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1  |   INTRODUCTION

The study of unconventional reservoirs continues to attract 
increasing attention around the world due to their tremen-
dous potential for future gas reserves and production.1-5 
Permeability characterizes the fluid flow rate through the 
rock formation under the pressure gradient and therefore 
is one of the most important parameters for the evaluation 
and exploitation of unconventional reservoirs. Compared 
with conventional reservoirs, unconventional reservoirs 

usually have extremely low permeability, which brings 
difficulty to permeability measurement.6-8

Many methods have been developed to determine rock 
permeability in the laboratory and can be subdivided into 
two kinds based on their steady-state or unsteady-state 
nature.9,10 The steady-state methods measure the steady-
state flow rate under a given pressure gradient, and the 
unsteady-state methods measure transient pressure varia-
tions. Generally, the unsteady-state methods are more suit-
able for measurements on tight rocks than the steady-state 
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Abstract
Permeability and porosity are the two most important parameters of rocks for 
the evaluation and exploitation of oil/gas reservoirs. In this study, a modified 
pulse-decay method has been developed to measure both permeability and po-
rosity simultaneously. In the present method, the gas pressure in one cham-
ber is changed (increased or decreased) instantaneously and then maintained 
constant, while the pressure response changing with time in the other one is 
monitored. A mathematical model of this procedure has been formulated, and 
a general analytical solution, including the early-time and late-time evolutions, 
has been obtained. The late-time solution is presented for postprocessing of ex-
perimental data, which leads to the simultaneous measurement of permeability 
and porosity values of tight rocks. Our measurements agree well with those from 
the classical pulse-decay and gas expansion methods. Compared with measuring 
the permeability and porosity separately, the proposed method can reduce the 
total test time and ensure the permeability and porosity are measured under the 
same effective stress condition.
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methods, because the pressure is easier to measure than 
the flow rate across tight rock samples, which is often too 
small to be detected.11,12

The pulse-decay method is one of the most widely 
used unsteady-state methods.13,14 The basic idea was pi-
oneered by Brace et al.15 In the conventional pulse-decay 
measurement, a sample is placed in the core holder and 
two chambers are connected to its two ends. Initially, the 
whole system is in pressure equilibrium and then a pres-
sure pulse is applied to one chamber. The pressure varia-
tions with time in both chambers are recorded. Unlike the 
steady-state method, where the permeability can be cal-
culated directly with Darcy's law, the pulse-decay method 
requires an analytical solution to evaluate the permea-
bility from the pressure record. Brace et al.15 obtained an 
approximate analytical solution by assuming a constant 
pressure gradient within the core, which is valid when the 
pore volume of the sample is negligible compared with 
the chambers. Hsieh et al.16 and Dicker and Smits17 gave 
a general solution without the assumption used by Brace 
et al.15 The analytical solution with considerations for gas 
adsorption was developed by Cui et al.18 Yang et al.19 gave 
the solution for the transverse permeability measurements 
on tight core samples. Han et al.20 summarized the analyt-
ical solutions of pulse-decay methods and compared their 
performance under different scenarios.

In recent decades, many modified pulse-decay methods 
with different experimental designs have also been devel-
oped. Giot et al.21 suggested measuring the permeability by 
imposing a pressure pulse on a hollow cylindrical sample, 
and similar ideas have also been proposed by other re-
searchers.22,23 Yang et al.24 presented a method in which 
one side of the sample was connected to the chamber and 
the other side was sealed. The radial differential pressure 
decay method was developed by Wu et al.10 to assess the 
apparent permeability with microplug samples. Metwally 
and Sondergeld25 proposed the pressure build-up method 
where the upstream pressure was kept constant during the 
test and the downstream pressure increase was recorded 
for permeability evaluation. Further research26 showed the 
pressure build-up method is less affected by surface defects 
or limited penetration fractures of the core plugs than the 
conventional pulse-decay method because the downstream 
pressure build-up is a response across the whole core plug, 
unlike the conventional pulse-decay response.

