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Summary
Particles suspension is considerably prevalent in petroleum industry and chemi-
cal engineering. The efficient and accurate simulation of such a process is always
a challenge for both the traditional computational fluid dynamics and lattice
Boltzmann method. Immersed moving boundary (IMB) method is promising to
resolve this issue by introducing a particle-fluid interaction term in the standard
lattice Boltzmann equation, which allows for the smooth hydrodynamic force
calculation even for a large grid size relative to the solid particle. Although the
IMB method was proved good for stationary particles, the deviation of hydrody-
namic force on moving particles exists. In this work, we reveal the physical origin
of this problem first and figure out that the internal fluid effect on the hydro-
dynamic force calculation is not counted in the previous IMB. An improved
immersed moving boundary method is therefore proposed by considering the
internal fluid correction, which is easy to implement with the little extra com-
putation cost. A 2D single elliptical particle and a 3D sphere sedimentation in
Newtonian fluid is simulated directly for the validation of the corrected model
by excellent agreements with the standard data.
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1 INTRODUCTION

The efficient and accurate simulation of particles suspension is of both academic and industrial interests such as flu-
idized beds in the chemical engineering and sand production or hydraulic fracture in the petroleum industry.1-7 In order
to gain fundamental insights into these poorly understood problems, a direct numerical simulation (DNS) is needed
where the Navier-Stokes equations for an incompressible Newtonian fluid is solved directly or equivalently and the
particle-fluid interaction should be considered at the particle scale.8,9 Recently, the lattice Boltzmann method (LBM) has
been a powerful tool to directly couple a large number of moving particles and the fluid.10,11

A moving boundary condition and the accurate calculation of hydrodynamic force imposed on the solid particle are
two basic aspects in LBM simulation of particles suspension.11 Early models to consider particles suspension are based
on the momentum exchange such as the shell model1,2 and the dry particle model,12,13 where particle representation is
stepwise, which results in the hydrodynamic force fluctuation when the particle covers or uncovers the LBM cells.11,14

To reduce the hydrodynamic force fluctuation a modified momentum exchange method is proposed by considering the
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initial momentum of the net mass transfer at each time step.11 Some other methods to achieve a smoother hydrodynamic
force calculation include the interpolation-based curved boundary models15,16 and the stress integration models.17,18 How-
ever, although some efforts have been made during the past few decades, it is still a challenge to achieve a smooth and
accurate calculation of hydrodynamic force without increasing the resolution of the computation domain in the particles
suspension models.9

This article focuses on the immersed moving boundary (IMB) method proposed in Reference [19] and later extended
by Reference [8, 9]. It offers particle representation at a subcell scale and allows for smooth hydrodynamic force calcu-
lation even for a large LBM cell size relative to the solid particle.8,9,19,20 According to the result in Reference [11], forces
on the particle obtained by IMB are the smoothest among all the method they tested. During the past few decades, this
model has been widely applied to explore the underlying physics of dense particles suspension,14,21-30 where thousands
of particles immersed in the fluid were considered. IMB method was validated in the previous work by simulating the
fluid flow through a fixed particle,9 and the calculated drag coefficient agreed well with other numerical and empirical
results. However, the error exists in IMB method for the dynamic cases. Chen et al11 simulated the settling process of a
single elliptical particle by different lattice Boltzmann-based methods, and they found the particle trajectories obtained
by IMB method deviate from FEM results when the particle Reynolds number (Re) is relatively high.

Although IMB method gives a sufficiently smooth hydrodynamic force and is proved accurate for the still parti-
cles, it results in the inaccurate particle dynamics. Thus, the purpose of this work is to answer the question why IMB
method cannot give accurate hydrodynamic force in the dynamic cases, and then an improved IMB method is proposed
based on the strict mathematic derivation of the hydrodynamic force. The rest of this article is organized as follows.
First the original IMB method is briefly introduced in Section 2. In Section 3, an improved IMB method is proposed
including the mathematic derivation of the hydrodynamic force. Section 4 is the validation of the new model, where the
comparisons between the original IMB method and the improved one are presented. In the last section, the article is
concluded.

2 ORIGINAL IMMERSED MOVING BOUNDARY METHOD FOR LBM

Generally, the immersed boundary methods (IBM)31-36 is a group of numerical techniques to consider the coupling
between the fluid flow and the solid movement.37 Here, we focus on immersed moving boundary (IMB) for LBM which is
different from the traditional immersed boundary method (IBM). It is proposed in Reference [19] and then extended in.8-10

In the following parts, the lattice Boltzmann method (LBM) and the IMB method are briefly introduced, respectively.

