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Abstract: Non-Newtonian fluids may cause nonlinear seepage even for a single-phase flow.
Through digital rock technologies, the upscaling of this non-Darcy flow can be studied; however,
the requirements for scanning resolution and sample size need to be clarified very carefully. This
work focuses on Bingham fluid flow in tight porous media by a pore-scale simulation on CT-
scanned microstructures of tight sandstones. A bi-viscous model is used to depict the Bingham fluid.
The results show that when the Bingham fluid flows through a rock sample, the flowrate increases
at a parabolic rate when the pressure gradient is small and then increases linearly with the pressure
gradient. As a result, an effective permeability and a start-up pressure gradient can be used to char-
acterize this flow behavior. By conducting flow simulations at varying sample sizes, we obtain the
representative element volume (REV) for effective permeability and start-up pressure gradient. It is
found that the REV size for the effective permeability is almost the same as that for the absolute
permeability of Newtonian fluid. The interesting result is that the REV size for the start-up pressure
gradient is much smaller than that for the effective permeability. The results imply that the sample
size, which is large enough to reach the REV size for Newtonian fluids, can be used to investigate
the Bingham fluids flow through porous media as well.

Keywords: digital rock analysis; upscaling; Bingham fluid; representative element volume

1. Introduction

Flow in porous media is ubiquitous in nature and industrial application [1-3].
Darcy’s law is the basic formula to depict the single-phase flow in porous media. As the
Darcy’s law can be derived from the Stokes equation, the Darcy’s law is limited to low-Re
Newtonian fluid flows in non-deformable porous media [4-7]. Any deviation from the
above conditions leads to non-Darcy flows [8-12], which have commanded great interest
in the past twenty years.

The Non-Newtonian fluid [13,14] is one of the common reasons that cause a non-
Darcy flow. Experiments have shown that waxy and heavy crude oils can be one of
power-law fluids or Bingham fluids [15,16], which are two typical non-Newtonian fluids.
The Bingham fluid through porous media can lead to a “start-up pressure gradient” [17-
20] caused by the yield stress. The “real” start-up pressure gradient defines the pressure
gradient below which there is no flow at all while the “pseudo” start-up pressure gradient
is measured by fitting the data from the high-velocity flow regime. Experiments and sim-
ulations have been conducted to study the relation between flowrate and pressure gradi-
ent when a Bingham fluid flows through porous media. George et al. [21] and Bauer et al.
[20] did measure the flow of yield-stress fluids through packed beads and found the
power-law relation at the high-velocity flow regime. Talon and Bauer [22] performed nu-
merical simulations of Bingham fluids through stochastically reconstructed porous media
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and found a parabolic transition flow regime and the linear flow regime when the pres-
sure gradient increased. Chevalier et al. [23] also performed lattice Boltzmann simulations
on 2D statistically reconstructed structures to study the statistical properties of Bingham
fluid flows.

Because of strong backgrounds and important applications in oil/gas industry, the
mechanism of Bingham fluid flows through real porous media has been studied at pore-
scale by a powerful tool of digital rock analysis (DRA) [24-28]. DRA can investigate single-
phase or multi-phase flows in real porous microstructures by simulating transport pro-
cesses through reproduced pores from images by X-ray computed tomography (CT) or
other imaging techniques. Bauer et al. [20] simulated a yield-stress fluid through sand-
stone and obtained the “true” or “pseudo” start-up pressure gradient. Yet, the disappoint-
ing fact is that the simulation results usually did not match the corresponding experi-
mental data. On one hand, of course, the measurement technology needs improvements,
especially for the low flowrate and long-term measurements. On the other hand, the ac-
curacy of DRA needs to be seriously reconsidered and carefully treated.

