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Abstract: This paper presents the numerical results of electro-osmotic flows in micro- and nano-fluidics using a 
Lattice Poisson-Boltzmann method (LPBM) which combines a potential evolution method on discrete lattices to 
solve the nonlinear Poisson equation (Lattice Poisson method) with a density evolution method on discrete 
lattices to solve the Boltzmann-BGK equation (Lattice Boltzmann method). In an electrically driven osmotic 
flow field, the flow velocity increases with both the external electrical field strength and the surface zeta 
potential for flows in a homogeneous channel. However, for a given electrical field strength and zeta potential, 
electrically driven flows have an optimal ionic concentration and an optimum width that maximize the flow 
velocity. For pressure-driven flows, the electro-viscosity effect increases with the surface zeta potential, but has 
an ionic concentration that yields the largest electro-viscosity effect. The zeta potential arrangement has little 
effect on the electro-viscosity for heterogeneous channels. For flows driven by both an electrical force and a 
pressure gradient, various zeta potential arrangements were considered for maximize the mixing enhancement 
with a less energy dissipation. 
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1. Introduction 
With the growing interest in bio-MEMS and bio-NEMS applications and fuel cell technologies, electrokinetic flows 

have become one of the most important non-mechanical techniques in micro- and nano-fluidics [1-4]. Electro-osmotic 
flows (EOF) have wide applications for pumping [5-8], separating [1,2] and mixing [9,10] in micro- and nano-scale 
devices. The electro-viscosity effect also increases the energy dissipation in the electrolyte solution transport [11,12].  

Due to their many applications, numerical simulations of EOF in micro- and nano-channels have recently received a 
great amount of attention [13-20]. From the macroscopic point of view, the EOFs are governed by the Navier-Stokes 
equations for flow and the Poisson-Boltzmann equation for the electrical potential [13]. Some researchers have simulated 
EOF using these macroscopic equations [14,15]. In recent years, a mesoscopic statistics-based method, the lattice 
Boltzmann method (LBM), has been developed for EOF in micro-fluidic devices because external force fields can be 
more easily added to the lattice Boltzmann equation than to the Navier-Stokes equation [16-18, 21-25]. Recently, Guo et 
al.[25] divided the existing LBMs for the EOF into two categories based on the number components: single-fluid models 
and multi-fluid component models. The methods can also be divided into three categories based on main the solution 
methods for the electric potential as: conventional methods, the “moment propagation” method and the independent lattice 
Boltzmann method. 

Most previous works used conventional numerical methods to solve the Poisson-Boltzmann equation, especially in its 
one dimensional linearized form [16-18]. The multigrid technique can greatly increase the efficiency of the iterative 
solution of the nonlinear Poisson-Boltzmann equation [21,26], but the technique can not easily be used to treat complex 
geometries. For charged suspensions, Warren [22] introduced the “moment propagation” method [27] to solve the 
electrical potential distribution. He and Li [23] proposed a different scheme for analyzing the electrochemical processes in 
an electrolyte by using an independent lattice Boltzmann method to solve the Poisson equation for the ion diffusion. 
However, this method was based on a locally electrically neutral assumption so it was not suitable for analyzing the 
dynamics of charged suspensions [24]. Recently, Guo et al. [25] developed He’s method by directly solving the electric 
potential equation and investigated the Joule heating effect of electro-osmotic flow in microfluidic devices. 

Following the spirit of He’s method, this paper describes a consistent lattice evolution method which combines a 
lattice solution for the non-linear Poisson equation for the electrical potential with a lattice solution for the Bhatnagar-
Gross-Krook (BGK) equation for incompressible fluid flows. Our method was independently developed, but similar with 
Guo’s [25]. As with the standard LBM, this method can easily deal with complex boundary conditions and can be easily 
extended to 3D problems and parallel computing. The method was validated against an analytical solution and then used 
to simulate electro-osmotic flows in micro- and nano-scale channels. The pumping effect of electrically driven flows and 
the electro-viscosity effect in pressure driven flows were analyzed in both homogeneous and heterogeneous channels. The 
mixing enhancement in a heterogeneous channel with non-uniform surface zeta potential was also demonstrated. 