2.1 Lattice Boltzmann method (LBM)

Lattice Boltzmann method (LBM) is an efficient numerical method for solving the partial differential equations espe-
cially with complicated boundary condition such as porous media and particle suspensions.38-44 Different from the
traditional computational fluid dynamics (CFD), where the macroscopic governing equations (such as Navier-Stokes
equations) are solved directly, LBM solves Boltzmann equation in the finite discrete velocities space, while according to
the Chapman-Enskog expansion the Navier-Stokes equations can be recovered.45 Thus, the basic variables in LBM is the
particle distribution function, f i. In the lattice Bhatnagar-Cross-Krook model, the particle distribution is governed by the
evolution equation written as45

fi(x + ei𝛿t, t + 𝛿t) = fi(x, t) − 1
𝜏
(fi(x, t) − f eq

i (𝜌,u)) + Fi𝛿t, i = 0-9, (1)

where x denotes the position vector, f i is the particle distribution function in the ith lattice discrete velocity direction ei,
f eq
i is the corresponding equilibrium distribution, 𝛿t is the time step, Fi is the discrete external force in direction ei, and 𝜏

is the dimensionless relaxation time related to the kinematic viscosity

𝜈 =
(𝜏 − 0.5)𝛿2

x

3𝛿t
, (2)

where 𝛿x is the lattice size.
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In this work, both 2D and 3D cases are considered. The algorithm details can be found in our previous
publications11,22,46,47 or other books.48 For an example of the D2Q9 model, the discrete velocities are

ei =
⎧⎪⎨⎪⎩

0, i = 0
c(cos[(i − 1)𝜋∕4], sin[(i − 1)𝜋∕4]), i = 1, 3, 5, 7
c(
√

2 cos[(i − 1)𝜋∕4],
√

2 sin[(i − 1)𝜋∕4]), i = 2, 4, 6, 8
, (3)

where c = 𝛿x/𝛿t. The equilibrium distribution for D2Q9 is given as

f eq
i (𝜌,u) = 𝜌wi

[
1 + ei ⋅ u

3c2 + 9(ei ⋅ u)2

2c4 − 3u ⋅ u
2c2

]
, (4)

where the weighting factors are

wi =
⎧⎪⎨⎪⎩

4∕9, i = 0
1∕9, i = 1, 3, 5, 7
1∕36, i = 2, 4, 6, 8

. (5)

After evolution, the macroscopic variables density and velocity are calculated by

𝜌 =
∑

i
fi, (6)

𝜌u =
∑

i
fiei =

∑
i

f eq
i ei, (7)

and the pressure (p) is given by

p = 1
3
𝜌c2. (8)

2.2 Original immersed moving boundary method

A brief introduction of the original IMB method19 is presented here, which includes two basic aspects. First, the no-slip
boundary condition should be satisfied on the solid surface. Second, the hydrodynamic force imposed on the parti-
cle needs be calculated to update the particle dynamics. In IMB the fluid exists in both inside (internal fluid) and
outside (external fluid) of the solid particle. Internal fluid moves rigidly with the solid particle to ensure the no-slip
boundary condition, which is achieved by introducing a fluid-solid interaction term Ωs

i in the standard LB equation
(Equation (1))

fi(x + ei𝛿t, t + 𝛿t) = fi(x, t) + (1 − B)
{
−1
𝜏
[fi(x, t) − f eq

i (𝜌,u)]
}
+ BΩs

i . (9)

The fluid-solid interaction term Ωs
i is derived by the bounce-back for the nonequilibrium part of particle

distribution f i.
9

Ωs
i = [f−i(x, t) − f eq

−i (𝜌,u)] − [fi(x, t) − f eq
i (𝜌,Vp)], (10)

where V p is the particle velocity at position x. In Equation (9), B is a weight function depending on the volume fraction
𝛾 occupied by solid in each LBM cell

B = 𝛾(𝜏 − 0.5)
(1 − 𝛾) + (𝜏 − 0.5)

. (11)
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B = 0 when 𝛾 = 0, and B = 1 when 𝛾 = 1. Thus, Equation (9) degenerates into the standard LB equation (Equation (1))
and the bounce-back rule for 𝛾 = 0 and 1, respectively. In this work, the cell decomposition method10 is used to calculate
the volume fraction 𝛾 in each LBM cell, whose detail implementation is presented in Appendix A.

