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Deviational Monte Carlo scheme for thermal and electrical transport in metal nanostructures
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The electron is the dominant heat and charge carrier in metal, yet the Monte Carlo method for thermal and
electrical transport remains not fully established due to the high density and high degeneracy of electrons. In
this work, we develop a deviational Monte Carlo scheme to directly solve the Boltzmann transport equation for
electron transport through a simplification of the full scattering term into relaxation time approximation form
automatically including the Pauli exclusion principle. It is crucial to track the occupied and unoccupied electron
states above and below the Fermi energy level, respectively, for Monte Carlo simulation of electron thermal
transport. Our numerical scheme not only provides a clear physical picture, but also displays a good performance
in predicting the temperature distribution, electronic thermal conductivity, and electrical conductivity for in-
plane and cross-plane electron transport through metallic thin films. This work will promote the fundamental
understanding of electron transport at micro- and nanoscale, and also provide a ground for the investigation of
electron-phonon coupling transport.
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I. INTRODUCTION

With the rapid development of nanoscience and nanotech-
nology in recent years, nanostructures and low-dimensional
materials have drawn increasing attention due to their wide
applications in thermoelectric conversion facilities, semicon-
ductor electronic devices, etc. [1–3]. The metallic thin films
play a significant role, as they are used as the interconnect
materials in electronic circuits [4], the constituent of su-
perlattice structure for thermoelectrics [5], and the efficient
heat dissipation substrate for thermal management in micro-
and nanoelectronics [6]. In these applications, the thermal
and electrical properties of metallic thin film, which usually
deviate from their bulk values, are the key to determine the
performance and reliability of the whole system. Therefore,
it is crucial to understand the thermal and electrical transport
mechanism of metallic thin films at micro- and nanoscale.

Electrons are the dominant carriers of both heat and charge
transport in metal although the contribution of phonons to
thermal transport slightly increases at nanoscale [7–9]. Thus
we focus on electron transport through metallic nanostruc-
tures in this work. The direct modeling of electronic thermal
transport is often based on the kinetic theory of electrons
[10]. The effective thermal conductivity of metallic thin films
under the influence of external surface and/or grain boundary
has been calculated based on a simple kinetic formula, with
the effective electron mean free path (MFP) determined in
a phenomenological way [11,12]. The MFP analysis will
smear the detailed process of electronic heat transport, which
has to recourse to the Boltzmann transport equation (BTE).
The analytical solutions of electron BTE originally derived
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for electrical transport in metal nanostructures [13–15] have
been extended to thermal transport in metallic nanothin films,
nanowires, and nanoribbons [16–18]. However, these ana-
lytical models are usually applicable to simple structure ge-
ometries. A direct numerical solution of the electron BTE is
indispensable for electron transport in more complex metallic
nanostructures.

In comparison to the deterministic solver [19] (such as
the discrete ordinates method [20]), the Monte Carlo scheme
avoids a direct solution of the high-dimensional BTE based
on the drift and collision of pseudoparticles, which further
provides a more clear physical picture and an easier treatment
of complex boundary condition. The ensemble Monte Carlo
(EMC) scheme has been well developed and widely used in
modeling electron transport in semiconductor nanostructures
[21]. Unfortunately, it is not straightforward to adapt the EMC
to model electron transport in metallic nanostructures due
to the very different band structures and electron kinetics
between metals and semiconductors [22]. Therefore, it is nec-
essary to devise a Monte Carlo scheme specially for electron
transport in metals, which rarely appears in the literature, to
the authors’ best knowledge. A Monte Carlo scheme has been
given for numerical solution of the electron BTE to study
the cross-plane electronic thermal transport through nanothin
films [23–25]. Yet this Monte Carlo scheme remains to be
improved due to the following two aspects: (i) it only con-
siders the electrons at energy levels above the Fermi energy;
(ii) the isothermal boundary condition is implemented by an
empirical change of the scaling factor and the energy state
of the computational particles. As a result, the temperature
profile was obtained qualitatively without a solid validation
whereas the heat flux calculation remains still unavailable
[23–25].
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The main aim of this work is to promote the development
of a Monte Carlo scheme for accurate prediction of electronic
thermal transport in metallic nanostructures. We also consider
the electrical transport by slightly adjusting the Monte Carlo
scheme. Our work will contribute to not only a full account of
electron states at energy levels both under and above Fermi
energy, but also an appropriate treatment of the isothermal
boundary with a heat bath method. In addition, we introduce
the variance reduction technique recently developed in a
deviational Monte Carlo scheme for rarefied gas flows [26]
and nanoscale phonon transport [27]. The main idea of the
deviational Monte Carlo scheme is to solve stochastically only
the deviation of the distribution function from a referenced
equilibrium distribution with the contribution from the latter
part computed deterministically [26,27]. Thus the deviational
Monte Carlo scheme can much reduce the computational
burden and the stochastic uncertainties in contrast to the
traditional Monte Carlo scheme. For the electron thermal
transport in metals, the electron states deeply below the Fermi
level are not influenced by the thermal perturbation due to
the Pauli exclusion principle. Thus the deviational scheme
is exceptionally significant by avoiding solving this part via
subtracting a referenced equilibrium distribution.