Despite the wide range of usage and the potential ad-
vantages, the original pressure build-up method suffers 
from the separation of permeability and porosity mea-
surements. In the pulse-decay methods where chambers 
of finite volume are used, the porosity can be evaluated 
by mass conservation and Boyle's law using the initial and 
final equilibrium pressure.7,27,28 However, the total mass 
in the pressure build-up method is not conserved because 

the pressure on one side is kept constant during the test, 
which brings difficulty to porosity measurement in the 
pressure build-up method.

To overcome this problem, this study proposes a modi-
fied method that can simultaneously measure the perme-
ability and the porosity in a single test. In this method, the 
pressure in the downstream (or upstream) chamber is de-
creased (or increased) and then maintained constant. The 
pressure variations in the other chamber are used to eval-
uate the permeability and porosity of the tight rock sam-
ple. The mathematical model and the analytical solution 
based on this experimental design have been obtained. 
Using the proposed method, the permeability and the 
porosity of a tight sandstone sample have been measured 
and the accuracy of the results has been confirmed.

2  |   EXPERIMENTAL PROCEDURE

The schematic of the experimental setup is shown in Figure 1. 
A detailed description of the experimental setup can be found 
in our previous studies.29,30 Since applying a negative pulse 
in the downstream chamber and applying a positive pulse 
in the upstream chamber are mathematically equivalent, we 
only take the former as an example in the following part of 
the study. To keep the downstream pressure constant during 
the test, the downstream volume is chosen to be much larger 
than the sum of the pore volume and the volume of the up-
stream chamber, that is, Vd ≫ Vp + Vu, or to be open to the 
atmosphere. The experimental protocol is as follows:

1.	 The core sample was placed into the core holder 
and confining pressure was applied to resemble the 
subsurface condition. An oven was used to keep the 
whole setup at the desired temperature.

2.	 With valves 1, 2, 3 open, and valve 4 closed, the core 
and the two chambers were filled to the desired initial 
pressure. Then, valves 1, 2, and 3 were closed, and valve 
4 was open. The pressure in the downstream chamber 
was decreased to create the initial pressure difference 
(<10%) and then maintained as constant.

F I G U R E  1   The schematic of the experimental setup
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3.	 Valve 4 was closed and then valves 2, 3 were open. The 
pressure decay in the upstream chamber was recorded 
with the transducer.

Figure  2 shows the schematic of the pressure profile 
within the system at different instants. The characteristic 
of the proposed method is that the pressure in the down-
stream, where the pulse is applied and the Joule-Thomson 
effect occurs, is kept constant, and the pressure in the up-
stream, where there is no pulse, is recorded to evaluate the 
petro-physical properties of the sample. This design helps 
to eliminate the influence of the Joule-Thomson effect on 
the pressure recording.

3  |   MATHEMATICAL 
DERIVATION

3.1  |  The governing equation

By combining the law of mass conservation and Darcy's 
law,15-17 the gas flow within the sample during the pulse-
decay process can be described by a one-dimensional dif-
fusion equation as:

where P is the gas/pore pressure (Pa), k the permeabil-
ity coefficient (m2), � the gas compressibility (Pa−1), � the 
gas dynamics viscosity (Pa∙s), and � is the sample porosity. 
Strictly speaking, k, �, � and � are all pressure-dependent. 
For example, the gas compressibility � is related to pressure 

through the equation of state, and the permeability coeffi-
cient k is affected by pressure due to the poroelastic and slip-
page effects.31-33 However, as previously noted,15,34-36 when 
the initial pressure difference between the two ends of the 
sample in a single measurement is small, these variables can 
be regarded as constants and their values are taken under 
the mean pore pressure.

Considering the mass balance at the interface between 
the core sample and the upstream chamber and noting 
that the downstream pressure is kept constant during the 
test, the boundary conditions are obtained:

where A is the cross-section area of the sample (m2), Vu the 
upstream chamber volume (m3), and L is the length of the 
sample (m).

The initial conditions are as follows:

where Pu (0) and Pd (0) are the initial upstream and down-
stream pressures (Pa), respectively.