To derive the hydrodynamic force imposed on the solid particle, Equation (9) is rewritten as the standard form of LB
equation (Equation (1))

fi(x + ei𝛿t, t + 𝛿t) = fi(x, t) − 1
𝜏
[fi(x, t) − f eq

i (𝜌,u)] + B
𝛿t

{1
𝜏
[fi(x, t) − f eq

i (𝜌,u)] + Ωs
i

}
𝛿t. (12)

Compared with Equation (1), an external force at discrete direction ei is introduced in IMB to enforce the no-slip
boundary condition, whose magnitude is given by

B
𝛿t

{1
𝜏
[fi(x, t) − f eq

i (𝜌,u)] + Ωs
i

}
. (13)

For LBM cell inside the particle, the total external force is sum of Equation (13) at all discrete direction ei

∑
i

𝛿3
x B
𝛿t

{1
𝜏
[fi(x, t) − f eq

i (𝜌,u)] + Ωs
i

}
ei. (14)

Based on Equation (7),
∑

i

1
𝜏
[fi(x, t) − f eq

i (𝜌,u)]ei = 0, so Equation (14) is rewritten as

∑
i

𝛿3
x B
𝛿t

Ωs
i ei. (15)

Thus, the original IMB method can be regarded as a special scheme to deal with the local body force. The total hydro-
dynamic force imposed on solid particle is calculated by summing the external force in n cells covered by it, while the
direction is opposite

F = −
∑

n

(∑
i

𝛿3
x Bn

𝛿t
Ωs

i ei

)
, (16)

where Bn is the weighting function in nth LBM cell inside the solid particle. The torque is calculated similarly by

T = −
∑

n

[∑
i

𝛿3
x Bn

𝛿t
Ωs

i ei(xn − xcm)

]
, (17)

where xn is the nth cell position, and xcm is the mass center of the solid particle.

3 IMPROVED IMMERSED MOVING BOUNDARY METHOD

In IMB, the no-slip boundary condition can be satisfied well, and its accuracy and convergence characteristics
have been discussed in Reference [10]. However, the hydrodynamic force calculated by IMB is still not sufficiently
accurate especially when the particle velocity is relatively high.11 Inspired by the internal fluid correction for tradi-
tional immersed boundary method (IBM)49,50 (a totally different approach dealing with the moving boundary con-
dition from IMB), we find that the origin of inaccurate hydrodynamic force in IMB also comes from the internal
fluid effect.

In IMB, the internal fluid moves with the solid particle, but in the real case the solid particle is “solid and dry” and only
the external fluid exists. Thus, it is necessary to explore how the internal fluid affects the hydrodynamic force calculation
in IMB. In order to answer this question, a strict mathematic derivation of the hydrodynamic force in the framework of
IMB method is given as follows.



CHEN and WANG 4497

F I G U R E 1 Diagram for particle suspension
in real case and in the framework of IMB method
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

3.1 Mathematical derivation for hydrodynamic force in IMB

Inspired by the previous research of IBM,49-51 we consider a single particle suspended in fluid. A rigid solid particle with
density 𝜌s is immersed in the fluid with density 𝜌f and the domain Ω (see Figure 1A). In the framework of IMB method,
the domain Ω includes two parts, internal fluid Ωin and external fluid Ωout, Γ is the solid boundary (see Figure 1B).

First, consider the “solid and dry” particle in Figure 1A. Its motion is governed by the Newton-Euler equation as

ms
𝑑𝑢s

𝑑𝑡
= ∮Γ

𝝉 ⋅ n𝑑𝑠 + Fexternal, (18)

Is
d𝝕s

𝑑𝑡
+𝜛s × [I ⋅𝝕s] = ∮Γ

𝝉 ⋅ n × (x − xcm)𝑑𝑠 + Texternal, (19)

where the first terms on the right hand are hydrodynamic force and torque, respectively, and the second terms are external
force (such as gravity) and torque imposed on the solid particle. In IMB, fluid exists inside and outside the solid particle
(see Figure 1B). When the internal fluid Ωin is considered as a whole, its motion is governed by

d
𝑑𝑡 ∫Ωin

𝜌f uf 𝑑𝑉 = ∮Γ
𝝉∗ ⋅ n𝑑𝑠 + 𝜌f ∫Ωin

f𝑑𝑉 , (20)

d
𝑑𝑡 ∫Ωin

I∗f 𝝕f 𝑑𝑉 = ∮Γ
𝝉∗ ⋅ n × (x − xcm)𝑑𝑠 + 𝜌f ∫Ωin

f × (x − xcm)𝑑𝑉 , (21)