2. Numerical method 
2.1 Lattice Boltzmann method for fluids with external forces 

The lattice Boltzmann method simulates transport phenomena by tracking the movements of molecule ensembles 
through the evolution of the distribution function [28]. The lattice Boltzmann equation can be derived from the Boltzmann 
equation [29]. For the flows with external forces, the continuous Boltzmann-BGK equation with an external force term, 
F , is  

( )
eq

t
Df f ff f F
Dt ντ

−
≡ ∂ + ⋅∇ = − +ξ ,     (1) 

where ( , , )f f x t≡ ξ  is the single particle distribution function in the phase space ( , )x ξ , ξ  is the microscopic velocity, 

ντ  is the relaxation time, and eqf  is the Maxwell-Boltzmann equilibrium distribution. For a steady fluid immersed in a 
conservative force field, the equilibrium distribution function is defined by adding a Boltzmann factor to the Maxwell-
Boltzmann distribution: 
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RT kT RT
ρ

π
 − = − −  

   

ξu
,    (2) 

where U  is the potential energy of the conservative force field, 0ρ  is the fluid density where U  is lowest, R  is the ideal 
gas constant, D  is the dimension of the calculation space(1D,2D or 3D), k  is the Boltzmann constant, and u  is the 
macroscopic velocity. Here the external force term, F , needs to be chosen carefully. Dimensional analysis led to the 
following form of F: 

( ) eqF f
RT
⋅ −

=
Gξu

,       (3) 

with G  being the external force per unit mass [30]. Eq. (3) has a perfect accuracy (relative errors are totally less than 
0.5% when comparing with analytical solutions for a Poisseuille flow), even though ones reported it was an only first 
order approximation [31].  

The Chapman-Enskog expansion can be used to transform the Boltzmann-BGK equation, Eq. (1), into the correct 
continuum Navier-Stokes equations, 

2
EP

t
ρ ρ µ∂

+ ⋅∇ = −∇ + ∇ +
∂
u u u u F ,     (4) 

where ρ  is the solution density, P  is the pressure, µ  is the dynamic fluid viscosity and EF  is the electric force density 
vector. In general, the electrical body force in electrokinetic fluids can be expressed as: 

int int( )E ext e Vρ= + + × +F F EξB F  ,     (5) 
where extF  represents the external field body forces, including the Lorentz force associated with any externally applied 
electric and magnetic field. For only an electrical field, ext eρ=F E , where eρ  is the net charge density and E is the 
electrical field strength. intE  and intB  are internally smoothed electrical and magnetic fields due to the motion of the 
charged particles inside the fluid. VF  is a single equivalent force density due to the intermolecular attraction [16].  

 For the two-dimensional case, third-order Gauss-Hermite quadrature leads to the nine-speed LBE model with the 
discrete velocities 

( )
( ) ( )
( ) ( )

0,0 0

cos ,sin 1 2 1, 2,3, 4

2 cos ,sin 5 2 4 5,6,7,8

e c

c
α α α α

α α α

α

θ θ θ α π α

θ θ θ α π π α

 =
= = − =


= − + =

 , (6) 

where 3c RT=  and the equilibrium distribution 

2 2

0 2 4 2

( ) 3exp 1 3 9
2

eq Uf
kT c c c

α α
α αω ρ

 ⋅ ⋅ = − + + −   
   

e u e u u
,    (7) 

where 
4 / 9
1/ 9

1/ 36
αω


= 



   
0

1,2,3,4
5,6,7 ,8

α
α
α

=
=
=

. 

Thus, the discrete density distribution satisfies the evolution equation 

1( , ) ( , ) ( , ) ( , )eq
t t tf e t f t f t f t Fα α α α α α

ν

δ δ δ
τ

 + + − = − − + r r r r ,  (8) 
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where r  is the position vector, tδ  is the time step defined as x

c
δ

, xδ  is the lattice constant, ντ  is the dimensionless 

relaxation time, and 
( ) ( , )eqF f t
RT
α

α α
⋅ −

=
G e u r . 

The macroscopic density and velocity can be calculated using 

fα
α

ρ =∑ ,         (9) 

e fα α
α

ρ =∑u .        (10) 

The dimensionless relaxation time, ντ , is a function of the fluid viscosity  

23 0.5t

x
ν

δτ ν
δ

= + ,        (11) 

where ν  is the kinetic viscosity. 
For electrokinetic flows in dilute electrolyte solutions, the external electrical force in Eq. (5) can be simplified to: 

E e eρ ρ= − ∇ΦF E ,        (12) 
where Φ  is the stream electrical potential caused by the ion movements in the solution based on the Earnst-Planck theory. 
Generally, the stream potential dominates the electro-viscosity effect in pressure driven flows, but its value is much less 
than the external potential and can be ignored in electrically driven flows. Therefore, the external force in the discrete 
Lattice Boltzmann equation (Eq. 8) should include the pressure and electric force 

( ) ( ) eqe ePF f
RT

α
α α

ρ ρ
ρ

−∇ + − ∇Φ ⋅ −
=

E e u
.     (13) 

Equations (6-13) can then be solved to analyze electro-kinetic flows using the LBM as long as the charge density 
distribution in the solution is known. 

 
2.2 Lattice Poisson method for the electrical potential in the EDL 

Electric double layer (EDL) theory [13] relates the electrostatic potential and the distribution of counter-ions and co-
ions in the bulk solution by the Poisson equation as follows: 

2

0

eρψ
εε

∇ = − ,        (14) 

where ψ  is the electrical potential, ε  is the dimensionless dielectric constant of the solution, 0ε  is the permittivity of a 
vacuum, and eρ  is the net charge density. According to classical EDL theory, the equilibrium Boltzmann distribution 
equation can be used to describe the ionic number concentration. Therefore, the net charge density distribution can be 
expressed as the sum of all the ions in the solution: 

, exp i
e i i

i b

z ez en
k T

ρ ψ∞

 
= − 

 
∑ ,      (15) 

where the subscript i  represents the i th species, n∞  is the bulk ionic number concentration, z  is the valence of the ions 
(including the sign), e  is the absolute value of one proton charge, bk  is the Boltzmann constant, and T  is the absolute 
temperature. 
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Substituting Eq. (15) into Eq. (14) yields the nonlinear Poisson equation for the electrical potential in the dilute 
electrolyte solution:  

2
,

0

1 exp i
i i

i b

z ez en
k T

ψ ψ
εε ∞

 
∇ = − − 

 
∑ .     (16) 

Eq. (16) can be solved using 1D or 2D linearized simplifications [16-18], iteration [14, 15] or multigrid methods 
[21,26]. Hirabayashi et al [32,33] ever developed a lattice BGK model for the Poisson equation where, however, the 
source term was linear or a fluctuation near zero. The model was hardly used directly to solve a nonlinear Poisson-
Boltzmann equation. Here the lattice Poisson method (LPM), derived from the LBM [29,30], was used to solve Eq. (16).  

The solution of Eq. (16) can be regarded as the steady solution of: 

2 ( , , )rhsg t
t
ψ ψ ψ∂

= ∇ +
∂

r ,       (17) 

where ,
0

1 exp i
rhs i i

i b

z eg z en
k T

ψ
εε ∞

 
= − 

 
∑  represents the negative right hand side (RHS) term of the original Poisson 

equation. 
The evolution equation for the electrical potential on the two-dimensional discrete lattices can then be written as 

, , ,
1 0.5( , ) ( , ) ( , ) ( , ) (1 )eq

t g t g t g rh s
g g

g e t g t g t g t gα α α α α αδ δ δ ω
τ τ

 + + − = − − + − r r r r ,    (18) 

with the equilibrium distribution of g  

eqgα αϖ ψ= , with 
0 0
1/ 6 1,2,3,4
1/12 5,6,7,8

α

α
ϖ α

α

=
= =
 =

   (19) 

The time step in Eq. (18) is 

, '
x

t g c
δδ = ,         (20)  

where 'c  is a pseudo sound speed in the potential field. In fact it can be artificial to vary the time step. The dimensionless 
relaxation time for Eq. (18) is 

,
2

3
0.5

2
t g

g
x

χδ
τ

δ
= + ,        (21) 

where χ , which is equal to unity in the simulations, is defined as the potential diffusivity.  
The evolution equations (18-21) can be proved consistent with the macroscopic Poisson equation (17). After evolving 

on the discrete lattices, the macroscopic electrical potential can be calculated using 

,( 0.5 )t g rhsg gα α
α

ψ δ ω= +∑ .      (22) 

Though the electrical potential evolution equations are in an un-steady form, only the steady state result is realistic, 
because the electromagnetic susceptibility has not been considered. The LPM has most of the advantages of the Lattice 
Boltzmann method and is suitable for complex flows and parallel computing. Although this paper only presents 2D cases, 
the algorithm is easy to extend to a 3D case. 

 
2.3  Boundary conditions 
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The boundary conditions for LBM are very simple. The bounce-back model was used to model the fluid-solid 
interaction on the wall surfaces. Periodic conditions were implemented at the inlet and outlet. 

The LPM for the electrical potential used the Dirichlet boundary condition on the wall surfaces and the Neumann 
condition at the inlet and outlet sections. 

For the Dirichlet boundary, the unknown distribution functions were calculated from the local equilibrium distribution 
with the source, rhsg [34]. For example, for the upper wall, 4g , 7g , and 8g  are unknown, but can be obtained from the 
equilibrium distribution of the local 0ψ : 

0 3 3 1.5s p t rhsS gα
α

ψ ψ δ ω= − − ∑ ,      (23) 

where pS  is the sum of known populations coming from the internal nodes and nearest wall nodes 

0 1 2 3 5 6pS g g g g g g= + + + + + ,      (24) 

and sψ  is the boundary value. Thus the unknown distributions are 

0gα αϖ ψ= ,        (25) 
The corner can be treated in a similar way, with five unknowns at the corner. The upper-right corner, for example, has 

the unknown populations 3g ,  4g , 6g , 7g , and 8g . They also follow from Eq. (23) with 

0

12 6 12

7

s t rhs pg Sα
α

ψ δ ω
ψ

− −
=

∑
,      (26) 

where  

0 1 2 5pS g g g g= + + + .       (27) 
The inlet and outlet boundary for LPM was implemented the Neumann boundary conditions. At the outlet (the left 

section, for example), the relationship 

0 ,3 1.5 ( / )p t rhs xS g c cα α
α

ψ δ ω= + ∑ ,     (28) 

with 

1 5 8pS g g g= + + ,        (29) 

can be applied to determine the unknown populations 3g , 6g  and 7g . 

3. Results and Discussion 
The LPBM was used to simulate the EOF in a 2D microchannel as shown in Figure 1. The charges on the channel 

walls are either homogeneous or heterogeneous, so that the zeta potential distributions on the upper and lower walls are 
1( )xζ  and 2 ( )xζ . The channel is H wide and L long. The electrolyte solution in the channel is driven by an electrical 

field, a pressure field or both. 
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Figure 1  Boundary conditions for the electro-osmotic flow in a microchannel 

This section first presents a validation of the method by comparison to an analytical solution and then uses the method 
to analyze electrical driven osmotic flow, the electro-viscosity effect, and electrical mixing enhancement. 

 
3.1 Benchmark 

For a 1:1 electrolyte solution flowing in a microchannel with periodic inlet/outlet boundaries and homogeneous walls, 
the Poisson-Boltzmann equation Eq. (16) can be simplified into the one-dimensional form: 

2

2
0

2 sinhn zed ze
dy kT
ψ ψ

εε
∞  =  

 
.      (30) 

If /ze kTψ  is small, sinh( / ) /ze kT ze kTψ ψ≈ . Eq. (30) can be linearized as: 
2 22

2
2

0

2n z ed
dy kT
ψ ψ κ ψ

εε
∞= = ,       (31) 

where 
2 2

0

2n z e
kT

κ
εε

∞=  is defined as the reciprocal of the Debye length in Debye-Huckel theory. The linear one-

dimensional ordinary differential equation in Eq. (31) has a simple analytical solution for a specified set of boundary 
conditions. 

Figure 2 compares the LPM results for the non-linear Poisson-Boltzmann equation (Eq. 16) and the analytical 
solutions of the linearized equation (Eq. 31), together with numerical solution using the multigrid method. The parameters 
are an the ionic molar concentration 410c M−

∞ = , An c N∞ ∞=  where AN  is the Avogadro’s number, 1z = , the dielectric 

constant of the solution -10 2
0 6.95 10 /C J mεε = × ⋅ , the temperature 273T K= , and 1 2 sψ ψ ψ= =  with sψ  as a 

constant. 
In general, the linearization is accurate when ψ  is small. Figure 2 shows that the LPM results agree perfectly with 

multigrid solutions at all zeta potentials and with the analytical solution of the linearized equation when the absolute value 
of the surface zeta potential ζ  is small, less than about 30 mV. This validates the accuracy of the LPM. When the 
absolute value of zeta potential is large (> 30 mV), the LPM numerical results depart from the linearized analytical 
solutions as expected [35,16]. 
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Figure 2  LPM results compared with the linearization results and the multigrid results for various surface 
zeta potentials (-10 mV, -30 mV, -50 mV, -100 mV and -150 mV). 

 
3.2 Applications 

After the LPM was validated, the LPBM was used to simulate electro-osmotic flows in microchannels. The LPM was 
first used to calculate the potential distribution in the domain to calculate the force per unit mass on the fluid. This force 
was then used in the LBM to calculate the EOF in microchannels. 
3.2.1  Electrically driven osmotic flow 

The First example considers a flow that is driven by only the electrical field in a homogeneous microchannel. The 
inlet and outlet boundaries are periodic. The channel is 0.8 mµ  wide and the ionic molar concentration far from the wall 
surface is 10-4 M for the results shown in Figure 3. As has been previously observed in qualitative results both 
experimentally [15] and numerically [36,37], the velocity in the electrically driven osmotic flow is nearly proportional to 
the external electrical field strength, as well as the surface zeta potential in a homogeneous channel. Recently, these 
results were also observed in MD simulations in nanochannel flows [38,39]. 

0 0.2 0.4 0.6 0.8 1
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m
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Ex=500  V/m  ψ s=-20 mV

Ex=500  V/m  ψ s=-50 mV

Ex=1000 V/m ψ s=-50 mV

 
Figure 3  Velocity profiles for various external electrical fields and different surface zeta potentials. The 
solid line: E =5×102 V/m, sψ =-20 mV; the dot-line: E =5×102 V/m, sψ =-50 mV; the dashed-line: 

E =1×103 V/m, sψ =-50 mV. 
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The velocity profiles for the various ionic concentrations far from the walls are shown in Figure 4 for a channel width 
is 0.4 mµ , the external electric field strength E =5×102 V/m, and the surface zeta potential sψ =-50 mV for both walls. 
The fluid properties are set as those of water at the standard state which are the dielectric constant 

-10 2
0 6.95 10 /C J mεε = × ⋅ , the density ρ =1.0×103 kg/m3 and the viscosity µ =0.89 Pa s. The results show an optimal 

ionic concentration that maximizes average velocity. As the ionic molar concentration decreases from a high value (2×10-

2), the EDL thickness increases so that although the force is slightly reduced, the electrical force domain increases and 
thus the average velocity increases. There exists a concentration at which the effect of the electrical force can dominate 
across the entire channel and make the velocity reach maximum (10-4~10-3 M for current simulations). As the ionic 
concentration decreasing (such as from 10-4 to 10-6), the force reduction becomes the most important factor and the 
average velocity decrease. The lower ionic concentrations also result in a more parabolic-like velocity profile. 
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0

2

4

6

8

10

12

14

16

18

20

y/H

u 
   
µm

/s

2×10-2 M
10-2 M
10-3 M
10-4 M
10-5 M
10-6 M

 
Figure 4  Velocity profiles for various ionic molar concentrations for electrically driven flow. The dotted 
line: c∞ =2×10-2 M; the solid line: c∞ =10-2 M; the dash-dot line: c∞ =10-3 M; the dashed line: c∞ =10-4 M; 

the triangle-line: c∞ =10-5 M; the square-line: c∞ =10-6 M. 

Figure 5 shows the velocity profiles for various channel widths for c∞ =10-4 M, E =5×102 V/m, and sψ =-50 mV. The 
channel width varies from 0.1 mµ  to 1 mµ . The average velocity shows good monotonicity with the channel width. For 
channel widths larger than double size of the EDL thickness, the maximum velocity seldom changes with the channel 
width. However, for channels widths less than double size of the EDL thickness, a smaller channel width leads to a 
smaller velocity. 
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Figure 5  Velocity profiles for different channel widths.  
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3.2.2  Electro-viscosity effect 

When an electrolyte solution flows in a microchannel driven only by the pressure gradient, the charged wall surface 
will increase the resistance, which is defined as the electro-viscosity effect. This effect has been proven experimentally 
[11]. New dynamic models based on the Navier-Stokes equations have been built to model this effect [12,40,41]. Tian et 
al. [36] simulated the electro-viscosity effect using the LBM, but they did not find any significant difference between the 
results with and without the EDL. The following example investigates this effect using the LPBM. 

For 2D electrokinetic steady-state flow in microchannels, the streaming potential, Φ , in Eq. (12) can be defined by 
the constraint of current continuity [17,37]: 

0
( , ) ( , )

( )

H

e

b s

u x y x y d y
L

H

ρ

λ λ κ
Φ = −

+
∫ ,      (36) 

where bλ  is the electrical conductivity of the bulk fluid and sλ  is the surface conductance. In the present simulations, bλ  
is 1.42×10-3 S/m and sλ  is 1.64×10-9 S. 

Velocity profile for flow in a homogeneous channel are show in Figure 6 for a channel having a width of 0.4 mµ , 
c∞ =10-4 M, /dP dx =1×106 Pa/m, and surface zeta potentials, sψ , from 0 mV to -70 mV. When | |sψ  is very small (1 
mV), the velocity profile is the same as the non-EDL channel flow profile. When | |sψ  is larger than 10 mV, the electro-
viscosity effect becomes significant and the effect increases with the increasing | |sψ . Unlike the regular viscosity effect, 
the electro-viscosity effect mainly affects the velocity distribution near the wall so that the viscosity profiles near the walls 
are no longer parabolic. 
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Figure 6  Velocity profiles for various surface zeta potentials in a homogeneous channel with pressure 
driven flow. The asterisk (*): sψ =0 mV; the solid line: sψ =-1 mV; the dashed line: sψ =-10 mV; the cross 

sign: sψ =-30 mV; the diamond sign: sψ =-50 mV; the triangle sign: sψ =-70 mV. 

Figure 7 shows the velocity profiles plotted as a function of the ionic concentrations for sψ =-50 mV. The ionic 
concentrations vary from 10-4 M to 10-6 M. When its value drops from 10-4 to 10-5, the velocity drops (from the solid line 
to the dashed line) in the bulk flow region. As the value drops on from 10-5 to 10-6, the velocity profile rises up totally (see 
the dash-dot line). It can be foreseen that the velocity profile will approach the non-EDL case (the dot line) with the ionic 
concentration drops on. The figure indicates that the electro-viscosity varies non-monotonically with the ionic 
concentration. The reason is quite similar with the electrically driven cases. There exists an ionic concentration value 
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yielding the largest electro-viscosity effect. Additionally, a lower ionic concentration leads to a more parabolic velocity 
profile. 

0 0.2 0.4 0.6 0.8 1
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Figure 7  Velocity profiles for various ionic concentrations in a homogeneous channel. The dotted-line: c∞  

=0 M; the solid line: c∞ =10-4 M; the dashed line: c∞ =10-5 M; the dashed-dot line: c∞ =10-6 M. 

The second example illustrates the electro-viscosity effect in heterogeneous channels. Four cases were considered:  
Case 1: 1 sψ ψ= , (0, )x L∈ ; 2 sψ ψ= , (0, )x L∈ . (Homogeneous) 
Case 2: 1 sψ ψ= , (0, )x L∈ ; 2 sψ ψ= − , (0, )x L∈ . (Oppositely charged) 
Case 3: 1 sψ ψ= , (0, / 4 ) ( / 2,3 / 4 )x L L L∈ ∪ ; 1 sψ ψ= − , ( / 4, / 2 ) (3 / 4, )x L L L L∈ ∪ ; 
            2 sψ ψ= , (0, / 4 ) ( / 2,3 / 4 )x L L L∈ ∪ ; 2 sψ ψ= − , ( / 4, / 2 ) (3 / 4, )x L L L L∈ ∪ .  
Case 4: 1 sψ ψ= , (0, / 4 ) ( / 2,3 / 4 )x L L L∈ ∪ ; 1 sψ ψ= − , ( / 4, / 2 ) (3 / 4, )x L L L L∈ ∪ ; 
             2 sψ ψ= − , (0, / 4 ) ( / 2,3 / 4 )x L L L∈ ∪ ; 2 sψ ψ= , ( / 4, / 2 ) (3 / 4, )x L L L L∈ ∪ .  
Figure 8 compares the velocity profiles of channel middle sections (A-A section in Fig. 1) for H =0.4 mµ , c∞ =10-4 

M, /dP dx =1×106 Pa/m, and sψ =-50 mV. All four cases have significant electro-viscosity effects when compared with 
the non-EDL case. The resistance of the homogeneous one (case 1) is the largest, while that of the oppositely charged case 
is the smallest. The velocity profiles for cases 3 and 4 are almost the same and fall between case 1 and 2. 
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Figure 8  Velocity profiles for various surface zeta potential distributions in heterogeneous channels 
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3.2.3 Electrical mixing enhancement 

The final example illustrates a flow driven by both the electrical force and the pressure gradient in microchannels. 
These conditions are usually used for mixing enhancement [9,10]. The conditions are the same as for case 3 and 4 in 
section 3.2.2 with an additional external electrical field of E =5×102 V/m. The calculated velocity contours are shown in 
Figure 9. The electrical force causes vortices to appear near the surface that act as small stirrers in the channel. If two 
kinds of fluids or a suspension flows in the channels, the vortices will enhance the mixing. The mixing strength can be 
easily controlled by changing the electrical field strength or the zeta potentials. The streamlines along the channel mid-
line show qualitatively that case 4 has better mixing enhancement efficiency than case 3 due to its much larger y-
velocities. Similar results can be found in reference [42]. 

 
(a) 

 
(b) 

Figure 9  Velocity contours for different heterogeneous zeta potential distributions in electro-pressure 
driven flows. (a) case 3 zeta potential arrangement; (b) case 4 zeta potential arrangement. 

The vortices generation dissipates the kinetic energy of the fluid. Therefore, the energy dissipation is also a very 
important factor when selecting a scheme for enhancing mixings. The velocity profiles at / 2x L=  (A-A section in Fig. 1) 
for the two cases are compared in Figure.10. The figure shows that the zeta potential arrangement in case 4 has less 
energy dissipation than that in case 3. Thus, considering both the mixing effect and the energy dissipation, the zeta 
potential arrangement in case 4 is a better scheme for electrically driven mixing enhancement. 
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Figure 10  Velocity profiles at / 2x L=  for electro pressure driven flow 

4. Conclusions 
The Lattice Poisson-Boltzmann method (LPBM), which combined a lattice Poisson method (LPM) solving the non-

linear Poisson equation for electric potential and a lattice Boltzmann method (LBM) solving the Navier-Stokes equations 
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for fluid, was used to simulate the electro-osmotic flows in microchannels.  For electrically driven osmotic flows, the flow 
velocity is nearly proportional to the external electrical field strength and the surface zeta potential value for flows in 
homogeneous channels. However the flow velocity changes with the ionic concentration and the channel width are more 
complex. For a given set of conditions, the flows have an optimal ionic concentration or channel width that maximizes the 
average velocity. For pressure-driven flows, the electro-viscosity effect increases monotonically with the surface zeta 
potential, but reaches a maximum and then decreases with increasing ionic concentration. The zeta potential arrangement 
has little effect on the electro-viscosity for heterogeneous channels. Flows driven by both an electrical force and a 
pressure gradient can be used to enhance mixing in the fluid. The mixing enhancement was analyzed by comparing the 
flow fields in channels with different zeta potential arrangements, including the mixing enhancement effects and the 
energy dissipation. Since the electro-osmotic flows in microchannels have many promising applications in microsystems, 
the analyzed methods and simulations presented here provide valuable information for the design and optimization of 
MEMS/NEMS. 
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