To facilitate the derivation, the following dimension-
less variables with subscript D are introduced:

With these dimensionless variables, the governing 
Equation (1) can be rewritten as:

The dimensionless boundary conditions are given by:

and the dimensionless initial conditions are as follows:

3.2  |  The analytical solution

The Laplace transform is used to solve the above equa-
tions (the details can be found in the appendixes), and the 
derived solutions are shown below.
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F I G U R E  2   The schematic of the pressure profile variations. 
During the test, the downstream pressure is kept at Pd (0). At 
t = 0, the sample and the upstream are in pressure equilibrium 
at Pu (0) > Pd (0). When t > 0, the gas flows from the upstream 
through the sample to the downstream, and the upstream pressure 
Pu (t) decreases until it equals the downstream pressure, that is, 
Pu (∞) = Pd (0)
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3.2.1  |  The general solution

The general solution for the dimensionless pressure distri-
bution within the sample is:

where �m is the mth positive root of:

The general solutions for upstream and downstream 
pressures can be obtained by setting xD = 0 and xD = 1 in 
Equation (8), respectively:

The expression for dimensionless pressure difference 
between two ends of the sample is given by:

The pressure distributions throughout the sample at 
different instants are depicted in Figure  3. Because the 
negative pulse needs time to permeate through the core 
sample from the downstream to the upstream, the up-
stream pressure remains constant rather than lowering 
immediately after the test begins. As time proceeds, the 
domain affected by the negative pulse expands and even-
tually reaches the upstream side of the core, after which 
a significant decrease in the upstream pressure can be 
observed.

3.2.2  |  The early-time solution

The approximate solution that describes the upstream 
pressure variations at the beginning of the pulse-decay 
test is usually referred to as the early-time solution in the 
literature.9,16,19 The early-time solution to the proposed 
method is:

where erfc denotes the complementary error function.
As shown in Figure 4, when the dimensionless time tD is 

small, the early-time solution (13) approximates the general 
solution (10) very well. However, due to the complication 
of the complementary error function, Equation (13) is not 
used for permeability and porosity evaluation in this study.

3.2.3  |  The late-time solution

Although the general solution for pressure difference 
(Equation 12) is valid at any time of the test, it is difficult 
to use directly, because of its form of an infinite series. As 
shown in Figure 5, we found that 𝜃1 < 𝜃2 < 𝜃3 <⋯. Thus, 
when time is large (i.e., at the late-time stage of the test), 
all the exponential terms with m > 1 decay much faster 
than the term with m = 1, and Equation (12) reduces to a 
single exponential form:

which is referred to as the late-time solution in the 
literature.9

The comparison between the general solution and the 
late-time solution for pressure difference is presented in 
Figure 6, and the results show that when the dimensionless 
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F I G U R E  3   Pressure distributions within the sample as time 
proceeds (a = 1)
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time tD is large, the two solutions agree with each other 
very well.

3.3  |  Permeability and porosity 
determination

Taking the logarithm of the late-time solution for pressure 
difference (Equation 14) yields:

where the dimensionless time is transformed into the dimen-
sional one, and the expressions for f  and � are as follows:

Equation (15) indicates that if the logarithmic dimen-
sionless pressure difference lnΔPD is plotted against tD or 
t, a linear relationship can be obtained in the late-time 
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cos�1
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F I G U R E  4   The comparison between the general solution 
(Equation 10, solid lines) and the early-time solution (Equation 13, 
dashed lines) for upstream pressure with different volume ratios

F I G U R E  5   The variations of �m (m = 1, 2, 3) with volume 
ratio a

F I G U R E  6   The comparison between the general solution 
(Equation 10, the solid lines) and the late-time solution 
(Equation 14, the dashed lines) for pressure difference with 
different volume ratios

F I G U R E  7   The logarithmic pressure difference vs time for 
different volume ratios. The solid lines represent the general solution 
(Equation 12) and the dashed lines represent the late-time solution 
(Equation 15). The x-axis here is the dimensionless time tD, so the 
slope and the intercept of the late-time solution are − �2

1
 and f , 

respectively
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stage, where the intercept is f , and the slope is − �2
1
 or � , 

respectively.
It is noted that a one-to-one correspondence between a 

and �1 can be established through Equation (9). Therefore, 
by combining Equations (9) and (16), f  can be solely de-
termined if a or �1 is known, and vice versa. Different 
values of a and the corresponding values of f  are shown 
in Figures 7 and 8, from which a monotonic relationship 
between a and f  is found. In other words, a one-to-one 
correspondence between the intercept f  and the volume 
ratio a can be established, so the intercept f  obtained from 
the experiment can be used to calculate the volume ratio a 
and therefore the porosity �. A similar relationship can be 
found between the f  and �1 (see Figures 7 and 9).