The remaining of this article is organized as below. In
Sec. II, the mathematical and numerical methodology is
elaborated including the BTE for electron transport and the
developed deviational Monte Carlo algorithm for thermal and
electrical transport. In Sec. III, the Monte Carlo scheme is
validated through modeling in-plane thermal and electrical
transport and cross-plane heat transport through thin films.
The concluding remarks are finally made in Sec. IV.

II. MATHEMATICAL AND NUMERICAL METHODOLOGY

A. Theoretical foundation

1. Electron BTE under relaxation time approximation

As long as the wave effect of electrons is negligible, the
particle picture is appreciably valid for electron transport. The
electron Boltzmann transport equation without magnetic field
is expressed as [10]

∂ f

∂t
+ v · ∇r f − eE

h̄
· ∇k f = C( f ), (1)

where f ≡ f (r, k, t ) is the electron distribution function de-
noting the electron occupation number around the wave vector
k and the spatial position r at the moment t . h̄ is the reduced
Planck constant and v is the drift velocity relevant to electron
energy. E is the external electric field. e is the element charge.
At equilibrium state, f is given by the Fermi-Dirac distribu-
tion f0 = {exp[(ε − μ)/kBT ] + 1}−1. The chemical potential
μ is very close to the Fermi energy at the temperature scope
studied in this work, thus μ = εF is assumed for the simplicity
of mathematical description [22].

The collision term C( f ) evaluates the alteration of the
distribution function from the electron scattering processes,
and is written in a general form as

C( f ) =
∑

k′
[ f ′(1 − f )S(k′, k) − f (1 − f ′)S(k, k′)]. (2)

The transition rate S(k′, k) describes the probability of
transition from one energy eigenstate (k′) to another energy
eigenstate (k) of electron systems, when affected by a weak
perturbation such as lattice vibration (phonons) and imperfec-
tion. It can be computed based on the Fermi’s golden rule from
the first-order perturbation theory [10,28–30]. The collision
term C( f ) vanishes for equilibrium state yielding

(1 − f0)
∑

k′
f0

′S(k′, k) = f0

∑
k′

(1 − f0
′)S(k, k′). (3)

Combined with the principle of detailed balance, Eq. (3)
gives rise to

S(k, k′) = exp

(
ε − ε′

kBT

)
S(k′, k). (4)

In the linear response regime with weak deviation from
equilibrium state, the electron distribution function can be
written as f (k) = f0 + f1(k) with the deviation part a small
quantity f1(k) � f0. Under the relaxation time approximation
(RTA) and also ignoring the high-order terms, we obtain the
expression of relaxation time as

1

τ (k)
=

∑
k′

S(k′, k)

{
f0

′ + (1 − f0
′) exp

(
ε − ε′

kBT

)

− f1
′

f1

[
1 − f0 + f0 exp

(
ε − ε′

kBT

)]}
. (5)

Apart from the prerequisite that electrons and lattices
are sufficiently thermalized to be at the same local tem-
perature [31], the RTA is valid only when the formula of
τ is independent of the nonequilibrium process. First, we
assume the phonon is in the local equilibrium state due to
frequent scattering with electrons because of high electron
density in metals. Then, the validity of RTA holds usually
at two situations [31]: (i) isotropic electron scattering, and/or
(ii) elastic electron scattering. Electron-phonon scattering and
electron-imperfection scattering are the two main intrinsic
sources of transport resistance in metals. We consider the
ideal case of a pure metal without impurity in this work. The
electron-acoustic phonon scattering is an inelastic process,
since the energy of electrons is not conserved in the scattering
process due to emitting or absorbing phonons. As a first step,
the electron-phonon scattering is assumed to be isotropic,
which represents a good approximation for electron heat
transport around a temperature much higher than the Debye
temperature considered in this work. Thus the relaxation time
expression Eq. (5) of electrons becomes no longer dependent
on the nonequilibrium distribution:

1
/
τ (k) =

∑
k′

S(k′, k)

[
f0

′ + (1 − f0
′) exp

(
ε − ε′

kBT

)]
.

(6)

Moreover, τ (k) is averaged on the same energy state ε with

1

τ (ε)
= 1

D(ε)

∑
k

1

τ (k)
δ(ε − εk ), (7)

where D(ε) is density of state per unit volume. The RTA
collision term is rigorously derived from the full collision
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term with only three assumptions: weak deviation from
equilibrium, equilibrium phonon distribution, and isotropic
electron-phonon scattering. The former two assumptions are
widely adopted for investigation of transport and the last
assumption of isotropic scattering is nearly valid at temper-
ature higher than Debye temperature. Thus, the Pauli exclu-

sion principle is automatically satisfied in the RTA model,
which represents a good approximation of original collision
term.

