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I. INTRODUCTION 
Electrostatic potentials play a fundamental role in many biochemical and biophysical processes, such as 

bio-macromolecules interactions in electrolyte solutions [1,2], transport phenomena in ion channels in cells [3-7]. Similar 
applications can also be found in MEMS/NEMS devices [8-10] and fuel cells [11]. A complete understanding of these 
physical and chemical processes needs correct mathematical descriptions and accurate solutions of the electrostatic 
potential distributions. One of the most widespread models for the electrostatic interactions is the Poisson-Boltzmann 
equation (PBE) [2] 

2
( ) ( ) ( )sin h ( ) ( )r r r r f rε ψ κ ψ−∇⋅ ∇ + = .         (1) 

This second-order nonlinear elliptic partial differential equation relates the electrostatic potential (ψ ) to the dielectric 
properties of the solute and solvent (ε ), the ionic strength of the solution and the accessibility of ions to the solute interior 

(
2

κ ), and the distribution of solute atomic partial charges ( f ). To expedite solution of the equation, this nonlinear PBE is 
often approximated by the linearized PBE by assuming sin h ( ) ( )r rψ ψ≈ . Several numerical techniques have been used 
to solve the nonlinear PBE and linearized PBE, including boundary element [12,13], finite element [14,15], finite 
difference algorithms [16-18], and multigrid method [19-23]. Efficient computer codes have also been developed for the 
PBE numerical solutions with applications in chemical and biological analyses, such as APBS [20], DELPHI [22], ITPCT 
[14], and Mainfold code [15]. However, due to the complexity of the nonlinear PBE, there is hardly a completely 
universal approach for the solution. Lots of efforts have always been put on the development of efficient methods to solve 
the PBE. Up to now, hundreds of relative research papers per year appear on various scientific journals [24]. 

This work will present an alternative solution for the nonlinear PBE in non-periodic domains by a lattice evolution 
method (LEM), based on the spirit of the lattice Boltzmann method solving Navier-Stokes equation [25, 26]. Chen et al. 
[27] were the first ones to solve Poisson equation by a lattice evolution method. They introduced the multicolor cellular 
automaton (CA) model into the lattice gas algorithm. The method was validated numerically for simple Poisson equations; 
however, as well known, the lattice gas method was in low efficiency [25]. Along Chen’s way, Hirabayashi et al. [28] 
solved the Poisson equation by a lattice BGK model as the upgrade of lattice gas model. This lattice BGK solver was also 
used to solve the time independent Kardar-Parisi-Zhang (KPZ) equation for porous media flows [29]. Hirahayashi’s solver 
increased the efficiency greatly except for it can be only suitable for linear or weak nonlinear Poisson equations. Warren 
[30] first introduced the “moment propagation” method [31] into the Lattice Boltzmann method to solve the electrical 
potential distribution. He and Li [32] proposed a different scheme for analyzing the electrochemical processes in an 
electrolyte by using an independent lattice Boltzmann method to solve the Poisson equation for the ion diffusion. 
However, this method was based on a locally electrically neutral assumption so it was not suitable for analyzing the 
dynamics of charged suspensions [33]. Guo et al. [34] developed a finite-difference-based lattice Boltzmann (FDLB) 
algorithm to investigate the Joule heating effect of electro-osmotic flow in microfluidic devices. Wang et al. [35,36] 
proposed a lattice Poisson-Boltzmann method (LPBM) to simulate the electroosmotic flow and its mixing enhancement 
applications recently. 

In this work, we developed the lattice evolution solution based on the previous work [35] for any kinds of nonlinear 
Poisson equations, particularly the non-linearized Poisson-Boltzmann equation (PBE), emphasizing implements for 
different type boundary conditions. The current method is validated by comparing with the theoretical and numerical data. 
Especially, this method is also proved useable for some cases where the classical PDE solvers are hardly suitable. Finally, 
the stability and accuracy will be discussed. 