Equations  (9) and (16) are both transcendental equa-
tions, so the mappings from intercept f  to a and �1 are 
both implicit functions, that is, the expressions for a (f ) 
and �1 (f ) cannot be written down in an explicit manner. 
For ease of use, a series of values of (a, f ) and 

(
�1, f

)
 are 

obtained by solving Equations  (9) and (16) numerically, 
and two analytical approximate correlations are given by 
fitting the series of values with polynomial and rational 
fractions, respectively:

The relative error between these correlations and the 
exact values is smaller than 1% when a < 3. Equations (18) 
and (19) can be used to interpret the volume ratio a and 
�1 directly from the intercept f , respectively. Then, the 

porosity � can be obtained from the definition of a in 
Equation (4):

When �1 and � are both known, the permeability can be eas-
ily determined with the rewritten form of Equation (17):

4  |   RESULTS AND DISCUSSION

A sandstone sample was measured with the proposed 
method and the pressure difference was recorded to calcu-
late the slope and intercept. During the measurements, the 
downstream was directly open to the atmosphere to en-
sure constant downstream pressure. The permeability and 
porosity were evaluated with slope and intercept values. 
To ensure the measurement repeatability and reduce ran-
dom errors, the sample was measured five times, and the 
standard deviation of the results was found to be smaller 
than 5%. Table 1 shows the basic information about the 
sample and the measurements. Figure 10 presents one set 
of experimental results on pressure decay. It is noted that 
the experimental data shows a platform at the beginning 
of the test, which is consistent with the general solution in 
Figure 6 and the discussions in Section 3.2.1. In the semi-
log plot, it can be seen that, after a short initial period, 
the late-time solution fits the experimental data very well 
and the slope and intercept values can be easily obtained 
through the least-squares method.

To verify the accuracy of the proposed method, the per-
meability and porosity measured by the proposed method 
were compared with those measured by the conventional 
pulse-decay method and the gas expansion method, and 
a good agreement was found, proving that the proposed 
method is a reliable and accurate way to estimate the per-
meability and porosity of tight rocks. The comparison is 
depicted in Table 2.

Using the slope of the pressure decay to calculate the 
permeability is a common characteristic shared by the 
pulse-decay methods. However, using the intercept to 
evaluate the porosity, to the authors' knowledge, has not 
been reported before. The common way to measure po-
rosity is based on Boyle's law and mass conservation and 
requires the initial and final equilibrium pressures in the 
measurement. However, in the proposed method, the po-
rosity is evaluated using late-time pressure decay data and 
the final equilibrium is not needed. Compared with the 
original pressure build-up method where the permeabil-
ity and porosity are measured separately, the proposed 

(18)a = 3091.7f 4 − 684.46f 3 + 76.014f 2 + 4.5344f

(19)�1 =
(
4.123f 2 + 0.4846f + 3.484 × 10−4

)
∕ (f + 0.01263)
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����L2
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F I G U R E  8   Relationship between the intercept f  and volume 
ratio a. The scatter points represent the numerical solution 
of Equations (9) and (16), and the dashed line represents the 
approximate correlation Equation (18)
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method has two advantages: Firstly, the total test time is 
significantly reduced. Secondly, the proposed method en-
sures the permeability and porosity are measured exactly 
under the same loading condition.