Despite more and more advances in imaging techniques, there is still a contradiction
between the imaging resolution and the sample size. A higher resolution means a higher
possibility to recognize finer pores and pathways, which are very important for analysis
of tight rocks. On the other hand, a higher resolution, at the current stage of imaging tech-
nologies, leads to a smaller sample size and a higher cost [29-31]. For examples, nano-CT
with a resolution of tens of nanometers requires the sample size to be tens or hundreds of
microns. Therefore, we must find a balance or trade-off between scanning resolution and
sample size. Although the higher-resolution imaging can output more details of real
rocks, the corresponding smaller sample size risks losing representativeness and the re-
sults may be meaningless. It requires a careful consideration of both scanning resolution
and sample size to achieve meaningful analysis results with appropriate costs. Studies
have been done on the effects of sample size or scanning resolution, however most of them
considered only one factor or both but separately [32-38]. In our very recent work, the
accuracy of DRA, which depends on the cut-off resolution (COR), sample size and the
image processing method, has been quantified for the first time for Newtonian fluid flow
in high- and low-permeability rocks [39]. To our best knowledge, the upscaling of DRA
with REV and resolution analysis for non-Newtonian fluid flow in tight rocks has never
been reported.

In this study, DRA is used to study the Bingham fluid flow through tight porous
medjia. The parabolic and linear flow regimes are obtained numerically, and one upscaling
formula is proposed for the Bingham flow through porous media. The REV and COR of a
“pseudo” start-up pressure gradient will also be investigated, and the results are com-
pared with the Newtonian fluid flow.

2. Materials and Methods
2.1. Structure & Oil Properties

In this work, tight sandstone samples have been scanned with micro-CT. After check-
ing the connectivity and REV of porosity of these samples, one sample is chosen as the
target sample. The voxel size of the scanned images is A= 0.28 pm and the resolution is
the reciprocal of voxel size r, = 1/A, = 3.57 pixel/um. A cube of N = 1000 is chosen as
the initial box of region of interest and the image size N represents the voxels in each side
of the cubic box.

The raw structure is reconstructed following a typical image processing procedure,
pre-processing, image segmentation and post-processing [40,41]. In the pre-processing
part, the brightness and contrast of the raw images are adjusted to make the images
clearer, and the median filter is used to smooth the images and reduce the background
noises. After that, a segmentation is completed with the Huang’s algorithm [42] and the
images are segmented into pores and solids. Finally, the connected pores are extracted in
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the post-processing part, which removes the tiny, isolated pores that are most probably
produced during image processing and prepares for the flow simulations in the next step.

The previous study on this rock sample guaranteed that this sample satisfied the re-
quirements of the representative element volume (REV) size and cut-off resolution (COR)
for the permeability estimation of Newtonian fluid [39]. To study the effects of sample
size and resolution on Bingham flow, varying size and resolution of structures are numer-
ically reconstructed from the raw cubic structure of N = 1000 (shown in Figure 1a). The
sample size is changed with cropping operation by keeping the cubic center fixed and
extracting a smaller cubic zone. Resolution is changed with coarsening operation used in
Ref. [39]. Resolution ratio of new structure is defined as R = r/ry = Ay/A. Structures of
varying sample size and structure resolution are shown in Figures 2 and 3.
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Figure 1. 3D visualization of pore structure of Changqing tight sandstone sample and its pore size distribution. (a) Pores
and solids are both shown. Pores are shown in black color and solids are shown in gray color. (b) Pore size distribution of
tight sandstone with characteristic pore diameter d. = 1.4 um.

Note that there are two different ways to choose sub-size samples when studying the
REV effect. One is changing the sample size with the sample center fixed [39], which is
adopted in this work. The other one is randomly choosing the sample positions [35]. Ad-
vantage of the second way is that several sub-size samples can be chosen, and the coeffi-
cient of variance can be obtained to display the statistical deviation. However, the number
of effective sub-size samples decreases with the increasing sample size, since the overlap
becomes larger between samples. When the sample size does not reach REV, the sample
number and the coefficient variance may provide some information of the mean property
at that sample size, but this information seems meaningless because the sample is not
representative. In our understanding, it seems unnecessary to choose several sub-size
samples and calculate the coefficient of variance when investigating REV size from one
raw sample. The sample-dependent or position-dependent effect can be studied with sev-
eral raw samples and REV needs to be satisfied for each sample. Thus, the first way is
preferred to study the REV size from one raw sample and this way also matches the REV
definition proposed by Bear [1].
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Figure 2. Varying size structures obtained from cropping operation. The resolution ratio is R = 1.0 and sample size
changes from N = 1000 to N = 250 with a step of 250. Pores are shown in black and solid in white. Only a 2D slice is

presented in the figure.
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Figure 3. Varying resolution structures obtained from coarsening operation. The sample size is
N = 1000 and resolution ratio changes from R = 1.0 to R = 0.25 with a step of 0.25. Pores are
shown in black and solid in white. Only a 2D slice is presented in the figure.

Figure 4 presents the porosity and reciprocal of specific area for varying structure
sizes. Reciprocal of specific area is used to represent the averaged pore size. It is found
that REV of porosity and reciprocal of specific area reaches N = 200, which guarantees
the representativeness of the rock structure in the following analysis of flow property.
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Figure 4. Results of (a) porosity ¢ and (b) reciprocal of specific area s change with structure size N.

Experiments on fluid properties have shown a non-linear relationship between shear
stress T and shear rate y [15] for non-Newtonian fluids. It is found that Bingham’s model
can be used to depict this non-Newtonian waxy crude oil property [14]. In the present
study, a bi-viscous model is used, which gives:

KoV V<Vs . To

o ¥y Vo @
to depict a linear relationship between t and y with an interception 7. y, is the zero-
shear rate viscosity and p is the infinite shear rate viscosity, which is much smaller than
Uo- Vs is the critical shear rate above which the effective viscosity decreases from p, to
Ue When y increases. In the model fit, the experimental data gives the model parameters
listed in Table 1. For a Bingham fluid, it behaves like solid when it is not moving or moves
slowly with very large viscosity but can also flow like a fluid with small viscosity when
velocity gets larger. Toothpaste and some crude oil are typical examples of Bingham fluids.
Though the fluid is to move theoretically even when 7, is not reached using this bi-viscous
model, it is still a good representative of the Bingham fluid, especially when studying
“pseudo” start-up pressure gradient in the high-flowrate regime, as shown in Figure 5.
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Figure 5. Experiments data and the model fit of the crude oil viscosity. (a) Experiments data of the crude oils: shear stress
vs. shear rate relation [15]. (b) Bingham model fit of one typical crude oil viscosity experiment data from (a).

Table 1. Bingham fluid model parameters for an experimental crude oil.

To Moo Mo Vs
[Pa] [Pa - s] [Pa-s] [s71]
4.6 0.048 0.527 9.6

2.2. Pore-Scale Modeling of Bingham Fluid Flow

The non-Newtonian fluid flow through porous media is simulated using the finite
volume method (FVM) to solve the Navier—Stokes (NS) equations at pore-scale. The com-
putation is performed on OpenFOAM [43], an open source c++ library for computational
fluid dynamics (CFD). To ensure grid independence, the extrapolation flowrate calcula-
tion approach is taken from the numerical results at the reference and refined mesh [39].
For all cases, the structured cubic lattices are adopted. Since the rock structures are ob-
tained by CT images, we reproduce the structures by replacing every pore voxel with a
cubic lattice. All simulations are terminated when the flow rate gets stable and the results
are output at the steady state.

In our previous study [39], the Newtonian fluid flow through body-centered cubic
(BCC) packing of spheres was simulated, which verified the numerical solver for Newto-
nian fluid flow in porous media. To examine the solver capability for the Bingham fluid
flow, a Bingham fluid flow through 2D slit is considered. The simulation domain size is
200 x 100 as shown in Figure 6a. The fixed-wall condition is applied at upper and lower
boundaries and pressures are given at inlet and outlet. Parameters for the bi-viscous
model are given in Table 1. Theoretical analysis gives the velocity profile as:

— LA ye oy L P2 pay g o,
- e ax Y Y T 08 R+ (s — ), 0 <y <y 2
B L @2 p2yy To ’
Y TR -y <y<h
u T . . . . . .
where y; = #0_‘;00 dp/odx gives the location that the effective viscosity changes to .. Figure

6b shows the velocity profile by numerical simulations, which agrees well with the ana-
lytical solution.
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Figure 6. Validation on Non-Newtonian fluid flow through a 2D slit. (a) Schematic of the 2D parallel plates. (b) Velocity
profiles by numerical simulations and analytical solution.

The integral of velocity will give the formula of flow rate as:

h* (d 2
—(ﬁ—%) , dp/dx - ty/h

Q~ Moo";o . (3)
2h dp 379
(@) dp/dxoo

This means that the flow rate changes from a parabolic to a linear form when the
pressure gradient increases. It also gives the “real” and “pseudo” start-up pressure gradi-
entas 7,/h and 3ty/2h. For 3D cases of flow in cylinder, the theoretical analysis on flow
rate gives similar results as:

dx h

T[S Ty 2
L (d—p—Z—o), dp/dx - 214/h

0~ 3#001;0 4)
wh* (dp 81
mo(@-3%), dp/dxow

2.3. Upscaling of Bingham Fluid Flow

After validating the numerical methods, we consider the non-Newtonian fluid flow
through porous media. Three-dimensional porous structures are reconstructed as shown
in Figure 7. Flow is simulated through the pores. A no-slip boundary condition is adopted
on the solid walls. Pressures are given at inlet and outlet so that a steady-state flow rate
can be calculated. By varying the pressure difference between inlet and outlet, we can
obtain the relationship between flowrate and pressure gradient.

Outlet 7 Border

Figure 7. Computational domain of reconstructed 3D porous structure at N = 1000 and R = 0.25.
Only pore part structure is presented. The color reflects the pressure distribution.
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The Reynolds number is checked firstly at the largest pressure difference and it is
found that Re = Qd/Av ~107°, which means that the inertial effect makes little signifi-
cance in this flow regime [44]. Since the relation changes from parabolic to linear form, by
assuming a continuous transform between two forms, the following formula is proposed:

kefrA (Ap\2
0= —4(;’; (Tp) , Ap/L < 2dpg

A
KeppA (T” - dps), Ap/L > 2dp,

Here, L and A are the length and the cross-section area of the sample, respectively,
ke is the effective permeability and dp; is the “pseudo” start-up pressure gradient.
This form differs from the relation of above 2D or 3D channel since the “real” start-up
pressure gradient for this sample is small compared to the “pseudo” start-up pressure
gradient. To estimate the precise “real” start-up pressure gradient demands more data
points in the very-low pressure gradient regime, but we focus more on the large pressure
gradient regime and the “pseudo” start-up pressure gradient in this work. For simplifica-
tion, we omit “pseudo”, and the following start-up pressure gradient means the “pseudo”
start-up pressure gradient. This form satisfies the parabolic form between Q and Ap/L
when Ap/L is small and the linear form when Ap/L is large. It also guarantees a contin-
uous change between these two forms. The results in Figure 8 shows that this model can
well match the simulation results. One thing to mention is that this form does not fit the
case where “real” start-up pressure gradient is not negligible when Bingham fluid flows
through the sample. In that cases, one needs to change Ap/L with Ap/L — dpg, which
means the distance to “real” start-up pressure gradient. More discussion and detail deri-
vations on this upscaling formula can be found in the Appendix A.
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Figure 8. Relationship between flow rate and pressure difference for Bingham fluid flow by simu-
lation. The sample size is N = 100 and resolution ratio is R = 1.0. The proposed model (dashed
line) matches the simulation results (dot) well. The flow rate changes from a parabolic form to a
linear form when the pressure difference increases.

Because the mesh size may introduce numerical error to simulation results, the ex-
trapolation scheme is used to exclude this error. As shown in Figure 9, the results change
when the mesh size changes. However, the mobility (or flow rate) changes linearly with
mesh size at varying pressure difference and the extrapolation result can exclude this nu-
merical error and obtain more accurate results [39]. With an extrapolated flow rate at var-
ying pressure difference, k.r; and dp at varying structure size and the resolution can
be accurately obtained.
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Figure 9. Numerical results for Bingham fluid flow simulation at varying mesh size and pressure gradient. The sample
size is N = 100 and resolution ratio is R = 1.0. (a) Relationship between flow rate and pressure difference at varying
mesh size. The index F in the figure represents the refinement level. F = 2 means that each voxel mesh is divided into
23 = 8 reined meshes. (b) Mobility (or flow rate) changes linearly with mesh size for varying pressure difference simula-
tion. The index P in the figure represents the pressure difference applied in the simulation.

3. Results

The Bingham fluid flow through porous structure is simulated for different pressure
difference and different sample size and scanning resolution. The k,;; and dp; are ob-
tained from the relationship between Q and Ap. The effects from fluid properties on the
REV size and critical scanning resolution will be therefore studied.

3.1. REV Size

The relation between flow rate and pressure difference at varying structure size is
shown in Figure 10. At least four high pressure-drop results are presented to guarantee
accurate estimation of the effective permeability and the start-up pressure gradient.

Figure 11 shows that k.¢r and dp; changes with the sample size. For the effective
permeability, a larger deviation is observed at smaller structure size. The effective perme-
ability becomes stable when the structure size gets larger than 800, which is approximated
as the REV size for k.ss. As for the start-up pressure gradient, through deviation can be
observed, the deviation is quite small compared to its mean value and a REV size of 100
is obtained for the start-up pressure gradient. This means that the start-up pressure gra-
dient is a much more stable property compared to the effective permeability.
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Figure 10. Numerical results for Bingham fluid flow simulation at varying pressure gradient Vp and structure size N.
The resolution ratio is R = 1.0. (a) Relationship between mean velocity and pressure gradient at varying structure size.
(b) Same results shown in (a), but pressure gradient range changed to keep only 4 data points in the linear form regime.
The index N in the figure represents the structure size.
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Figure 11. Results of (a) effective permeability and (b) start-up pressure gradient change with structure size. Long-dashed
line is the estimated mean effective permeability (or start-up pressure gradient) and two short-dashed lines cover 10%
variation from the mean effective permeability (or start-up pressure gradient).

3.2. Cut-Off Resolution (COR)

The relation between the flow rate and the pressure difference at varying resolution
is shown in Figure 12. At least four high pressure results are simulated to guarantee accu-
rate estimation of the effective permeability and the start-up pressure gradient.

Figure 13 gives the results that k.rr or dps; changes with resolution. For the effec-
tive permeability, large deviation is observed at low resolution and it gets stable when the
resolution gets higher than 0.375, which is defined as COR for k.ss. As for the start-up
pressure gradient, a similar trend is observed and the COR for start-up pressure gradient
is also around 0.375.
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Figure 12. Numerical results for Bingham fluid flow simulation at varying pressure gradient Vp
and resolution R. The sample size is N = 1000 and resolution ratio changes from R = 1.0 to R =
0.125. The index R in the figure represents the resolution ratio.
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Figure 13. Results of (a) effective permeability and (b) start-up pressure gradient change with resolution. Long-dashed
line is the estimated mean effective permeability (or start-up pressure gradient) and two short-dashed lines cover 10%
variation of the mean value.

3.3. Discussion

The REV size for Bingham fluid flow in porous media is an important issue for both
theoretical analysis and industry applications. In some previous studies, it was usually
believed that the REV size for non-Newtonian fluids is larger than that for Newtonian
fluids. Theoretically, no significant difference has been found to estimate REV of effective
permeability for Bingham-fluid and Newtonian-fluid flows. Our framework provides a
tool to quantify REV and permeability for different types of fluid in porous media. Figure
14 shows the comparison of permeability estimated for Bingham and Newtonian fluid
flows at varying structure size, which indicates that the Bingham fluid appears similar as
the Newtonian fluid in permeability evolution. In high-velocity flow regime, this result
seems trivial since the influence of yield stress on the effective viscosity is negligible.
Meanwhile, one more parameter dp; needs to be considered for the Bingham fluid. Typ-
ical expectation of REV for dp; is larger than REV for permeability and thus the REV for
Bingham fluid flow would be larger than that for a Newtonian fluid. However, the nu-
merical simulations have given an opposite result that the REV for start-up pressure gra-
dient is smaller than REV for k..

The theoretical analysis of Bingham fluid flow through cylinder indicates that dp;
is proportional to 7,/h while k., is related to h®. This means that dp; is sensitive to
changes of reciprocal of pore size and k. is sensitive to changes of square of pore size.
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The simulation results imply that the REV for 1/h is smaller than that for h2. Still, the
reciprocal of specific area is used to indicate the average pore size, h = 1 /s, changes of
1/h and h? with structure size N can be plotted in Figure 15. The results give the esti-
mate of the REV for 1/h and h? as 200 and 400 respectively. This confirms the above
implication and explains why the REV for dpg is smaller than that for k.. Therefore,
contrary to the typical expectation, the REV for a Bingham-fluid flow is almost the same
as that for a Newtonian-fluid flow. This means that the sample size, which is large enough
to estimate permeability of Newtonian fluids, satisfies the REV requirement to study Bing-
ham-fluid flow through porous media.
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Figure 14. Results of permeability change with structure size for Bingham and Newtonian fluid
flow.
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Figure 15. Results of (a) 1/h and (b) h? change with resolution. h = 1/s, is reciprocal of specific area and represents
average pore size. Long-dashed line is the estimated mean value and two short-dashed lines cover 10% variation of the

mean value.

4. Conclusions

Digital rock analysis provides a powerful tool to investigate the transport of complex
fluids in porous media while the critical size of REV and scanning resolution should be
satisfied to guarantee representativeness and accuracy. In this work, these critical require-
ments for non-Newtonian fluid flow through tight porous media are examined. Porous
structures with various size and resolution are reproduced to study REV and COR for
single-phase Bingham fluid flow and the results are compared with the ones for Newto-
nian fluid flow. The results show that the relation between flow rate and pressure gradient
for Bingham fluid flow changes from a parabolic form to a linear one as the pressure gra-
dient increases. An upscaling model is proposed connect the effective permeability and
the start-up pressure gradient to depict this flow. Considering varying sample size and
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resolution, the numerical framework obtains the REV and COR for k.¢r and dp;. It is
found that the COR of dps is similar with that of k. but the REV for dps is much
smaller than that for k.. The present study indicates that the REV and COR for Bingham
fluid is almost the same with those for Newtonian fluid. Therefore, the samples, which
satisfy REV and COR requirements for Newtonian fluid, can also be used to study the
Bingham fluid flow and to estimate the start-up pressure gradient in tight porous media.
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Appendix A
Appendix A.1. Bingham Flow in 2D Parallel Plate
Analytical solution gives the velocity distribution as:

d
Y =y = G =R 42 (y —h),0 < y <
w . (A

e’ —h2)+%(3’—h)'3’s <ysh

1 dp
2uo dx(

To simplify following analysis, we define A = uy/po, as the viscosity ratio and P =

%% as the non-dimensional pressure gradient. With characteristic length and velocity
0

defined as L, =h and U, = 14h/ls, the non-dimensional velocity distribution is ob-
tained as

1 * * 1 * * * *

— PO =) =S PO - D+ (05 - D0y <y

1 * * * * :
—;PO?-D+ 0" -Dy <y <1

*

(A2)

u* =u/U, is the non-dimensional velocity, y* = y/L. is the non-dimensional posi-
tion and y; = y;/L. is the non-dimensional critical position.

. _ C A

Ys :;'C:E' (A3)
The non-dimensional flow rate can be calculated as:
* Q — 1 . *
=g =hwdy (Ad)
which gives the total flow rate as:
e_lp_1_ ¢
Q =3P 2t (A5)

with y5 < 1, pressure gradient needs to satisfy condition P = C. For Bingham fluid, this
condition reflects the existence of start-up pressure gradient.
When P is large enough, flow rate can be approximated as:

Q =:P-- (A6)

This is the linear relation form for large pressure gradient.
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When P approaches C, the flow rate is
Q" =3 -1). (A7)

For large viscosity ratio, C approaches 1 and Q* approaches 0.
Define P = C + 6, the flow rate near C is written as

S S+
¢ =3C-D+i+ilam 1) (A8)
Since 1/(14+68/C)=1-36/C + 8%/C? + 0(6?), flow rate is re-written as:
P OHC 5% 2
Q' =25 - 1)+ 25+ (6. (A9)

For large viscosity ratio, C approaches 1 and
* 52
Q== (A10)

This is the parabolic relation form.

To show the validity of flow rate model proposed in Section 2.3, the results of ana-
lytical solution and model fit in shown in Figure Al. It can be seen from the figure that
the model can match the analytical solution well.

0.6
Analytical
05 F| —. -Linear f
04 [ | == —Parabolic
¢ Model fit

Flow rate
(e»)
w

o
(S}

0.1

1 1.5 2 . 2.5 3
Pressure gradient

Figure A1l. Results of non-dimensional flow rate changes with non-dimensional pressure gradient
for Bingham flow through 2D parallel plate. The flow rate changes parabolically when pressure
gradient is small and linearly when pressure gradient is large. The model that links parabolic and
linear form can well match the analytical solution obtained.

Appendix A.2. Bingham Flow in 3D Cylinder

Analytical solution gives the velocity distribution as

_ldpea oy 1 dpoa pay .y To.
u= 4ug dx (T T ) 4ioo dx (7:9 h ) + oo (Ts h),O <r< T (All)
- _Ldpo oy To .
4uwdx(r h)+uw(r h,r.<r<h

To simplify following analysis, we still define A = yy/p. as the viscosity ratio and

pP= le—z as the non-dimensional pressure gradient. With characteristic length and veloc-
0

ity defined as L. = h and U, = 1oh/u, the non-dimensional velocity distribution is ob-

tained as:

R T e B e T R W A
v = } . (A12)
—1POP D+ - D <17 <1
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u* =u/U, is the non-dimensional velocity, r* = r/L. is the non-dimensional posi-
tionand 7 = r;/L, is the non-dimensional critical position.

n=%c=2L (A13)

P A-1"

The non-dimensional flow rate can be calculated as:

* Q 1w s g%
Q"= 2nU L2 = fo wrtdr’, (Al4)
which gives the total flow rate as:
c=lp_ 1,
=6 ~st (A15)

With r < 1, pressure gradient needs to satisfy condition P > 2C. For Bingham fluid,
this condition reflects the existence of start-up pressure gradient.
When P is large enough, flow rate can be approximated as:

« 1 1

This is the linear relation form for large pressure gradient. When P approaches 2C,
the flow rate is:

Q' =2(C-1. (A17)

For large viscosity ratio, C approaches 1 and Q* approaches 0.
Define P = 2C + §, the flow rate near 2C is written as

1

« e _ s
Q_S(C 1)+16+24

[; 1]. (A18)

(1+6/203
Since 1/(14+68/2C) =1—6/2C + §%2/4C? + 0(52), flow rate is re-written as:

Q*=5+ZC(C—1)+

52 2
= _+0(52). (A19)

16C

For large viscosity ratio, C approaches 1 and
* 52
Q== (A20)

This is the parabolic relation form.

To show the validity of flow rate model proposed in Section 2.3, the results of ana-
lytical solution and model fit in shown in Figure A2. It can be seen from the figure that
the model can match the analytical solution well.

0.1
Analytical }
= = =Linear
0.08 F
— . =Parabolic
" & Model fit
+0.06
-
5
= 0.04
0.02
0 <

2 25 4

Pressure3gradient

Figure A2. Results of non-dimensional flow rate changes with non-dimensional pressure gradient
for Bingham flow through 3D cylinder. The flow rate changes parabolically when pressure gradi-
ent is small and linearly when pressure gradient is large. The model that links parabolic and linear
form can well match the analytical solution obtained.
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