where the first terms on right hand are force and torque imposed on the boundary of internal fluid Γ by external fluidΩout,
and the second terms are force and torque caused by the body force of internal fluid. Due to the no-slip boundary condition,
𝜏* in Equations (20) and (21) is equal to 𝜏 in Equations (18) and (19). Substituting ∮Γ 𝝉 ⋅ n𝑑𝑠 and ∮Γ 𝝉 ⋅ n × (x − xcm)𝑑𝑠 by
∮Γ 𝝉∗ ⋅ n𝑑𝑠 and ∮Γ 𝝉∗ ⋅ n × (x − xcm)𝑑𝑠, respectively, Equations (18) and (19) are rewritten as

ms
𝑑𝑢s

𝑑𝑡
= d

𝑑𝑡 ∫Ωin

𝜌f uf 𝑑𝑉 − 𝜌f ∫Ωin

f𝑑𝑉 + Fexternal, (22)

Is
d𝝕s

𝑑𝑡
+𝜛s × [Is ⋅𝝕s] =

d
𝑑𝑡 ∫Ωin

I∗f 𝝕f 𝑑𝑉 − 𝜌f ∫Ωin

f × (x − xcm)𝑑𝑉 + Texternal. (23)

Here is the strict mathematic expression (Equations (22) and (23)) for hydrodynamic force and torque in IMB, and
the first terms on the right hand are the internal fluid effect.

In IMB, the body force of the internal fluid has been derived as
∑

i

𝛿3
x B
𝛿t
Ωs

i ei (see Equation (14)), and Equations (22) and

(23) are expressed as

ms
𝑑𝑢s

𝑑𝑡
= d

𝑑𝑡 ∫Ωin

𝜌f uf 𝑑𝑉 −
∑

n

∑
i

𝛿3
x Bn

𝛿t
Ωs

i ei + Fexternal, (24)

http://wileyonlinelibrary.com
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Is
d𝝕s

𝑑𝑡
+𝜛s × [Is ⋅𝝕s] =

d
𝑑𝑡 ∫Ωin

I∗f 𝝕f 𝑑𝑉 −
∑

n

[∑
i

𝛿3
x Bn

𝛿t
Ωs

i ei(xn − xcm)

]
+ Texternal, (25)

where the first two terms on the right hand are the hydrodynamic force and torque, respectively, and the third terms are
the external force (such as gravity) and torque imposed on solid. However, in the original IMB method, the first terms
(internal fluid effect) are ignored. This is why the original IMB method cannot give the hydrodynamic force accurately.

In order to obtain the numerical expression of Equations (24) and (25), different schemes dealing with the internal
fluid effect (first term on right hand of Equations (24) and (25)) have been introduced.49

3.2 Internal fluid effect

The first scheme has no internal fluid effect, which implies the following assumptions

d
𝑑𝑡 ∫Ωin

𝜌f uf 𝑑𝑉 = 0, (26)

d
𝑑𝑡 ∫Ωin

If𝝕f 𝑑𝑉 = 0. (27)

With these assumptions, the internal fluid effect vanishes, and the hydrodynamic force calculated by Equations (16)
and (17) is the same as that by the original IMB method. Clearly, these assumptions (Equations (26) and (27)) are only
valid for the constant internal fluid velocity cases. This is why the original IMB method gave correct results for the fixed
particle cases9 where the internal fluid velocity was always equal to zero. However, in most cases, the particle velocity
varies with time, and the correction for the internal fluid effect has to be considered.

3.2.1 Implicit rigid motion approximation

A simple way to consider the internal fluid effect is to assume the internal fluid moves rigidly with the solid particle as
follows

d
𝑑𝑡 ∫Ωin

𝜌f uf 𝑑𝑉 = 𝜌f V
duf

𝑑𝑡
= 𝜌f V dus

𝑑𝑡
, (28)

d
𝑑𝑡 ∫Ωin

I∗f 𝝕f 𝑑𝑉 = If
d𝝕f

𝑑𝑡
= If

d𝝕s

𝑑𝑡
. (29)

As a result, the governing equations (Equations (24) and (25)) are rewritten as

V(𝜌s − 𝜌f )
𝑑𝑢s

𝑑𝑡
= −

∑
n

∑
i

𝛿3
x Bn

𝛿t
Ωs

i ei + Fexternal, (30)

(Is − If )
d𝝕s

𝑑𝑡
+𝜛s × [Is ⋅𝝕s] = −

∑
n

[∑
i

𝛿3
x Bn

𝛿t
Ωs

i ei(xn − xcm)

]
+ Textrenal. (31)

In this scheme the internal fluid effect is considered implicitly by introducing an equivalent mass V(𝜌s − 𝜌f) and
moment of inertia (Is − If), which is similar with the treatment in Ladd's shell model.1,2 However, the solid-fluid density
ratio is constrained in this scheme to obtain a stable update of particle position.52-54

𝜌s

𝜌f
> 1 + 10

r
, (32)
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where r is the radius of the sphere particle and when the solid-fluid density ratio is close to 1, stable results cannot be
available.