5  |   CONCLUSIONS

In this study, a modified pressure pulse-decay method is 
presented to measure the permeability and porosity of a 
low-permeable reservoir rock. In the proposed method, the 
pressure on one side of the sample is changed (increased/
decreased) instantaneously and then kept constant. The 
pressure variations on the other side are recorded to 

evaluate the petro-physical properties of the sample. The 
mathematical model describing the test process was estab-
lished and the analytical solution was obtained. The late-
time solution was adopted for the postprocessing of the 
experimental data. The permeability of the sample was 
determined by the slope of a semilogarithmic plot of the 
pressure differential vs time. A one-to-one correspond-
ence between the volume ratio and the intercept of this 
plot was found, and the analytical approximate correla-
tion of this correspondence was given. Thus, the intercept 
can be used to calculate the porosity of the sample. A tight 
sandstone sample was tested with the proposed method, 
and the evaluated permeability and porosity agree well 
with the results of the conventional methods, which con-
firms the accuracy of the proposed method. Compared 

F I G U R E  9   Relationship between the intercept f  and �1. The 
scatter points represent the numerical solution of Equations (9) and 
(16), and the dashed line represents the approximate correlation 
Equation (19)

T A B L E  1   Parameters of the measurement

Core sample Sandstone

Testing gas Helium

Sample length (m) 1.96 × 10−2

Sample cross section area (m2) 1.13 × 10−3

Confining pressure (bar) 200

Mean pore pressure (bar) 1

Temperature (°C) 35

F I G U R E  1 0   Experimental results for the sandstone sample. 
(A) Dimensionless pressure difference vs time. (B) Logarithmic 
differential pressure vs time. Note that the scatter points in (A) 
and (B) represent the experimental data, and the solid line in (B) 
represents the linear fitting curve

T A B L E  2   Comparison of the measured permeability and 
porosity

Permeability Porosity

The proposed method 1.08 × 10−16 m2 8.71%

The other method 1.06 × 10−16 m2 8.60%

Relative error 2.14% 1.26%
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with measuring the permeability and porosity separately, 
the proposed method can measure both of them in one test 
and under the same loading condition, which increases 
the accuracy and reduces the total test time.
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APPENDIX A
The procedure for solving Equations (5)-(7) through the 
Laplace transform is presented in this appendix.

The Laplace transform of the dimensionless pressure 
PD

(
xD, tD

)
 is defined as:

where PD is the transformed counterpart of PD and s is the 
transform parameter.

Applying the Laplace transform to the Equations  (5)-
(7), we obtain the transformed governing equation:

and the transformed boundary conditions:

Note that the initial conditions have been substituted 
into the above transformed equations.

Combining the transformed Equations  (A2) and (A3), 
we get the expression for PD

(
xD, s

)
:

Then PD
(
xD, tD

)
 can be obtained by applying the inverse 

Laplace transform to PD
(
xD, s

)
:

where s is now a complex number, and c is a real, positive 
constant that is large enough that all the singularities of 
PD

(
xD, s

)
 lie to the left of the line (c − i∞, c + i∞).

The contour integral in Equation (A5) can be evaluated 
through Cauchy's residue theorem:

where sm are the poles of the integrand estDPD
(
xD, s

)
, and 

Res
[
estDPD

(
xD, s

)
, sm

]
 are the corresponding residues.

To determine the poles of estDPD
(
xD, s

)
, we set 

√
sm = i�m 

and substitute it into the denominator of PD
(
xD, s

)
:

It is easy to check that �0 = 0 satisfies Equation  (A7), 
and �m (m ≥ 1) are the roots of the following equation:

Since Equation  (A8) has infinite real roots and all of 
them are of the first order, the integrand has infinite real, 
nonpositive simple poles (recalling that 

√
sm = i�m):

Noting that if �m (m ≥ 1) is the root of Equation (A8), so 
will be − �m, and the sign of �m has no effect on the value 
of sm. Therefore, we take �m (m ≥ 1) to be positive in the 
following derivation, without a loss of generality.

Then, we evaluate the residue of the pole s0 = 0:

(A1)PD
(
xD, s

)
=ℒ

[
PD

(
xD, tD

)]
=
∫

+∞

0

PD
(
xD, tD

)
e−stDdtD

(A2)dPD
(
xD, s

)

dxD
= sPD

(
xD, s

)
− 1

(A3)sPD (0, s) − PD (0, 0) = a
dPD
dxD

|||
||xD=0

, PD (1, s) = 0

(A4)PD
�
xD, s

�
=
1

s
−

√
ssinh

�√
sxD

�
+ acosh

�√
sxD

�

s
�√

ssinh
�√

s
�
+ acosh

�√
s
��

(A5)PD
(
xD, tD

)
=ℒ

−1
[
PD

(
xD, s

)]
=

1

2�i ∫

c+i∞

c−i∞

estDPD
(
xD, s

)
ds

(A6)PD
(
xD, tD

)
=m

∑
Res

[
estDPD

(
xD, s

)
, sm

]