The remaining problem is to solve the transition rate
S(k′, k) in Eqs. (6) and (7). Given by Fermi’s golden rule,
the transition rate is formulated as [32]

S(k′, k) =
∑

γ

2π

h̄
|g(k′, k, γ )|2{n(q, γ )δ(εk′ + h̄ωq,γ − εk )δG,k′+q−k + [n(−q, γ ) + 1]δ(εk′ − h̄ω−q,γ − εk )δG,k′+q−k}, (8)

where q, γ is wave vector and polarization of phonon, respectively, and G is the reciprocal lattice vector. n(q, γ ) is
the average phonon occupation number and here is denoted by Bose-Einstein distribution under the assumption of local
equilibrium state. g(k′, k, γ ) is termed as the coupling function representing the strength of electron-phonon scattering.
n(q, γ ) = n(−q, γ ) and ωq,γ = ω−q,γ are used as a result of translational symmetry of the crystal lattice. With the help of
the property of the Dirac δ function:

∫
δ(ε′ − εk′ )dε′ = 1 and

∫
δ(ω − ωq,γ )dω = 1, the following dimensionless quantity is

introduced as [33,34]:

Cep(ε, ε′, ω, γ ) = 1

h̄D(ε)

∑
k,k′

|g(k′, k, γ )|2δ(ε′ − εk′ )δ(ω − ωq,γ )δ(ε − εk )δG,k′+q−k. (9)

For the convenience of considering the deviation of single-particle energy from the Fermi energy, the Eliashberg function
is introduced and related to the quantity in Eq. (9) as α2F (ω, γ ) � √

ε/εFCep(ε, ε′, ω, γ ) [34]. In this way, the scattering rate
Eq. (7) is formulated as

1

τ (ε)
= 2π

√
εF

ε

∑
γ

∫
dωα2F (ω, γ )

{
n(ω)

[
f0(ε − h̄ω) + [1 − f0(ε − h̄ω)] exp

(
h̄ω

kBT

)]

+ [n(ω) + 1]

[
f0(ε + h̄ω) + [1 − f0(ε + h̄ω)] exp

(−h̄ω

kBT

)]}
. (10)

The Eliashberg function characterizing the strength of
electron-phonon coupling can be determined from ab ini-
tio theoretical calculation [35] or experimental measure-
ment [32]. An empirical expression originally derived in
the low-frequency limit is often adopted for the Eliash-
berg function in the whole frequency spectrum: α2F (ω) =
λn(ω/ωD)n/2 [36], with n equal to 2 for a clean bulk crys-
tal. λ is the mass enhancement parameter, which can be
inversely determined once the Eliashberg function is obtained:
λ= 2

∫ ωmax

0
α2F (ω)

ω
dω. The average temperature of the system

is adopted for the temperature in Eq. (10), as a tiny tempera-
ture difference is considered throughout the system, whereas
the local temperature is adopted for the temperature in the
local equilibrium distribution of the collision term. Then, the
BTE under RTA without magnetic field for electron transport
is finally obtained as

∂ f

∂t
+ v · ∇r f − eE

h̄
· ∇k f = − f − f0

τ
, (11)

where the relaxation time τ is given by Eq. (10).
In principle, there exists an induced electrical field by

the drift of electrons under the temperature gradient, which
is known as the thermoelectric effect described by the See-
beck coefficient. Nevertheless, the effect on electron thermal
transport from the induced electrical field is negligibly small
as compared to that from the temperature gradient [37,38].
For steady-state in-plane thermal transport through metal
thin film, the inner electric field induced by the temperature
gradient can be analytically calculated and its contribution to

the electronic thermal conductivity is found to be generally
less than 0.03% even for the film thickness up to bulk limit.
For steady-state cross-plane thermal transport through metal
thin film, it is not feasible to obtain an analytical solution
of the electron BTE. Later we will numerically calculate the
diffusive current induced by thermal transport when ignoring
the inner electric field. The diffusive current can be treated as
the effect from an effective electric field, the heat flux carried
by which is found to be still negligible compared to the total
heat flux.

2. Deviational formulation

The response of electrons in metal to the electric field is
different from that to the thermal field. The electrons will drift
as a whole in the wave vector space under the electric field,
whereas only electrons around the Fermi level with a width
about the unit thermal energy (kBT ) will respond to thermal
perturbation [10]. Therefore, one has to track the distribution
function in the entire wave vector space in Eq. (11) by the
Monte Carlo scheme for electrical transport. For thermal
transport, it is not necessary and even not feasible to track
the distribution function in the entire wave vector space. Thus
we propose to consider the occupied states above the Fermi
energy (corresponding to the distribution function f ) and the
unoccupied states below the Fermi energy [corresponding
to (1- f )] in the numerical simulation of electron thermal
transport [39]. Furthermore, we introduce the deviational
formulation in the variance reduction method to reduce both
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the statistical uncertainty and the computational burden [27].
Below we will demonstrate the statistical definition of the
macroscopic field variables that can be reformulated into a
very elegant form in terms of the deviational scheme.

The excitation energy density is defined as the difference
between total internal energy density of electron system and
total internal energy density at ground state [40]:

�U = U (T ) − U (0)

=
∫

4π

∫ ∞

0
ε f

D(ε)

4π
dεd� −

∫ εF

0
εD(ε)dε, (12)

where � denotes the solid angle. With the help of electron
number conservation from ground state to excitation state,
Eq. (12) is rewritten into

�U =
∫

4π

∫ εF

0
(εF − ε)(1 − f )

D(ε)

4π
dεd�

+
∫

4π

∫ ∞

εF

(ε − εF) f
D(ε)

4π
dεd�. (13)

We introduce the deviational formulation, and the devia-
tional excitation energy density is obtained as

�U − �Ueq =
∫

4π

∫ εF

0
(εF − ε)(−( f − feq ))

D(ε)

4π
dεd�

+
∫

4π

∫ ∞

εF

(ε − εF)( f − feq )
D(ε)

4π
dεd�,

(14)

where feq is the referenced Fermi-Dirac equilibrium distribu-
tion at the temperature Teq. The local temperature is deter-
mined by assuming the deviational excitation energy density
Eq. (14) to be equal to that at an equivalent equilibrium
temperature Tloc:

�U − �Ueq =
∫ εF

0
(εF − ε)[−( f0(Tloc) − feq )]D(ε)dε

+
∫ ∞

εF

(ε − εF)( f0(Tloc) − feq )D(ε)dε.

(15)

The statistical definition of overall heat flux in the electron
system is expressed as [10]

q =
∫

4π

∫ ∞

0
vk(ε − μ) f

D(ε)

4π
dεd�. (16)

The scope of integration over the energy level in Eq. (16)
is separated into a section below the Fermi level and a section
above the Fermi level:

q =
∫

4π

∫ μ

0
vk(μ − ε)(1 − f )

D(ε)

4π
dεd�

+
∫

4π

∫ ∞

μ

vk(ε − μ) f
D(ε)

4π
dεd�. (17)

We introduce further the deviational description, and the
heat flux expression in Eq. (17) becomes

q =
∫

4π

∫ μ

0
vk(μ − ε)(−( f − feq ))

D(ε)

4π
dεd�

+
∫

4π

∫ ∞

μ

vk(ε − μ)( f − feq )
D(ε)

4π
dεd�. (18)

The statistical definition of electric current is expressed as

J = −e
∫

4π

∫ ∞

0
vk f

D(ε)

4π
dεd�, (19)

which can be reformulated into the deviational description as

J = −e
∫

4π

∫ ∞

0
vk( f − feq )

D(ε)

4π
dε d�. (20)

In the electron heat transport, when neglecting the induced
inner electric field, the heat flux carried by the diffusive
current is computed as

qdiff =
∫

4π

∫ ∞

μ

vk(ε − μ)( f − feq )
D(ε)

4π
dεd�

−
∫

4π

∫ μ

0
vk(μ − ε)(−( f − feq ))

D(ε)

4π
dεd�,

(21)

which is considerably smaller compared to Eq. (18).
For a compact mathematical expression for electron ther-

mal transport, we introduce the following deviational distri-
bution function:

gd = [1 − 2H (μ − ε)]( f − feq ), (22)

where H (μ − ε) is the Heaviside step function. The electron
BTE for thermal transport is reformulated as

∂gd

∂t
+ v · ∇rgd = −gd − gd

loc

τ
, (23)

where gd
loc = {exp(|ε − μ|/kBTloc) + 1}−1 − {exp(|ε − μ|/

kBTeq ) + 1}−1 is the local deviational equilibrium distribution
with Tloc determined by Eq. (15). If T > Teq, the sign of
deviational distribution function gd is positive; otherwise, the
sign is negative. In this way, the deviational excitation energy
density Eq. (14), the overall heat flux Eq. (18) and the heat
flux carried by the diffusive current Eq. (21) are reformulated
into

�U − �Ueq =
∫

4π

∫ ∞

0
|ε − εF|gd D(ε)

4π
dεd�, (24)

q =
∫

4π

∫ ∞

0
vk|ε − μ|gd D(ε)

4π
dεd�, (25)

qdiff =
∫

4π

∫ ∞

0
vk(ε − μ)gd D(ε)