3.2.2 Explicit rigid motion approximation

In order to overcome the limitation of solid-fluid density ratio in implicit rigid motion approximation, an explicit scheme
is considered here.49

d
𝑑𝑡 ∫Ωin

𝜌f uf 𝑑𝑉 = 𝜌f V
duf

𝑑𝑡
= 𝜌f V dus

𝑑𝑡
≈ 𝜌f V us(t) − us(t − 𝛿t)

𝛿t
, (33)

d
𝑑𝑡 ∫Ωin

I∗f 𝝕f 𝑑𝑉 = If
d𝝕f

𝑑𝑡
= If

d𝝕s

𝑑𝑡
≈ If

𝝕s(t) −𝝕s(t − 𝛿t)
𝛿t

. (34)

When t = 0, us(−𝛿t)=us(0), and 𝝕s(−𝛿t)=𝝕s(0). Substitution of Equations (33) and (34) into Equations (24) and
(25) leads to a numerical scheme considering the internal fluid correction for hydrodynamic force:

ms
𝑑𝑢s

𝑑𝑡
= 𝜌f V us(t) − us(t − 𝛿t)

𝛿t
−
∑

n

∑
i

𝛿3
x Bn

𝛿t
Ωs

i ei + Fextrenal, (35)

Is
d𝝕s

𝑑𝑡
+𝜛s × [Is ⋅𝝕s] = If

𝝕s(t) −𝝕s(t − 𝛿t)
𝛿t

−
∑

n

[∑
i

𝛿3
x Bn

𝛿t
Ωs

i ei(xn − xcm)

]
+ Texternal, (36)

where V is the volume of solid particle, Fexternal and Texternal is the external force and torque imposed on solid, respectively,
If is the moment of inertia for internal fluid calculated by If =

𝜌f
𝜌s

Is. Equations (35) and (36) are the final expressions of
hydrodynamic force and torque in the current improved IMB method, where the first term on right hand is the internal
fluid correction. In contrast to Equations (30) and (31), the current model applies an explicit scheme to approximate the
rigid motion of the internal fluid, so it has no limitation on the solid-fluid density ratio.49

4 VALIDATIONS OF IMPROVED IMB METHOD

4.1 No-slip boundary validation

The no-slip condition is tested by simulating the fluid flow through a fixed particle. The simulation domain is a channel
with height H= 0.004 m and length L = 0.01 m. A fixed sphere with radius r = 0.001 is initially placed at the position
(0.005 m, 0.002 m). A pressure difference (ΔP) is applied along the channel to drive the fluid flow. In order to test the
accuracy of current model, three space steps (dx = 2.0 × 10−5 m, 4.0 × 10−5 m, and 8.0 × 10−5 m) are considered. At the
equilibrium state, dimensionless velocity distribution along y direction at x = 0.005 m is plotted in Figure 2, which is
normalized by H2ΔP

8𝜇L
. It can be seen that no-slip condition is perfectly satisfied at the particle surface and the results are

mesh independent. The fluid velocity inside the particle is totally negligible, which is 3 order of magnitude lower than
that outside the particle. To quantify the numerical error,𝜀err is defined

𝜀err =
√∑

N(un − ua)2

N
, (37)

where un is the numerical value of fluid velocity on particle surface, ua is the analytical one (ua = 0), and N is
the total number of fluid grids on the particle surface. The dependence of numerical error on the grid number in
the channel width is presented in Figure 3, which shows that the current model can preserve the first-order spatial
accuracy.
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F I G U R E 2 Dimensionless velocity distribution along the
x = x0 position, which shows that no-slip boundary can be greatly
satisfied [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 3 Error convergence rates of the velocity in the current
simulation

4.2 2D elliptical particle sedimentation

To test the accuracy of the current model for the dynamic cases we consider a single elliptical particle sedimentation. We
choose this case for benchmark comparison because (a) the direct simulations of a single elliptical particle sedimentation
have been reported much in the previous studies11,31,55-57 so that there is sufficient data available for the comparison and
(b) the elliptical particle is more sensitive than the spherical one to the simulation error,11 which is critical to evaluate
new models.

The geometry of this case is shown in Figure 4, where a and b are the length of the semimajor and semiminor axis
of the elliptical particle. The simulation domain is a closed channel with width L and height 30 L. Such a long channel
is chosen to avoid the end effects from the top and bottom boundaries on the simulation results. The angle between the
semimajor axis and y-axis at the negative direction is 𝜃. Initially, the particle velocity is set at zero, and its motion in fluid
is driven by the gravity along the x-axis in the positive direction. The parameters in this work are listed in Table 1 that are
same as those in.11 Bounce-back rule is applied on the left and right walls, and the fluid velocity on the top and bottom
boundaries is set to zero. The elliptical particle is initially placed at the position (1.2 cm, 0.2 cm) with 𝜃 = 3𝜋/4. Reynolds
number is calculated by the terminal velocity of the particle

Re = usa
𝜈

, (38)

where usis the particle terminal velocity.
In this case the Reynolds number is equal to 6.6. Since the direct simulation by FEM has been validated and usually

regarded as the benchmark, the data in Reference [55] are used to evaluate new models for this problem. The comparisons
are shown in Figures 5 and 6.

http://wileyonlinelibrary.com
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F I G U R E 4 Geometry for the benchmark case, where L is the channel width, a
and b are the length of semimajor and semiminor axis of the elliptical particle,
respectively. Parameter 𝜃 is the angle between semimajor axis and y-axis at the negative
direction. The elliptical particle settles in Newtonian fluid owing to the gravity [Colour
figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Parameters for current simulation in physical and
lattice units

Parameter Physical units Lattice units

Semimajor a 0.05 cm 13

Semiminor b 0.025 cm 6.5

Channel width L 0.4 cm 104

Gravity G 9.8 m/s2 6.20 × 10−4

Viscosity 𝜈 1.0 × 10−6 m2/s 0.033

Fluid density 𝜌f 1000 kg/m3 1

Fluid density 𝜌s 1100 kg/m3 1.1

F I G U R E 5 Comparison of particle trajectories for Re = 6.6 case.
The black dot line is particle trajectories obtained by FEM,55 which is
used to evaluate other two methods. The red line is the result obtained
by the previous IMB method, which deviates from the FEM result.
The blue lines are the results considering the internal fluid correction,
which agree well with that by FEM [Colour figure can be viewed at
wileyonlinelibrary.com]

0.32

0.36

0.4

0.44

0.48

0.52

0 1 2 3 4 5

L/
Y

X/L

with modification

without modification

FEM result

Figure 5 shows the comparison of the particle trajectories. The previous IMB method (see red one in Figure 5) deviates
significantly from FEM data, which has been presented in the previous study similarly.11 After considering the internal
fluid correction by the explicit rigid motion approximation (Equations (35) and (36)), the particle trajectories agree well
with that by FEM (see blue dot line in Figure 5). The current model can efficiently and accurately calculate the hydro-
dynamic force and torque. The particle orientation evolution in Figure 6 shows again that the current model agrees with
the FEM results better.
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F I G U R E 6 Comparison of particle orientation for Re = 6.6 case.
The black dot line is the particle orientation obtained by FEM,55 which
is used to validate other two models. The red one is the result obtained
by the previous IMB method, which deviates from the FEM result. The
blue dot line is the result using the current improved model with the
internal fluid correction, and a better agreement with the FEM result
is obtained [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 7 Comparison of translational velocity obtained by different
methods for Re = 6.6 case. The red line is the particle translational velocity
using the previous IMB method, and the blue dot one is the result obtained
by the current improved model [Colour figure can be viewed at
wileyonlinelibrary.com]

Figures 7 and 8 are the comparison of the translational and angular velocity obtained by the previous IMB
method and the current improved one. For translational velocity, there is no significant difference between the previ-
ous method and the current one especially at the steady state (see Figure 7). However, the angular velocity obtained
by the previous IMB deviates remarkably from that by the improved model (see Figure 8). Thus, the internal fluid
has a more significant influence on the angular velocity than the translational velocity. In addition, when the steady
state is obtained, the difference between these two models vanishes. Indeed, the internal fluid effect is caused by
the inertial force of the internal fluid (see the first term on right hand of Equations (24) and (25)), so it van-
ishes when the steady state is obtained. Thus, the internal fluid in the original IMB affects the unsteady process
yet has no influence on the terminal steady quantity. For this reason, the previous IMB cannot give the accurate
particle trajectories and orientation in current simulations, but the terminal particle velocity is still correct. If we
focus on the unsteady process of the solid-fluid coupling problem, the internal fluid correction has to be considered
very carefully.