(A7)�3msin�m − a�2mcos�m = 0

(A8)tan�m =
a

�m
(m ≥ 1)

(A9)s0 = 0, sm = − �2m (m ≥ 1)
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and the residues of the other poles sm = − �2m (m ≥ 1) are 
as follows:

Substituting Equations  (A10) and (A11) into 
Equation (A6), we get the expression for PD

(
xD, tD

)
:

where �m (m ≥ 1) are the positive roots of Equation (A8).

APPENDIX B
In addition to the exact series solution derived in 
Appendix A, Laplace transform can also help to derive the 
approximate solution applicable for very small values of 
time. Since the downstream pressure is kept constant dur-
ing the test, we focus on the upstream pressure variations 
within a short period of time after the start of the test.

By letting xD = 0 in Equation (A4), the expression for the 
transformed upstream pressure PuD (s) can be obtained:

where the hyperbolics have been converted into exponentials.
The last term in Equation  (B1) can be expanded as a 

Taylor series:

and thus Equation (B1) can be rewritten as:

By applying the inverse Laplace transform to each term 
on the right-hand side of Equation (B3), the exact expres-

sion for PuD
(
tD
)
 can be obtained, which should also be in 

the form of a series. The inverse Laplace transform of the 
first two terms in Equation  (B3) can be found from the 
published Laplace transform tables37:

and those of the remaining terms involve very complex ex-
pressions and cannot be written down in a concise manner. 
However, it can be proved that the inverse Laplace trans-
form of the remaining terms is much smaller than that of 
the first two terms when the dimensionless time tD is small. 
Therefore, by retaining the first few terms of the inverted 
series, an approximate expression of upstream pressure vari-
ations in a short time can be obtained:

(A10)Res
[
estDPD

(
xD, s

)
, 0
]
= s0 lim

�����⃗

[
sestDPD

(
xD, s

)]
= 0

(A11)Res
[
estDPD

(
xD, s

)
, − �2m

]
= s�2m − lim

[(
s + �2m

)
estDPD

(
xD, s

)]
= 2

acos
(
�mxD

)
− �msin

(
�mxD

)

(
�2m + a2 + a

)
cos�m

e−�
2
mtD

(A12)PD xD, tD = 2

∞∑

m=1

acos
(
�mxD

)
− �msin

(
�mxD

)

(
�2m + a2 + a

)
cos

(
�m

) e−�
2
mtD

(B1)PuD (s) = PD (0, s) =
1

s
−

2a

s
�√

s + a
�
e
√
s − s

�√
s − a

�
e−

√
s
=
1

s
−

2a

s
�√

s + a
�
e
√
s

�

1−

√
s−a

√
s+a

e−2
√
s

�−1

(B2)
�

1−

√
s−a

√
s+a

e−2
√
s

�−1

= 1 +

�√
s−a

√
s+a

e−2
√
s

�1

+

�√
s−a

√
s+a

e−2
√
s

�2

+⋯

(B3)PuD (s) =
1

s
−

2a

s
�√

s + a
�
e
√
s

⎡
⎢
⎢
⎣
1 +

�√
s−a

√
s+a

e−2
√
s

�1

+

�√
s−a

√
s+a

e−2
√
s

�2

+⋯

⎤
⎥
⎥
⎦

(B4)ℒ

−1
[
1

s

]
= 1

(B5)ℒ

−1

⎡
⎢
⎢
⎢
⎣

−
2a

s
�√

s + a
�
e
√
s

⎤
⎥
⎥
⎥
⎦

= 2ea+a
2tDerfc

�

a
√
tD +

1

2
√
tD

�

− 2erfc

�
1

2
√
tD

�

(B6)PuD
�
tD
�
≈ 1 + 2ea+a

2tDerfc

�

a
√
tD +

1

2
√
tD

�

− 2erfc

�
1

2
√
tD

�


