k is the magnitude of wave vector.
To implement the interface treatment, we firstly specify which

one, among the phonon intrinsic scattering time, boundary scatter-
ing time and interface scattering time, is the shortest. The phonon
intrinsic scattering time is available from the phonon relaxation
time expression; the boundary or interface scattering time is
deduced from the knowledge of trajectory, velocity of the present
energy packet and the distance between the energy packet and
boundary or interface. If the interface scattering time is the short-
est, this energy packet with frequency x and polarization p
encounters with interface at first. A random number is then gener-
ated and compared to the transmission coefficient aðx;pÞ. If the
random number is smaller than the transmission coefficient, this
energy packet will be diffusely transmitted into the other side;
otherwise, it will be diffusely reflected back [23]. The energy
packet reflected back or transmitted into the other side keeps its
frequency and polarization. For the reflection case, other properties
of the packet are computed based on the phonon dispersion of
material at old side; whereas for the transmission case, other prop-
erties of the packet are computed based on the phonon dispersion
of material at the new side. Note the present interface treatment is
different from that in previous Monte Carlo simulation of interfa-
cial phonon transport through grain boundary within a single
material [28–30], where the properties of energy packet are the
same for both the reflection and transmission cases. The other dif-
ference is that the SDMM is adopted here whereas an empirical
expression of phonon transmission coefficient is used therein
[28–30]. The change of the direction of phonon group velocity is
based on the Lambert’s cosine law. Firstly generate two uniform
random numbers R1 2 ½0;1� and R2 2 ½0;1� associated with the
polar angle h and azimuthal angle /; then the velocity components
of the energy packet are determined as below:

v1 ¼ vg;j cos h ¼ vg;jR3

v2 ¼ vg;j sin h cos/ ¼ vg;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

3

q
cosð2pR2Þ

v3 ¼ vg;j sin h sin/ ¼ vg;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

3

q
sinð2pR2Þ

ð6Þ
where v1 represents velocity component perpendicular to the inter-
face, v2 and v3 the velocity component parallel to the interface; vg;j

is the phonon group velocity of material at side j as the old side for
reflection case or the new side for transmission case; R3 is the arith-
metic square root of R1 [41]. The flow chart of the interface treat-
ment in kinetic-type Monte Carlo method is summarized in Fig. 1.
3. Numerical validations

In this section, the numerical framework introduced in Section 2
is validated by simulating cross-plane phonon transport through
single-layer thin films in Fig. 2(a), made of Si, Al, and Ge separately,
and cross-plane interfacial phonon transport through bi-layer thin
films in Fig. 2(b), including Al/Si and Ge/Si respectively, at 300 K.
The dispersion relations and relaxation time expressions of the
three materials are provided in Appendix B. A benchmark for
Monte Carlo simulation of interfacial phonon transport between
dissimilar materials with frequency-dependent transmission is
challenging mainly due to the following two reasons: (i) a compar-
ison to the experimental data is often not direct because of many
unknown influencing factors in realistic interface system such as
the roughness and disorder; (ii) the available analytical expression
of Kapitza conductance (known as Landauer formalism [1]) is
derived based on the difference of emitted phonon temperature
at the interface, which is difficult to calculate in Monte Carlo
method. Therefore, we firstly calibrate a deterministic solver for
interfacial phonon transport using discrete-ordinates method
(DOM), which is capable of computing the emitted phonon tem-
perature and thus Landauer’s Kapitza conductance. Then the
DOM numerical results of both temperature distributions across
the interface system and the Kapitza conductance based on the
usual equivalent equilibrium temperature are adopted as a bench-
mark to validate the Monte Carlo scheme. The general principle
and procedure in DOM solution of phonon Boltzmann equation
can be found in our recent work [42]. We extend the DOM scheme
to interfacial phonon transport with SDMM model as given in
Appendix C.
3.1. Cross-plane phonon transport through thin film

In order to validate our basic kinetic-type Monte Carlo code, we
firstly simulate the cross-plane phonon transport through single-
layer thin films by comparing the numerical result to that of
discrete-ordinates method. Full absorption and diffuse emission



Fig. 2. Schematic of cross-plane phonon transport through a single thin film and
cross-plane interfacial phonon transport through bilayer thin films: (a) single-layer
thin films, made of Si, Al, and Ge separately; (b) bi-layer thin films, including Al/Si
system and Ge/Si system respectively.
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are applied to treat the isothermal boundaries at both ends of the
thin film. The system is initially maintained at 299 K. Then the
temperature of the left-hand boundary increases to 301 K, whereas
the right-hand boundary keeps at 299 K. After a sequence of evolu-
tion, the system will approach to steady state. The temperature
distributions and effective thermal conductivity keff , are computed
when the system reaches a steady state. The numerical parameters
in Monte Carlo simulation for the three cases of Si, Al, and Ge thin
film with different thickness are given in Table 1. For all the cases,
the referenced equilibrium temperature is chosen as Teq ¼ 300K.

Fig. 3 shows a comparison between the results by the present
kinetic-type Monte Carlo method and those by the discrete-
ordinates method. Due to the frequency-dependent phonon mean
free path (MFP) dictated by the spectral feature of phonon group
velocity and relaxation time, an average Knudsen number is intro-
duced as [43]:

hKni ¼
�K
L
; ð7Þ

with the average MFP defined as: �K ¼ P
p

R
x �hxD

df eqTeq
dT vgsdx

�

P
p

R
x �hxD

df eqTeq
dT dx and L the thin film thickness. The temperature

distributions within thin film are approximately linear with larger
temperature jump at boundary at increasing average Knudsen num-
ber. The boundary temperature jump comes from the non-
equilibrium interaction between the hot/cold sources and the thin
film due to sub-continuum effect. Thus the effective cross-plane
thermal conductivity decreases with decreasing thin film thickness
or increasing average Knudsen number. The excellent agreement of
the present Monte Carlo results with the discrete-ordinates solu-
tions demonstrates the validity of our basic kinetic-type Monte
Carlo program.

3.2. Cross-plane interfacial phonon transport

In this sub-section, we aim to validate our interface treatment
scheme in Monte Carlo method through modeling the cross-
Table 1
Numerical parameters in Monte Carlo simulation for the three cases of Si, Al and Ge thin

Material Si A

Film thickness (nm) 4 70 700 4
Sample number (million) 20 50 190 5
plane interfacial phonon transport through Al/Si and Ge/Si bi-
layer thin films around room temperature. In both two cases of
bi-layer thin film, the volume ratio of the two materials forming
the interface is 1. When the system reaches steady state after a
sequence of evolution, the temperature distributions and Kapitza
conductance are computed. The numerical parameters in Monte
Carlo simulation for three cases of Al/Si and Ge/Si bilayer thin film
systems with different total thickness are given in Table 2.

The comparison between the present results by Monte Carlo
method and that by the discrete-ordinates method is shown in
Fig. 4 for Al/Si system and in Fig. 5 for Ge/Si system respectively.
The Kapitza conductance is defined as: G ¼ q=DT , where q is the
heat flux across the interface and DT denotes the temperature
jump across the interface based on the equivalent equilibrium
temperature. The equivalent equilibrium temperature is a repre-
sentation of the total energy of all phonons in a cell thermalized
into an equivalent equilibrium state. The present numerical results
by kinetic-type Monte Carlo method with the SDMM interface
treatment agree well with those by the discrete-ordinates solution.
As the total thickness of thin film decreases, the temperature jump
across the interface increases due to the strong non-equilibrium
effect.

In addition, the semi-spectral interface phonon model devel-
oped in Ref. [27] is also adopted to validate the present Monte
Carlo method for interface treatment:

a12 ¼

2P
p

R
x2ð1\2Þ

�hxD1

dfeq
Teq
dT v1gdx

1P
p

R
x21

�hxD1

dfeq
Teq
dT v1gdx

þ 1P
p

R
x22

�hxD2

dfeq
Teq
dT v2gdx

þ 1
2G

: ð8Þ

In this model, G is an input Kapitza conductance to extract a
constant transmission coefficient from material 1 to material 2,
whereas a frequency-dependent transmission coefficient from
material 2 to material 1. Based on this interface phonon model
and the material data from Ref. [43] for Al/Si interface, the present
Monte Carlo scheme produces a Kapitza conductance
G ¼ 110:27½MW=m2 � K�, which shows a good agreement with the
targeted input Kapitza conductance 110½MW=m2 � K� within
acceptable numerical error.

4. Results and discussion

In this section, the validated Monte Carlo framework is applied
to study two important effects in interfacial phonon transport: size
effect and interface roughness effect on Kapitza conductance.

4.1. Size effect on Kapitza conductance

The size effect in nanoscale heat transport refers to the destruc-
tion of thermal properties when decreasing the dimension of sys-
tem. In comparison to extensive and conclusive studies on the
size effect of thermal conductivity of nanostructures [44–47], the
size effect of Kapitza conductance is relatively rarely considered
with still no consistent conclusions in previous work [48–50]. A
non-linear relation between the Kapitza resistance and inverse of
total system thickness was declared in some work [48], while the
linearly increasing or decreasing relations between Kapitza resis-
tance and the inverse of total system thickness have been found
film.

l Ge

70 700 4 70 700
6 80 320 56 200 190
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Fig. 3. The non-dimensional temperature distributions and the effective thermal conductivity of cross-plane phonon transport through Si, Al, and Ge single-layer thin films:
(a), (b), and (c) are non-dimensional temperature distributions for Si, Al, and Ge, including three cases with a thickness 4 nm, 70 nm, and 700 nm respectively. Symbols are
results of the present kinetic-type Monte Carlo method whereas dash lines are that of discrete-ordinates method introduced in Appendix C; (d) is effective thermal
conductivity for Si, Al and Ge thin films versus average Knudsen number.

Table 2
Numerical parameters in Monte Carlo simulation for three cases of Al/Si and Ge/Si bi-layer thin film system.

Material Al/Si Ge/Si

Total thickness of film (nm) 20 120 220 20 120 220
Sample number (million) 50 80 100 50 80 100
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by Jones et al. [49] and Yang et al. [50] respectively. Therefore, it is
essential to provide a clear physical picture and quantitative inter-
pretation of the size effect on Kapitza conductance.

The calculation of Kapitza conductance depends on the tempera-
ture jump at the interface. Two different definitions of temperature
have been used for evaluating the interfacial temperature jump: (i)
the equivalent equilibrium temperature (referred as definition I),
and (ii) the emitted phonon temperature (referred as definition II).
Definition I has been given in Section 3.2, whereas definition II at
the interface is defined as conjectured phonons emitted ballistically
from a boundary at equilibrium temperature Te with infinite MFP
(detailed interpretation and calculation can be found in Appendix
C). Definition I has been widely used in numerical methods where
the equivalent equilibrium temperature is obtained through statis-
tical summation of the energy density within a simulation cell. In
comparison, the classical analytical expression of Kapitza conduc-
tance, known as Landauer formalism, between two dissimilarmate-
rials is derived based on definition II [1]:
Ge ¼ 1
4

X
p

Z xm

0
v1ga12Cx1dx: ð9Þ

As it is difficult to establish an analytical relation between the
temperature differences based on definition I and definition II
except under gray Debye’s approximation [14,51] or other simpli-
fied assumption [27], one can hardly derive an analytical Kapitza
conductance based on definition I.

The results of Kapitza conductance for Al/Si and Ge/Si interfaces
at around room temperature are shown in Fig. 6(a) and (b) respec-
tively. The Kapitza conductance based on definition I is found to be
considerably higher than that based on definition II. We thus infer
that the temperature difference based on definition I is smaller
than that based on definition II, as qualitatively consistent with
previous simplified results [14,51]. Furthermore, the Kapitza con-
ductance increases with decreasing the inverse of total system
thickness based on definition I and approaches a constant value
at a sufficiently large system thickness, while no size effect is
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obtained when definition II is adopted. The different results based
on the two definitions can be understood as below. Definition I
represents the energy density of non-equilibrium phonons near
the interface, the deviation of which from local equilibrium state
is dependent on the total system size. In comparison, definition II
is an idealized one for phonons with infinite MFP independent of
the system dimension.

The present results have twofold significant indications. Firstly,
the controversial relations in the literature between the Kapitza
conductance based on definition I and the inverse of total system
thickness may be attributed to the simulated thickness range and
interface disorder. This relation is nearly linear within the range
of small total system thickness, and will become slightly nonlinear
at larger system size. The increasing Kapitza conductance with
decreasing system size may be caused by the influence from inter-
facial atomic disorder softening the abrupt vibrational mismatch
therein [50]. Secondly, the wide application of Eq. (9) based on
emitted phonon temperature in theoretical prediction of interfacial
phonon transport in much existing literature remains to be delib-
erated. As the experimental measurement of Kapitza conductance
at around room temperature or even higher temperature is based
on the equivalent equilibrium temperature [1], the underestima-
tion of the measured Kapitza conductance by Eq. (9) [19,40,52] is
only an artifact due to the inconsistent use of the definition of tem-
perature difference. The predicted Kapitza conductance (�400
MW/m2 K) by our kinetic-type Monte Carlo method based on def-
inition I is actually very close to the experimental result (345 ± 40
MW/m2 K) at 300 K [19] considering the neglected inelastic inter-
face phonon scattering in our present model.
4.2. Interface roughness effect

As asperity is common at material interface from both the man-
ufacturing and application processes, it is crucial to understand the
influence of interface roughness on Kapitza conductance. Although
some experimental works [53–55] have indicated that the rough-
ness can reduce the Kapitza conductance, the physical mechanism
and quantitative description remain elusive. Two aspects of the
interface roughness effect are studied in this sub-section: the inter-
facial area ratio and the roughness height. The interfacial area ratio
is defined as the ratio of the true interfacial area to the interfacial
area projected along the mean normal vector to the interface (i.e.
the overall transport direction).

Heat transport across Al/Si interface is considered with different
types of asperity geometries: triangle, square, wavelike, rectangle,
cross, T-type and random roughness as shown in Fig. 7. The total
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thickness of the simulated interface system between Tl = 300.5 K
and Tr = 299.5 K is 50 nm with a volume ratio 1. The interface
roughness height is fixed at 6 nm in studying the effect of interfa-
cial area ratio. The random roughness is generated following the
algorithm in our previous work [56], with two main steps: (i)
choose the directional growth probability Dx = 3�10�5 and Dy = 1
� 10�5, and randomly locate one seed within every 7 nm length
along the lateral direction at 28 nm along the longitudinal direc-
tion; (ii) let the right-hand material randomly grow into the left-
hand one from these seeds until the asperity height reaches 6 nm
and the volume ratio of two materials becomes 1. To eliminate
the statistical noise, four random structures with one cell size 1
nm � 1 nm are generated based on the same growing parameters
to yield an average result. The periodic boundary condition is
applied along the lateral direction to realize infinite simulation
system. Seven units of the periodic element are simulated for all
the six regular interfaces to have a consistent comparison to the
random interface. The rough interface is piled up by four kinds of
interfaces as shown in Fig. 8. We go through all vertical and hori-
zontal interfaces and justify which interface will intersect with
the trajectory of the tracking packet. Then this packet will encoun-
ter with the nearest interface.
The effective thermal conductivity of the interface system is cal-
culated from the steady-state heat flux distribution and the
exerted temperature difference based on the Fourier’s law:

keff ¼ ðR Ly
0 qxdy � LÞ=½LyðT l � TrÞ� and given in Fig. 9(a), where Ly is

the width of simulated system along y direction. To calculate the
effective Kapitza conductance of the rough interface, we present
a one-dimensional model ignoring lateral heat transport, with
the series relation for thermal resistance [57]:

L
keff

¼ R0 þ 1
Geff

; ð10Þ

where R0 includes both the intrinsic and boundary thermal resis-
tance of the material pair and Geff is defined as an effective Kapitza
conductance. The intrinsic and boundary thermal resistance in
rough interface is assumed the same as that in the smooth interface
with the same total system thickness and volume ratio. In this way,
the effective Kapitza conductance for various rough interfaces are
computed based on Eq. (10), and shown in Fig. 9(b). The results
show that both the effective thermal conductivity and Kapitza con-
ductance will decrease with increasing interfacial area ratio. This is
due to larger interfacial area ratio creates stronger interface scatter-
ing besides interfacial vibrational mismatch, which results in larger
reduction of effective Kapitza conductance.

For the convenience of engineering application, we build up an
empirical relation between the Kapitza conductance in bi-layer
thin film and the interfacial area ratio. A power law dependence
on the interfacial area ratio is assumed for the total thermal resis-
tance of the interface system as below:

L
keff

¼ L AðS� 1ÞB þ 1
ksmooth

� �
; ð11Þ

where A and B are the fitting parameters, S denoting the interfacial
area ratio, and ksmooth being the effective thermal conductivity of bi-
layer thin filmwith smooth interface. The dimension of parameter A
is [m K/W], whereas the parameter B is dimensionless. In the limit-
ing case of S = 1, Eq. (11) recovers well the result for smooth inter-
face. The values are obtained as 0.00233 and 3.66946 respectively
for parameters A and B through fitting the various numerical results
for different types of designed interface roughness in Fig. 9(a). With
the help of both Eqs. (10) and (11), the empirical expression for
Kapitza conductance is derived as:

1
Geff

¼ LAðS� 1ÞB þ 1
Gsmooth

; ð12Þ

where Gsmooth denotes the Kapitza conductance for the smooth
interface case. With the obtained values for parameters A and B
through fitting the total thermal resistance, Eq. (12) gives the
Kapitza conductance in good agreement with the numerical result
by the present Monte Carlo simulation, as shown in Fig. 9(b).

Finally we study the effect of roughness height on the Kapitza
conductance. The Al/Si and Ge/Si interfaces with square and T-
type roughness are taken into account with fixed interfacial ratio
at 2 and 3 respectively. The following roughness heights are con-
sidered respectively: 2 nm, 4 nm, 6 nm, 8 nm, 10 nm for both
cases. To guarantee a fixed interfacial ratio, the corresponding
structures have been derived by enlarging or narrowing the same
structure with a roughness height 6 nm. For instance, the structure
with roughness height 4 nm is derived by narrowing each edge of
interface 2/3 times from that with a roughness height 6 nm. For
each case, only one periodic element is simulated. The Kapitza con-
ductance drops sharply from the smooth interface and keeps
nearly at a constant with increasing roughness height, as shown
in Fig. 10. The roughness height is a relatively unimportant factor
to influence the Kapitza conductance compared to the interfacial
area ratio. Previous experimental works [53–55] suggest lower



Fig. 7. Illustration of various interface roughness types considered in present work, including triangle, square, wavelike, rectangle, cross, T-type and random interface
roughness.
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Kapitza conductance of interfacial structures at larger roughness
height. This discrimination can be explained by another parame-
ter: correlation length. In the present study, a larger correlation
length is obtained when increasing the roughness height to keep
a constant interfacial area ratio. In previous experimental studies
[53–55], a smaller correlation length or constant one is often cor-
responding to a larger roughness height. As a benefit, the empirical
relation Eq. (12) between the Kapitza conductance and interfacial
area ratio is available for various roughness heights approximately.

5. Conclusions

In summary, we present a Monte Carlo framework to model
interfacial phonon transport between dissimilar materials with a



Fig. 8. Schematic of four kinds of interface: vertical interfaces and horizontal
interfaces, formed by material 1 and material 2.
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frequency-dependent transmissivity based on the spectral diffuse
mismatch model. After careful validations, the present Monte Carlo
framework is applied to study the size effect on Kapitza
conductance and the interface roughness effect. For the size effect,
the results show that: the Kapitza conductance based on the equiv-
alent equilibrium temperature is slightly influenced by system size
while this size effect vanishes based on the emitted phonon
temperature. Furthermore, the Kapitza conductances based on
two temperature definitions are considerably different, which
reveals the importance of using a consistent definition in compar-
ing theoretical prediction to experimental results. For the interface
roughness effect, the results indicate that the Kapitza conductance
is mainly influenced by interfacial area ratio defined as the ratio of
the true interfacial area to the interfacial area projected along the
overall transport direction, while slightly influenced by the inter-
face roughness height. Furthermore, we establish an empirical
relation between the Kapitza conductance and interfacial area ratio
for convenient engineering application. The conclusions of present
work are helpful for the design of interface structure in nanosys-
tems with optimized thermal performance.
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Appendix A. Kinetic-type Monte Carlo method

Kinetic-type Monte Carlo (KMC) method is a simplified edition
of energy-based variance reduction Monte Carlo scheme under the
assumption of small temperature difference in the heat transport
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process [34]. Under this assumption, the deviational energy distri-
bution and pseudo-equilibrium energy distribution is independent
on temperature and pseudo-temperature once normalized [34].
This means the initialization, scattering and boundary emission
of phonon can be performed without the knowledge of the thermo-
dynamic temperature and local pseudo-temperature. This leads to
a key feature of kinetic-type Monte Carlo method that energy pack-
ets with an effective deviational energy edeff are tracked one by one,
different from traditional phonon Monte Carlo method. The effec-
tive deviational energy is specified as the ratio of total deviational
energy amount through all simulation time to the total number N
of simulated energy packets. The total deviational energy amount
includes initial term, boundary term and source term (only former
two parts is needed in the present work) [34].

These energy packets are treated independently along their tra-
jectories accumulated by linear segments separated by intrinsic
scattering and scattering with boundaries and interfaces [34]. This
process tracking one energy packet is described as follows:

(i) Draw the properties (frequency, polarization, group velocity,
sign, initial position and initial time) of one energy packet
from the equilibrium distribution of initial term or boundary
term;

(ii) This energy packet then travels in the system until it exits
the isothermal boundary or the simulation time domain
for the time-dependent case by repeating the following
steps [34]: (a) Calculate the time step between the present
scattering event and next intrinsic scattering event as
Dt ¼ �sðx;p;TeqÞ lnð1� RÞ, where R is a uniform random
number between 0 and 1; (b) if there is no scattering with
boundaries or interfaces during this time step, the next scat-
tering event happens at time ~t ¼ t þ Dt and the position of
the energy packet at next scattering event is ~x ¼ xþ vgDt,
where t and x denote the time and position of the energy
packet at this scattering event; the properties, including fre-
quency, polarization, and group velocity, of this energy
packet will be reset from the deviational pseudo-
equilibrium energy distribution:
/ ¼ ðT loc � TeqÞDðx;pÞ
sðx;p;TÞ

deeqTeq
dT

; ðA1Þ

(c) if a boundary or interface is encountered during this time
step, the position ~x of this energy packet at next scattering event
will be set as the position where this packet encounters with the
boundary or interface and the time ~t of this energy packet at next
scattering event is set as the time when this energy packet encoun-
ters with the boundary or interface; the resetting of other proper-
ties depends on the type of boundaries and interface (for example:
diffuse reflection, specular reflection, periodic reinsertion, diffuse
transmission and so on), and isothermal boundary just terminates
the tracking operation of this energy packet;

(iii) The macroscopic information is calculated at time tcount by
accumulating the contribution of each energy packet to it at
this time; for instance, the contribution of one energy packet
to temperature is siedeff=CVV and its contribution to heat flux
along x direction is siedeffv i;x=V , where si is the sign of this
energy packet, i, CV being the heat capacity derived from the
phonon dispersions, V the volume of region needing to count
the information, and v i;x is velocity component of this energy
packet along x direction; thus the temperature and heat flux
distributions at counting time tcount are obtained by summing
up the contributions from all the energy packets based on
T ¼ Teq þ

P
isiedeff=CVV and q ¼ P

isiedeffv i;x=V .
Appendix B. Numerical data for phonon dispersion relations
and scattering rates

In the simulation throughout this study, we use data for the
relaxation time and for the isotropic [1 0 0] dispersion relations
of acoustic mode for three materials, Si, Al and Ge and ignore the
contributions of optical mode to heat transport due to its small
group velocity compared with acoustic mode.

The dispersion relations of all materials are expressed as a
fourth degree polynomial equation. The expression for Si is from
Ref. [58]:

xðkÞ ¼ A4k
4 þ A3k

3 þ A2k
2 þ A1k; ðB1Þ

where A1, A2, A3 and A4 are parameters through fitting the experi-
mental measurements. For transverse acoustic (TA) polarization,
the four parameters are: A1 = 5.511 � 103 m s�1, A2 = �1.169 �
10�8 m2 s�1, A3 = �4.957 � 10�17 m3 s�1, A4 = 2.432 � 10�27 m4

s�1; for longitudinal acoustic (LA) polarization: A1 = 8.192 � 103

m s�1, A2 = �1.140 � 10�7 m2 s�1, A3 = �2.612 � 10�18 m3 s�1, A4 =
�5.645 � 10�29 m4 s�1. The experimental data of dispersion rela-
tion for Al are taken from Ref. [59] and fitted by:

xðKÞ ¼ B4K
4 þ B3K

3 þ B2K
2 þ B1K; ðB2Þ

where B1, B2, B3 and B4 are fitting parameters and K ¼ k=kmax with
kmax ¼ 2p=a, a being the cubic lattice constant. For transverse
acoustic (TA) polarization, the four parameters are B1 = 5.147 �
1013 rad/s, B2 = 9.578 � 1012 rad/s, B3 = �3.204 � 1013 rad/s, B4 =
6.750 � 1012 rad/s; for longitudinal acoustic (LA) polarization, four
parameters are: B1 = 9.825 � 1013 rad/s, B2 = 2.226 � 1013 rad/s, B3
= �1.216 � 1014 rad/s, B4 = 6.208 � 1013 rad/s. The experimental
data of dispersion relation for Ge are taken from Ref. [60] and fitted
by:

xðKÞ ¼ B0
4K

4 þ B0
3K

3 þ B0
2K

2 þ B0
1K; ðB3Þ

For transverse acoustic (TA) polarization, four parameters are:
B0
1 = 2.08583 � 1013 rad/s, B0

2 = �1.83927 � 1011 rad/s, B0
3 =

�2.39121 � 1012 rad/s, B0
4 = �3.5444 � 1012 rad/s; for longitudinal

acoustic (LA) polarization, four parameters are: B0
1 = 4.72355 �

1013 rad/s, B0
2 = �8.06266 � 1012 rad/s, B0

3 = 4.32529 � 1012 rad/s,
B0
4 = �3.00242 � 1012 rad/s.
For Si, the relaxation time expressions are taken from Ref. [58]:

Umklapp scattering rate s�1
a ¼ C1Tx2 expð�C2=TÞ and impurity

scattering rate s�1
i ¼ C3x4. The parameters are the same for both

phonon polarizations: C1 = 1.4 � 10�19 s K�1, C2 = 152 K, C3 = 1.32
� 10�45 s3 respectively. The total relaxation time of Si is derived
from the Matthiessen’s rule: s�1 ¼ s�1

a þ s�1
i . For Al, the total relax-

ation time is taken from Ref. [24,27] a s ¼ 10ps which yields the
desired lattice thermal conductivity. For Ge, we adopt the same
relation time expressions as those of Si for both Umklapp scatter-
ing rate, s�1

a ¼ D1Tx2 expð�D2=TÞ and impurity scattering rate
s�1
i ¼ D3x4 [60]. The corresponding constants are chosen as: D1

= 3.35 � 10�19 s K�1, D2 = 57.6 K, D3 = 2.4 � 10�44 s3. The total
relaxation time of Ge is also derived from the Matthiessen’s rule:
s�1 ¼ s�1

a þ s�1
i .

In the numerical simulation, the frequency domain of single
material or a material pair is discretized into 1500 uniform units
between 0 and maximum frequency (for single material, maximum
frequency is the maximum value of its own frequencies while for
one material pair, maximum frequency is the maximum value of
all of their frequencies). Other properties are thus calculated at
each frequency respectively.
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Appendix C. Discrete-ordinates method with exact phonon
dispersion relations

Multiplying vg�hxDðx;pÞ=4p in both sides of Eq. (1), a devia-
tional form of EPRT [45] is derived as:

vg cos h
dIdx;p

dx
¼ �

Idx;p � ðIeqloc;x;p � IeqTeq ;x;pÞ
sðx;p;TÞ ; ðC1Þ

with the spectral deviational phonon intensity Idx;p ¼ Ix;p � IeqTeq ;x;p,

and the assumed equilibrium intensity IeqTeq ;x;p ¼
vg�hxf eqTeqDðx;pÞ=4p. Due to the similarity of discretization of Eq.

(C1) inside each material shown in Fig. A1, we just take the left
material of interface as an example to explain this process and then
give the energy balance conditions at the interface. The discretized
space units uniformly divide the system with sampling points in
their middle positions. As Fig. A1 shows, the interface is located at
the middle of system which is the right side of last unit in material
1, which can avoid sampling at the interface where temperature is
discontinuous.

For the inner points in materials 1, when cos hj > 0, the forward
difference scheme is applied and the discretized form of Eq. (C1) is:

vg cos hj
Idx;p;i;j � Idx;p;i�1;j

Dx
¼ �

Idx;p;i;j � ðIeqloc;x;p;i;j � IeqTeq ;x;pÞ
sðx;p;TÞ ; ðC2Þ

where Idx;p;i;j and Ieqloc;x;p;i;j are the spectral deviational intensity and
the pseudo deviational intensity of phonon in unit i and at j direc-
tion, hj polar angle value at j direction, Dx the size of one unit. Defin-
ing m1 ¼ ðcos hjvgsÞ=Dx, Eq. (C2) can be arranged as:

Idx;p;i;j ¼
ðIeqloc;x;p;i;j � IeqTeq ;x;pÞ þm1I

d
x;p;i�1;j

1þm1
: ðC3Þ

When cos hj < 0, the final form of Eq. (C1) after discretizing with
the backward difference scheme is:

Idx;p;i;j ¼
ðIeqloc;x;p;i;j � IeqTeq ;x;pÞ �m1I

d
x;p;iþ1;j

1�m1
: ðC4Þ

For the left boundary treatment, i.e. discretizing Eq. (C1) from
1/2 to 1, similar to derivation above, the final form using the for-
ward difference scheme is:

Idx;p;1;j ¼
ðIeqloc;x;p;1;j � IeqTeq ;x;pÞ þm2I

d
x;p;1=2;j

1þm2
; ðC5Þ

where m2 ¼ 2m1, and the deviational intensity emitted from left

isothermal boundary Idx;p;1=2;j ¼ IeqT l ;x;p � IeqTeq ;x;p with the equilibrium

intensity IeqT l ;x;p ¼ vg�hxf eqT l Dðx;pÞ=4p. With the aid of assumption
of tiny temperature difference, this term can be linearized as:

Idx;p;1=2;j ¼ ðT l � TeqÞv1gCx=4pwith the volume heat capacity per unit

frequency Cx ¼ �hxDðxÞdfdT
���
Teq

. Then treat the interface boundary, i.e.
Fig. A1. The schematic of system of cross-plane interfacial phonon transport: the
sampling point is at the middle of each unit. The left boundary, the interface and the
right boundary are at the left side of the first unit and the right side of the last unit
in material 1 and the right side of the last unit in material 2, denoted by 1/2, N/2 + 1/
2 and N + 1/2 point in the schematic.
discretize Eq. (C1) from N/2 to N/2 + 1/2 and from N/2 + 1/2 to N/2.
The first case indicates cos hj > 0, and, applying the forward differ-
ence scheme, the final discretized form is:

Idx;p;N=2þ1=2;j ¼
ðIeqloc;x;p;N=2;j � IeqTeq ;x;pÞ þ ðm2 � 1ÞIdx;p;N=2;j

m2
: ðC6Þ

The second case indicates cos hj < 0, and the final discretized
form with the backward difference scheme is:

Idx;p;N=2;j ¼
ðIeqloc;x;p;N=2;j � IeqTeq ;x;pÞ �m2I

d
x;p;N=2þ1=2;j

1�m2
: ðC7Þ

Finally, the energy balance is applied at the interface for indi-
vidual phonon frequency and polarization:Z p

p
2

ðId1;x;pÞ
�
cos h sin hdh ¼ a21ðx;pÞ

Z p

p
2

ðId2;x;pÞ
�
cos h sin hdh� ð1� a12ðx;pÞÞ

Z p
2

0
ðId1;x;pÞ

þ
cos h sin hdh; ðC8Þ

Z p
2

0
ðId2;x;pÞ

þ
cos h sin hdh

¼ �ð1� a21ðx;pÞÞ
Z p

p
2

ðId2;x;pÞ
�
cos h sin hdhþ a12ðx;pÞ

�
Z p

2

0
ðId1;x;pÞ

þ
cos h sin hdh

ðC9Þ

where ðId1;x;pÞ
�
, ðId1;x;pÞ

þ
, ðId2;x;pÞ

�
and ðId2;x;pÞ

þ
are the spectral devia-

tional intensities of backward-going and forward-going phonons
on left side of interface and backward-going and forward-going
phonons on right side of interface respectively.

To get temperature, an equivalent equilibrium deviational
intensity of phonon is defined as:

X
p

Z
X

Z xm

0

ðf eq � f eqTeqÞ
4p

�hxDðxÞdxdX

¼
X
p

Z
X

Z xm

0

Idx;p

vg
dxdX; ðC10Þ

where dX ¼ sin hdhd/ is differential of solid angle. Under the
assumption of tiny temperature difference, the left side of Eq.
(C10) is linearized as an explicit function of temperature:

X
p

Z
X

Z xm

0

ðT � TeqÞ
4p

CxdxdX ¼
X
p

Z
X

Z xm

0

Idx;p

vg
dxdX: ðC11Þ

Therefore, the temperature can be calculated by the following
expression:

T ¼ Teq þ
P

p

R 2p
0

R p
0

Rxm

0
Idx;p
vg

sin hdxdhd/P
p

Rxm

0 Cxdx
: ðC12Þ

Similarly, the calculation of pseudo-temperature is performed
as [61]:

T loc ¼ Teq þ
P

p

R 2p
0

R p
0

Rxm

0
Idx;p
s�vg

sin hdxdhd/P
p

Rxm

0
Cx
s dx

: ðC13Þ

The emitted phonon temperatures mentioned in Section 5.1 are
corresponding to the deviational intensities of forward-going pho-
nons on left side of interface and backward-going phonons on right
side of interface. The former case is illustrated as:
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Fig. A2. Comparisons of thermal boundary conductance between discrete-ordi-
nates method and analytical solution at different temperature: (a) Al/Si interface;
(b) Ge/Si interface.
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X
p

Z xm

0

Z 2p

0

Z p
2

0
a12ðId1;x;pÞ

þ
cos h sin hdxdhdu

¼
X
p

Z xm

0

Z 2p

0

Z p
2

0

a12v1g�hxf dðTe1ÞD1 cos h sin h
4p

dxdhdu;

ðC14Þ

with f dðTe1Þ ¼ f eqðTe1Þ � f eqTeq , Te1 being the temperature of the

forward-going phonons on left side of interface. Applying the
assumption of tiny temperature difference, Te1 can be extracted
after linearization of right side of Eq. (C14) as:

Te1 ¼ Teq þ
8p

P
p

Rxm

0

R p
2
0 a12ðId1;x;pÞ

þ
cos h sin hdxdhP

p

Rxm

0 a12v1gCx1dx
: ðC15Þ

Similarly, the temperature of the backward-going phonons on
right side of interface is:

Te2 ¼ Teq �
8p

P
p

Rxm

0

R p
p
2
a21ðId2;x;pÞ

�
cos h sin hdxdhP

p

Rxm

0 a21v2gCx2dx
: ðC16Þ

Due to the equilibrium intensity of phonon, IeqTeq ;x;p, have no con-

tribution to heat flux, the heat flux is derived from:
q ¼ 2p
X
p

Z p

0

Z xm

0
cos h sin hIdx;pdxdh: ðC17Þ

Besides, all the integrations of polar angle above is performed
through Gauss-Legendre quadrature and that of frequency is per-
formed through rectangular integration. At last, the Kapitza con-
ductance defined by emitted phonon temperature in numerical
simulation is given by:

Ge ¼ q
Te1 � Te2

: ðC18Þ

To validate the present discrete-ordinates method, cross-plane
interfacial phonon transport through single Al/Si interface and
Ge/Si interface have been simulated at different temperature with
the data given in Appendix B, and compared with the classical ana-
lytical solution of Kapitza conductance defined by the emitted pho-
non temperature, i.e. Eq. (9). Fig. A2 gives the comparison results,
which validate the present discrete-ordinates method.
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