4π
dεd�. (26)

For electrical transport, the deviational formulation is
slightly different from that for thermal transport as inferred
from Eq. (20). The deviational distribution is introduced as
gd = f − feq in the entire wave vector space. The electron
BTE for charge transport is reformulated as

∂gd

∂t
+ v · ∇rgd − eE

h̄
· ∇kgd = −gd − gd

loc

τ
+ eE

h̄
· ∇k feq,

(27)

where the deviational equilibrium distribution is gd
loc =

f0(Tloc) − feq, and the extra source term comes from the drift

205433-4



DEVIATIONAL MONTE CARLO SCHEME FOR THERMAL … PHYSICAL REVIEW B 99, 205433 (2019)

in wave vector space as a whole. The sign of deviational distri-
bution function gd is different from that for thermal transport
because the temperature stays nearly unchanged in electrical
transport. If gd is larger than zero with excess electrons,
the deviational sign is positive, and otherwise negative. The
statistical definition of the electric current Eq. (20) is thus
reformulated into

J = −e
∫

4π

∫ ∞

0
vkgd D(ε)

4π
dεd�. (28)

B. Monte Carlo algorithm

In this subsection, we will introduce the Monte Carlo
algorithm to solve the electron BTE for thermal and elec-
trical transport in metal nanostructures. In recent decades
there has been much progress in Monte Carlo schemes for
nanoscale phonon heat transport in semiconductors and in-
sulators [27,41,42]. However, the Monte Carlo scheme for
nanoscale electron heat transport in metals remains to be
established. Although the BTE [Eq. (23)] for electron heat
transport is very similar to the phonon BTE under RTA,
there are several essential differences between phonons and
electrons: (i) phonons are bosons with Bose-Einstein statis-
tics, whereas electrons are fermions with Fermi-Dirac statis-
tics; (ii) phonons mainly scatter among themselves whereas
electrons scatter mainly with lattice vibration (phonons). In
addition, although the EMC for electron transport in semi-
conductors has been well developed, it is difficult to adapt
the EMC to electron thermal transport in metals because of
their different energy band structures: only the electrons in
the conduction band above the Fermi energy level (n-type) or
the holes in the valence band below the Fermi energy level
(p-type) are tracked in EMC for semiconductors, whereas
the electron states both above and below the Fermi energy
level shall be carefully tracked in the Monte Carlo scheme
for metals. Note that the RTA model has implicitly included
the Pauli exclusion principle so that no additional scheme
has to be considered for the occupation of final states in the
implementation of scattering process compared to EMC in
doped semiconductors [43,44]. Below we describe the details
of the deviational Monte Carlo schemes for electron thermal
transport in Sec. II B 1, which mainly include the following
steps: initialization, drift, boundary treatment, macroscopic
variable calculation and scattering. The Monte Carlo algo-
rithm is slightly adjusted for electrical transport in Sec. II B 2,
with an introduction to the treatment of the equivalent source
term in Eq. (27).

1. Thermal transport

(a) Initialization. Deviational particles are used to represent
the deviational distribution function defined in Eq. (22) [27].
We choose a referenced equilibrium state at a temperature
Teq. For numerical integration, a Fermi window [εl, εh] is
taken into account, where the lower limit and upper limit
is, respectively, εl = εF − 10kBT and εh = εF + 10kBT after
an independence check, with T being the system average
temperature. If the system is initially at an equilibrium state
at a temperature T0, the initial number of deviational particles

is determined as

Nini = 1

Neff

∫ εh

εl

|gd D(ε)|dε

= 1

Neff

∫ εh

εl

|[exp(|ε − μ|/kBT0) + 1]−1

− [exp(|ε − μ|/kBTeq ) + 1]−1|D(ε)dε, (29)

with Neff a scaling factor. If T0 > Teq, the deviational particles
are assigned a positive sign, otherwise a negative sign. The
position of the deviational particles is uniformly distributed
in the simulation domain. The energy level of the deviational
particles is drawn from the cumulative integrand function
from Eq. (29). Once the energy level is obtained, the mag-
nitude of the particle velocity is determined based on the
energy band function. The direction of the particle velocity
is uniformly distributed in the solid angle space similar to the
treatment in Monte Carlo scheme for phonon transport [41].

(b) Drift. The motion of particle j satisfies

r j (t + �t ) = r j (t ) + v j�t, (30)

which drifts linearly with velocity unchanged unless encoun-
tering the boundary within the drift step. The drift step is
performed for each particle.

(c) Boundary treatment. Several kinds of boundary treat-
ments are introduced including the isothermal boundary, adi-
abatic boundary, periodic heat flux boundary, and periodic
boundary. For the isothermal boundary, the heat bath method
originally provided in the phonon Monte Carlo scheme [45] is
adapted here, where the particles in the heat bath are assigned
instead by the deviational Fermi-Dirac equilibrium distribu-
tion at the boundary temperature within each time step. This is
in strong contrast to the empirical change of energy state and
scaling factor of particles incident on the isothermal boundary
in previous work [23–25]. It should be noticed that the length
of heat bath shall be larger than the maximum moving distance
of one particle within each time step. The fully diffuse scheme
is implemented for the adiabatic boundary. The periodic heat
flux boundary in phonon Monte Carlo scheme [27,46] is
also adapted for in-plane thermal transport, and the periodic
boundary is used for the simplification of simulation.

(d) Macroscopic variable calculation. First, the computa-
tional domain is divided into a series of unit cells with equal
volume Vg and index n. The deviational excitation energy
density is computed as

(�U − �Ueq )n = 1

Vg

∑
j∈n

|ε j − εF|sd ( j), sd ( j) = ±1.

(31)

Thus the local temperature Tn at the nth unit cell is deter-
mined by the following inverse numerical integration using
the dichotomy method:

(�U − �Ueq )n =
∫ εh

εl

|ε − εF|{[exp(|ε − μ|/kBTn) + 1]−1

− [exp(|ε − μ|/kBTeq ) + 1]−1}D(ε)dε.

(32)
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The overall heat flux for nth unit cell is calculated by

qn = 1

Vg

∑
j∈n

v j |ε j − μ|sd ( j), (33)

whereas the heat flux carried by the diffusive current is
calculated by

qdiff,n = 1

Vg

∑
j∈n

v j (ε j − μ)sd ( j). (34)

(e) Scattering. Scattering is the key step to restoring the
electrons to equilibrium state. After each time step, the scatter-
ing probability of each particle is determined by the formula
p = 1 − exp(−�t/τ ) based on the RTA. The implementation
of the scattering step is well established in the deviational
Monte Carlo scheme for phonon transport [27] and is adapted
here. We randomly delete from the collection of the scattered
particles N+

s,n + N−
s,n − |N+

s,n − N−
s,n| with N+

s,n being the scat-
tered deviational particle with positive sign and N−

s,n is the
scattered deviational particle with negative sign in the nth unit
cell. The properties of the remaining |N+

s,n − N−
s,n| particles are

redrawn from the following distribution:

gd
loc

D(ε)

τ (ε)
= {[exp(|ε − μ|/kBTloc) + 1]−1

− [exp(|ε − μ|/kBTeq ) + 1]−1}D(ε)

τ (ε)
, (35)

where the local equilibrium distribution is supposed to be at
the local temperature in the present work and the deviational
sign is given by the sign of gd

loc.

2. Electrical transport

For electrical transport, the deviational particles represent
the deviational distribution function defined in Eq. (27). Due
to the negligible influence of the electrothermal effect, the
system is assumed to keep at a uniform temperature T0. We
choose the referenced equilibrium distribution at the tempera-
ture Teq = T0 with no particles in the initial step.

The particles will be accelerated as r j (t + �t ) = r j (t ) +
v j�t − 1

2
eE
m (�t )2 in the drift step where the external electric

field is assumed constant in the simulation domain. Note that
the electric field should be moderate, which is neither too
small to be neglected without numerical error nor too strong
to make particles exceed the boundary of the first Brillouin
zone. Besides the periodic boundary and the diffuse boundary,
the periodic electric current boundary is adopted for in-plane
electrical transport where the particles leaving the domain will
re-enter from the opposite side to ensure the conservation of
electric current.

With the split scheme in the Monte Carlo method, we
need to consider the extra source term in Eq. (27) as ∂gd

∂t =
eE
h̄ · ∇k feq additionally for electrical transport. The number of

deviational particles generated by this source term within each

time step is computed as

Nsource =
∫

4π

∫ εh

εl

∣∣∣∣eE
h̄

· ∇k feq

∣∣∣∣D(ε)

4π
dεd��t

= eE�t

2

∫ εh

εl

∫ π

0
v|cos θ sin θ∇ε feq|D(ε)dθdε

= eE�t

2

∫ εh

εl

v|∇ε feq|D(ε)dε (36)

with ∇ε feq = − feq(1 − feq )/kBTeq, E being the magnitude of
the external electric field. The energy level of particles is
drawn from the cumulative integrand function from Eq. (36)
whereas the direction of the particle velocity is determined
from

v1, j = v j cos θ =
{

v j
√

R1, θ ∈ [0, π/2]

−v j
√

R1, θ ∈ [π/2, π ]
,

v2, j = v j sin θ sin ϕ = v j

√
1 − R1 sin (2πR2),

v3, j = v j sin θ cos ϕ = v j

√
1 − R1 cos (2πR2), (37)

where the subscripts 1, 2, 3 denote the x, y, and z directions
separately within the assumption of external electric field
along the x direction, and two random numbers are generated
as R1 ∈ [0, 1] and R2 ∈ [0, 1]. In addition, the deviational par-
ticles with θ ∈ [0, π/2] are assigned a negative sign, whereas
the deviational particles with θ ∈ [π/2, π ] are assigned a pos-
itive sign. The electric current in a unit cell of the simulation
domain is calculated as

Jn = − 1

Vg

∑
j∈n

ev j sd ( j), sd ( j) = ±1. (38)

In the scattering step, the selected scattered particles are
directly deleted from the domain due to the choice of Teq = T0.

III. RESULTS AND DISCUSSION

In this section, the Monte Carlo algorithm developed for
thermal and electrical transport in Sec. II B is validated by
modeling the in-plane thermal and electrical transport, and
the cross-plane thermal transport through a gold thin film
around room temperature by comparing to analytical solutions
or discrete ordinates solution [20]. The schematics of cross-
plane and in-plane electron transport are shown in Fig. 1. The
physical parameters of gold at 300 K used in the simulation
are given in Table I.

The relaxation time is calculated based on Eq. (10),
where the mass enhancement parameter λ in the Eliashberg
function is 0.17 from first principle calculations [35]
and lies in the range of [0.14, 0.18] from point-contact
and femtosecond experimental measurement [32,47,48].
Further, we neglect the dependency of the integrand function
on electron energy states close to the Fermi energy in
Eq. (10). Then the thermal conductivity of bulk material is
calculated by κe = ∫ ∞

0 (ε − εF) d f0

dT v2τ (ε)D(ε)dε/3, which
gives the value between 359 and 279 W/m/K for λ from
0.14 to 0.18. This is in acceptable agreement with the
experimental bulk value of 317 W/m/K. Below we adopt
λ equal to 0.15 with the expression of relaxation time
simplified into τ (ε) � τ0

√
ε/εF = 2.77 × 10−14√ε/εF (s).
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FIG. 1. Schematic of in-plane and cross-plane electron transport
through metallic thin film: (a) in-plane transport, the x direction is
the periodic heat flux boundary or periodic electric current boundary,
the y direction is the adiabatic boundary, and the z direction is the
periodic boundary; (b) cross-plane transport, the x direction is the
isothermal boundary, the other directions are periodic boundaries.

The average electron MFP is calculated by
� = ∫ ∞

0 (ε − εF) d f0

dT v2τ (ε)D(ε)dε/
∫ ∞

0 (ε − εF) d f0

dT vD(ε)dε,
which produces results in good agreement with the referenced
ab initio data [49] as shown in Table I. The Knudsen number
is defined as Kn = �/d with d the characteristic length of
metallic structure.

In addition to the relaxation time, the energy band structure
is also an important parameter for metallic material. For a
weakly correlated electron system in the metals studied in this
work, the nearly free electron model is a good approxima-
tion [10]. Besides, the external electric field is treated as a
perturbation such that electrons do not exceed the boundary
of the first Brillouin zone to a higher energy band. Thus we
adopt a parabolic energy band function as ε = h̄2k2/2m =
mv2/2 inside the first Brillouin zone with m being the mass
of the electron. A more realistic and accurate band structure
could be, in principle, obtained by the ab initio method [50]
and incorporated into the present numerical framework in a
straightforward way.

A. In-plane electron thermal transport

In this subsection and below, the in-plane and cross-plane
thermal transport at nanoscale where the Fourier’s law is
invalid are simulated. First, we consider the in-plane electron
thermal transport through a gold thin film with a thickness
from 2 to 400 nm as shown in Fig. 1(a). The time step in the
simulation is chosen from τ0/200 to τ0/40 with increasing
film thickness. The scaling factor is set to be 5 for all the cases.
The periodic heat flux boundary condition is implemented
along the x direction with a length of 200 nm and the tem-
perature difference of 20 K, whereas the periodic boundary
condition is used for the z direction with a width chosen
such that the number of computational particles varies around
105. After the simulation reaches the steady state, the results
within 2000 time steps are sampled every 10 time steps for the

TABLE I. Physical parameters of bulk gold at T = 300 K.

Parameter εF/eV �D/K λ �/nm(present) �/nm[49]

Value 5.51 165 0.15 38.6 37.7

FIG. 2. The cross-section overall heat flux distribution and ef-
fective thermal conductivity of in-plane transport through an Au
thin film: (a) cross-section heat flux distribution with thickness of
7, 70, and 400 nm, respectively. Symbols are the results from the
present Monte Carlo scheme whereas solid lines are that of the F-S
model [13,14]; (b) effective thermal conductivity versus Knudsen
number.

time averaging of macroscopic variables. Figure 2 shows the
cross-section overall heat flux distribution without subtracting
the heat flux carried by the diffusive current and the effective
thermal conductivity obtained by the present Monte Carlo
simulation in comparison to the analytical solution of the
classical F-S model [13,14]. The current Monte Carlo scheme
captures well the general profile of cross-section heat flux
distribution and provides a good prediction of the effective
thermal conductivity in spite of existing fluctuations due to
the stochastic nature of the method. Similar to the result of
in-plane phonon heat transport [51], the heat flux near the
boundary will be reduced due to the enhancement of electron-
boundary scattering with the decrease of film thickness. Thus

205433-7
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FIG. 3. The nondimensional temperature distribution and effec-
tive thermal conductivity of cross-plane transport through the Au thin
film at steady state: (a) nondimensional temperature distribution with
thickness of 7, 70, and 400 nm, respectively. Symbols are the results
from the present Monte Carlo scheme, whereas dashed lines are
that of discrete ordinates method; (b) effective thermal conductivity
versus Knudsen number.

the heat flux profile becomes no longer uniform as predicted
by Fourier’s law. With infinitely decreasing film thickness, the
heat flux profile approaches to be nearly uniform again in the
ballistic transport regime where electron-boundary scattering
is dominant.

B. Cross-plane electron thermal transport

Then we consider the cross-plane electron thermal trans-
port through gold thin film with a thickness from 2 to 400
nm as shown in Fig. 1(b). The left-hand and right-hand
sides of the thin film keep in contact with a hot source at
310 K and a cold source at 290 K, respectively. The time

FIG. 4. The cross-section electric current distribution and effec-
tive electrical conductivity of in-plane transport through the Au thin
film: (a) cross-section electric current distribution with thickness of
7, 70, and 400 nm, respectively. Symbols are the results from the
present Monte Carlo scheme, whereas solid lines are that of the
F-S model [13]; (b) effective electrical conductivity versus Knudsen
number.

step is chosen from τ0/200 to τ0/40 with increasing film
thickness. The scaling factor is equal to 5 for all the cases.
The periodic boundary condition is applied for both y and z
directions with a side size chosen such that the number of
computational particles varies around 105. When the simu-
lation reaches the steady state, the results within 1000 time
steps are sampled every 10 time steps for the time averag-
ing of macroscopic variables. As the analytical solution of
cross-plane transport is not available, we use our homemade
discrete ordinates solution as the benchmark. The validity of
our discrete ordinates method has been demonstrated in our
previous work [20,52]. The comparison between the results
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from our current Monte Carlo scheme and those from the
discrete ordinates method is shown in Fig. 3. The temperature
distribution within thin film is linear, with a temperature jump
at the boundary increasing as the film thickness decreases.
This boundary temperature jump comes from the in-sufficient
thermalization between the heat bath and thin film. Thus the
effective cross-plane thermal conductivity calculated from the
overall heat flux decreases with decreasing thin film thickness.
Besides, the thermal conductivity contributed by the diffusive
current lies in the range of [0.2, 9] (W/m/K) for all the film
thicknesses considered in the present work, the proportion
of which in the overall thermal conductivity decreases when
increasing thickness and is generally less than 5%. Note
that this diffusive current corresponds to an effective induced
electric field, the neglecting of which is thus applicable.
The excellent agreement of the results by the present Monte
Carlo scheme with that by the discrete ordinates method for
cross-plane electron thermal transport further validates our
algorithm.

C. In-plane electrical transport

In order to validate the Monte Carlo treatment of electrical
transport, we consider only the in-plane case with the number
of simulating particles nearly half of that in the corresponding
in-plane thermal transport case. The periodic electric current
boundary is adopted with the electric field equal to 5 × 105

V/m. The excellent agreement of the current Monte Carlo
treatment with the F-S model for electrical transport validates
our MC algorithm, as is shown in Fig. 4.

IV. CONCLUSIONS

Through transforming the full collision term in the electron
Boltzmann equation into the relaxation time approximation
form, a deviational Monte Carlo algorithm is developed for
thermal and electrical transport in metallic nanostructures.
We propose to track the occupied electron states above the
Fermi energy level and the unoccupied electron states below
the Fermi energy level for an efficient simulation of elec-
tron thermal transport. An additional equivalent source term
is implemented for electrical transport due to the drift of
electrons in the wave vector space as a whole in contrast
to thermal transport. The present Monte Carlo scheme is
extensively validated by modeling in-plane and cross-plane
thermal transport, as well as in-plane electrical transport
through metallic thin films. Thermal and electrical transport
in more complex geometries such as the nanocrystalline and
nanoporous metallic structures will be explored in future
work. Besides, more realistic, accurate band structure can
be incorporated into the present numerical framework in a
straightforward way in the near future. This work will provide
a fundamental understanding of electron transport in micro-
and nanoscale, and a ground for the study of electron-phonon
coupling transport.
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