Smooth hydrodynamic force calculation is an important advantage of the original IMB method. Figure 9 shows the
comparison of the hydrodynamic force obtained by different methods. Chen's results are from the corrected momen-
tum exchange method,11 which was the smoothest hydrodynamic force in all the momentum exchange based models
they tested. Force fluctuation in the current model is smaller than that in Chen's midway bounce-back method and at
nearly the same level as that in Chen's curved boundary bounce-back method. However, in curved boundary method
interpolations and extrapolations are needed to determine the exact position of the solid particle. Thus, the advan-
tage of smooth force calculation in the original IMB method is inherited by the current improved one. In addition, the
extra computational cost in the current model is negligible, because the additional terms in Equations (35) and (36) are
already obtained in the particle dynamics calculation procedure. In previous IMB, 10 000 steps need 610.8 seconds, and in

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


CHEN and WANG 4503

F I G U R E 8 Comparison of angular velocity obtained by different methods
for Re = 6.6 case. The red line is the particle angular velocity obtained by the
previous IMB method, and the blue dot one is the result obtained by the current
improved model [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 9 Comparison of hydrodynamic force obtained by different
methods for Re = 6.6 case. The purple dot line is the hydrodynamic force
obtained by the current improved model. The data in green and red lines are
from,11 and in that article Chen et al proposed a corrected momentum exchange
method to reduce force fluctuation, where midway bounce back means the
boundary of the solid particle is zigzag, and in curved boundary interpolation is
applied to determine the exact position of the solid particle [Colour figure can be
viewed at wileyonlinelibrary.com]
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current model, the same process needs 613.7 seconds. However, current model cannot be expanded to two phase fluid
solid coupled system, but momentum exchange based models has been used to simulate the particle motion in two phase
fluids system.58

As mentioned above, the internal fluid effect is caused by the inertial force of the internal fluid that is propor-
tional to the inertial force of the solid particle. Thus, the numerical error in the original IMB method depends on
the inertial force of the solid particle. This is why the original IMB method works in some cases, but fails in others.
For example, if a lower Reynolds number case is considered by decreasing the gravity imposed on the elliptical parti-
cle, the inertial force of the solid particle will decrease during the sedimentation process. As a result, the error caused
by the absence of internal fluid correction will also decrease. On the contrary, if we increase the gravity acceleration
of the solid particle, the error will increase. Our simulation results also confirm this conclusion, which are presented
as follows.

Simulation results for relatively low and high Reynolds number cases are presented in this part. In Re = 0.31 case, the
channel width (L) and length is equal to 100 and 3000, respectively. Initially, the elliptical particle is placed at the position
of (3 L, 0.5 L) with 𝜃 = 45o. Parameter a = 1.5b = 10, gravity acceleration G = 1.355e-4, and solid-fluid density ratio is
1.0015. In LBM implementation, the dimensionless relaxation time 𝜏 = 0.6. The particle trajectories and orientation are
presented in Figure 10, where FEM results are obtained from.59 When Reynolds number is relatively low (Re = 0.31), the
inertia force of the solid particle is small. As a result, the numerical deviation when using the original IMB method is
small.

In Re= 11 case, the physical model is same as that in Re= 6.6 case. For obtaining a relatively high Re, solid-fluid density
ratio is raised to 3, and fluid viscosity is equal to 3.0× 10−6 m2/s. Channel width L is 208 in the lattice unit. Figure 11
shows the particle trajectories and orientation in Re = 11 case. Because FEM data are not available in this case, the LBM
results in Reference [11] are used for the comparison. Current results agree well that in,11 but the deviation is observed
when using the original IMB method. Thus, the internal fluid in IMB method has a more significant effect in cases with
higher Reynolds number.
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F I G U R E 10 Comparison of the particle trajectories and orientation for Re = 0.31 case. The black dot line is the result obtained by
FEM.59 The red one is obtained by the previous IMB method. The blue dot line is the result by the current improved IMB method [Colour
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 11 Comparison of particle trajectories and orientation for Re = 11 case. The black dot line is the result obtained by the
momentum exchange methods proposed in.11 The red one is obtained by the original IMB method, and the blue dot line is the result
obtained by the current improved model [Colour figure can be viewed at wileyonlinelibrary.com]

4.3 3D sphere sedimentation

Current algorithm is very easy to be extended to 3D cases. In this subsection, a 3D sphere sedimentation in a closed
cylinder with square cross-section is considered, which was also numerically or experimentally explored in the previous
work.49,60 In Reference [60], the sphere sedimentation is measured experimentally using cross correlation particle image
velocimetry (PIV), and the data set consists of the velocity field of the fluid surrounding the settling sphere and the trajec-
tory (ie, position as a function of time). The container dimensions in the experiment were chosen as 100× 100× 160 mm,
and a sphere with radius r = 7.5 mm and density 𝜌f = 1120 kg/m3 is initially placed at the position (50, 50, 32.5) mm. The
fluid is rest initially, whose density and viscosity are equal to 960 kg/m3 and 0.058 N s/m2 respectively. Due to the gravity
acceleration (9.8 m/s2), the sphere settles in the x direction. The same process is simulated using current improved IMB
and the original IMB. The domain is divided into 200 × 200 × 320 lattice (see Figure 12). In LBM, the bounce-back rule is
applied for the side walls, and the fluid velocity on top and bottom boundaries is set to zero.

Simulation results are shown in Figure 13, where the experimental results in Reference [60] are cited for the com-
parison. The current improved IMB method agrees reasonably with the experimental data, which shows the accuracy of
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F I G U R E 12 Diagram for the 3D sphere sedimentation in a closed box, where the
gravity acceleration g is considered to drive the particle motion in the x direction [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 13 Comparison of, A, particle position and, B, velocity in x direction, where results obtained by the experiment60 are cited to
validate the current improved model in 3D cases. Results by the current improved model agree well with others, but deviations exist when
using the previous IMB method

current model. However, a remarkable deviation exists for the original IMB method. Thus, to obtain the accurate hydrody-
namic force, the internal fluid effect must be considered in the original IMB method for either 2D or 3D cases. The small
discrepancy in the maximum velocity in Figure 13B is caused by the effective sphere radius in the simulation slightly dif-
ferent from the input radius. Other numerical methods also suffer from the same nonphysical dependency, which is not
the main focus of this work, and more discussions about this problem can be found in References [2,49,60-62].

This process was also simulated in the previous work,49 where the immersed boundary method (IBM) is applied to
couple the fluid flow and the particle motion. The IBM is totally different from the current IMB model. In IMB model, the
body force is applied on the whole fluid nodes inside the solid boundary, so that the internal fluid can move rigidly with
the solid particle. Thus, unlike IBM, the IMB method does not suffer from the boundary penetration by the streamline
just as presented in Figure 2.

5 CONCLUSIONS

Accurate calculation of the interactive force between the solid and fluid is very important in studies of dense particle
suspension in fluid. The previous immersed moving boundary assumes the fluid existing both inside and outside the solid
particle, and ensure the no-slip boundary condition on the solid surfaces by introducing the external forces at the discrete
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velocity direction for the internal fluid. The fake internal fluid significantly influences the hydrodynamic force calculation
even though it does not affect the external fluid velocity and pressure distribution. We figure out the physical origin of
the internal fluid effect in this work by the theoretical analysis, and propose a corrected immersed moving boundary by
considering the internal fluid effect on the hydrodynamic force. This method is easy to implement and with negligible
extra computational costs. In order to evaluate the new model, a series of cases are simulated, including a 2D elliptical
particle and a 3D sphere sedimentation in the Newtonian fluid. The following conclusions are obtained:

1. The improved immersed moving boundary has been validated by comparisons with FEM and experimental data. The
results show that the hydrodynamic force calculation is smooth that is prior to other momentum exchange based
methods.

2. The fake fluid inside solid particle (internal fluid) has significant influences on the unsteady process (including particle
trajectories and orientation), but little on the finial steady state (such as the terminal particle velocity). The present
improved model works well to correct the errors from the internal fluid effects when the unsteady process is concerned.
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APPENDIX A. Volume fraction (𝜸) in Equation (11) is calculated by the cell decomposition
method10 (see Figure A1), where each LBM cell is decomposed into n2 subcells with side
length 𝜟xsub = 𝜹x/n. In current case, 10 ×10 subcells are used for each 2D LBM cell. Those n2

subcells are checked one by one to obtain the total subcells inside the solid particle (nin) ,
and then volume fraction (𝜸) is given by

𝛾 = nin

n2 . (A1)

F I G U R E A1 Diagram of decomposition method for volume fraction (𝛾)
calculation, where each LBM cell is decomposed into n2 subcells. The gray ones are
subcells inside the solid boundary