II. THE ALGORITHM 
A. Evolution equation 

As well known, the lattice Boltzmann method (LBM) simulates transport phenomena by tracking the movements of 
molecule ensembles through the evolution of the distribution function [25]. It actually solves the continuous 
Boltzmann-BGK equation  
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( )
eq

t
Df f ff f F
Dt ντ

−
≡ ∂ + ⋅∇ = − +ξ ,          (2) 

where ( , , )f f x t≡ ξ  is the single particle distribution function in the phase space ( , )x ξ , ξ  is the microscopic 
velocity, ντ  is the relaxation time, eqf  is the Maxwell-Boltzmann equilibrium distribution, and F is an external force 
term. Through the Chapman-Enskog expansion, it was proved that LBM could provide the correct solution for the 
continuum Navier-Stokes equations [26], 

2P
t

ρ ρ µ∂
+ ⋅∇ = −∇ + ∇ +

∂
u u u u F ,          (3) 

where ρ  is the solution density, P  is the pressure, µ  is the dynamic fluid viscosity and F  is the external force 
vector. 

From this point of view, we adapt Eq. (1) into 
2 ( ) ( , ) 0r G rψ ψ∇ − =               (4) 

for an uniform dielectric property ε , where ( )21( , ) ( )sin h ( ) ( )G r r r f rψ κ ψ
ε

= − . 

The Eq. (4) can be regarded as the steady solution of the equation: 
2( , ) ( , ) ( , , )s

t t g t
t

ψ ψ ψ∂
= ∇ +

∂
r r r ,                           (5) 

where sg G= − . Based on the thermal lattice evolution schemes [37,38], here we propose the evolution equation for the 
electrical potential on the two-dimensional nine-direction discrete lattices: 

( , ) ( , )t tg e t g tα α αδ δ+ + − =r r    
1 0.5( , ) ( , ) (1 )eq

t s
g g

g t g t gα α αδ ω
τ τ

 − − + − r r ,     (6) 
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and the equilibrium distribution of g  

eqgα αϖ ψ= , with 
0 0
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The time step in Eq. (6) is t x cδ δ= , where c  is a pseudo sound speed. In fact it can be artificial to vary the time 
step to influence the accuracy at the boundaries, which will be stated latter. The dimensionless relaxation time for Eq. (6) 
is 

2

3 0.5
2

t
g

x

χδτ
δ

= + ,               (9) 

where χ , which is equal to unity in the simulations, is defined as the potential diffusivity.  
It can be proved that the evolution equations (6-9) are consistent with the macroscopic Poisson-Boltzmann equation 

(4). After evolving on the discrete lattices, the macroscopic electrical potential can be calculated using 
1
2 t sg gα

α

ψ δ= +∑ .                                     (10) 

Though the evolution equations of the electrical potential are in an un-steady form, they are limited in the steady 
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application right now, because the electromagneticsusceptibility has not been considered in the present form. Clearly, the 
current method inherits most advantages of the Lattice Boltzmann method. It is suitable for complex flows and parallel 
computing. Though 2D cases are mainly used in this paper, the algorithm is easily to extend to 3D case. 

B. Boundary conditions 

Boundary condition implements are very important for any numerical method. For the current lattice evolution 
method, the classical bounce-back model in the standard LBM can be used on the charged surfaces. However, the 
bounce-back model was reported only in first order accuracy [39-41]. Therefore we introduce here the adapted 
“counter-slip” approach into the boundary condition implements for electric potential calculations [42,43], which could be 
consistent with the non-slip boundary in fluid flow simulations [44]. In the so called “counter-slip” approach here, the 
incoming unknown potential populations are assumed to be equilibrium distributed with a counter-slip potential 0ψ . The 
value of 0ψ  is determined by suitable constraints, such as given zeta potential (ζ ) or surface charge density (σ ). 
Physically, zeta potential accords to the Dirichlet boundary condition and surface charge density accords to the Neumann 
boundary condition on the wall surface. For clear indication of the boundary condition implements, Fig. 1 shows the 
simple flat plan channel domain with two charged walls. 

 
Fig. 1  Boundary conditions for the electric potential in a channel 

Dirichlet boundary condition 

For the Dirichlet boundary, the unknown distribution functions were calculated from the local equilibrium 
distribution with the source, sg . For example, for the upper wall, 4g , 7g , and 8g , which are unknown, can be 
obtained from the equilibrium distribution of the local 0ψ : 

0 3 3 1.5s p t sS gψ ψ δ= − − ,             (11) 

where sψ  is the potential on the surface (here equals to the zeta potential), pS  is the sum of known populations 
coming from the internal nodes and nearest wall nodes 

0 1 2 3 5 6pS g g g g g g= + + + + + .           (12) 
Thus the unknown distributions are 

0gα αϖ ψ= .                (13) 
The corner can be treated in a similar way, with five unknowns at the corner. The upper-right corner, for example, has 

the unknown populations 3g , 4g , 6g , 7g , and 8g . They also follow from Eq. (23) with 

0

12 6 12
7

s t psg Sψ δ
ψ

− −
= ,                               (14) 

where  
0 1 2 5pS g g g g= + + + .                                (15) 

Neumann boundary condition 

For the Neumann boundary, the unknown distribution functions were also calculated by Eq. (13). For the upper wall 
as an example, introducing the relationship  
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with  

2 5 6p g g gS = + + ,                                                    (18) 

and 
s

d
dy
ψ

 is the potential gradient on the surface, which is determined by the surface charge density 

0y y H

d d
dy dy
ψ ψ σ

ε= =

= − = − .            (19) 

Eqs (17) and (13) can be used to determine the unknown populations 4g , 7g  and 8g  for the Neumann boundary 
condition. 

III. RESULTS AND DISCUSSION 
To test the present lattice evolution method for solving nonlinear Poisson-Boltzmann equation, we have carried out 

numerical simulations for electric potential distributions in dilute electrolyte solution in microchannels with charged walls 
under Dirichlet or Neumann boundary conditions. For simplicity, we only carried out two-dimensional simulation 
although the extension to three dimensions is straightforward. For the Poisson equation with a Neumann boundary, the 
current lattice evolution method shows superior to any other numerical methods due to its self-accommodation 
characteristic.  

Consider a 1:1 electrolyte solution in a simple microchannel, as shown in Fig. 1, with periodic inlet/outlet boundaries 
and homogeneous walls. The Poisson-Boltzmann equation Eq. (1) can therefore be simplified into the one-dimensional 
form: 

2

2

2 sinhn zed ze
dy kT
ψ ψ

ε
∞  =  

 
.            (20) 

Based on the Debye-Huckel theory, if /ze kTψ  is small, sinh( / ) /ze kT ze kTψ ψ≈ . Eq. (20) can then be 
linearized as: 

2 22
2

2

2n z ed
dy kT
ψ ψ κ ψ

ε
∞= = ,             (21) 

where 
2 22n z e

kT
κ

ε
∞=  is defined as the reciprocal of the Debye length. The linear one-dimensional ordinary differential 

equation Eq. (21) has a simple analytical solution for a specified set of boundary conditions. 
Figure 2 compares the present LEM results for the nonlinear Poisson-Boltzmann equation Eq. (20) and the analytical 

solutions of the linearized equation Eq. (21), together with numerical solution using the standard multi-grid method. The 
parameters are the ionic molar concentration 410c M−

∞ = , An c N∞ ∞=  where AN  is the Avogadro’s number, 1z = , 

the dielectric constant of the solution -10 26.95 10 /C J mε = × ⋅ , the temperature 273T K= , and 0u dζ ζ ζ= =  with 

0ζ  as a constant. 
In general, the linearization is accurate when 0ζ  is small. Figure 2 shows that the LEM results agree perfectly with 

multigrid solutions at all zeta potentials and with the analytical solution of the linearized equation when the absolute value 
of the surface zeta potential ζ  is small, less than about 30 mV. This validates the accuracy of the present LEM. When 
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the absolute value of zeta potential is large (> 30 mV), the linearized analytical solutions deviate from the LEM numerical 
results as expected [18,45,46]. 
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Fig. 2  LEM results (line) compared with the 1D linearization results (cycles) for various surface zeta potentials (-10 
mV, -30 mV, -50 mV, -100 mV and -150 mV). 
 

In fact the zeta potential is not a pure physical characteristic though it provides great convenience to the 
Poisson-Boltzmann equation solutions, and may be measured experimentally [47]. The wall surface charge density 
actually plays the physical characteristic role instead, and becomes more and more important in micro scale simulations 
[48,49]. However it meets troubles to solve the Poisson equations with Neumann boundary conditions, because a 
second-order Poisson equation with a first-order boundary condition has a series of uncertain solutions. This violates the 
exclusiveness of physics. The charge conservation condition was suggested as one restriction, which is however hard to 
implement. Here we tried to simulate the PBE in the Fig. 1 domain with only a Neumann boundary condition. It is 
surprising to find the LEM gave one and only solution for such a case. When 60.5 10σ ε = − × V/m and other properties 
were same as the above example, an electric potential distribution and therefore the zeta potential were calculated by 
LEM. The LEM results are compared with the linearized PBE Eq.(21) solutions in Fig. 3. The resulted zeta potential is 
low ( | | 15ζ <  mV) so that the linearization of PBE has good accuracy. The excellent agreement between LEM numerical 
results and the linearized PBE semi-analytical solutions validates the Neumann boundary implement of LEM. 
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Fig. 3  Implement of Neumann boundary condition of LEM 

 
However the result from Fig. 3 does not prove the only solution of LEM is the exact solution of the original PBE. 
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Based on the electrical dynamics theory, Ohshima and Furusawa [50] gave a linear relationship between the surface zeta 
potential and the wall surface charge density at low charge density values. In the book of surface science [51], a more 
complex one was presented for general dilute electrolytes for the present PBE form Eq. (20), 

2 sinh
2

kT ze
ze kT
ε κ ζσ  =  

 
.             (22) 

Here we carried out LEM simulations for various wall surface charge densities. For each case, we got one value of 
the electric potential on the wall surface which was treated same as the zeta potential. Fig. 4 compares of numerical 
results with the analytical results of Eq. (22). Both results agree quite well for a wide charge density region. Thus, we can 
therefore believe that the LEM for the nonlinear PBE is able to provide the exact only solution for a Neumann boundary 
condition, which is hard for classical numerical methods. The reason lies on the conversation restriction is automatically 
kept during the potential evolution process on the lattices. 
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Fig. 4  LEM results (solid squares) compared with the analytical results (line) for the relationship between wall charge 
density and surface zeta potential. 
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Fig. 5  The effects of the pseudo sound speed values on the potential distribution (big figure) and the zeta potential 
(sub figure) for the Dirichlet boundary condition calculations at 0 100ζ = − mV. 

As a numerical method, the accuracy and stability of the lattice evolution method are also concerned. Inheriting from 
the standard LBM, the accuracy of current method is mainly influenced by the lattice size and the time step. Especially, 
for the strong boundary-layer structure distribution of electric potential, the lattice size affects the accuracy greatly. A 
finer lattice leads to more accurate results and wider potential regions, but costs more computational efforts. In fact, the 
local refinement [52-54] is very suitable for such cases. The lattices are only refined near the wall boundaries, while 
coarse lattices are used far from the boundaries. As mentioned above, the pseudo sound speed c  can be artificially 
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changed due to its non-physical significance in electric potential evolution. Fig. 5 shows the c  value effects on the 
results. The Dirichlet boundary is pre-specified as 0 100ζ = − mV. The results show that the electric potential distribution 
is little influenced by c . The sub plot in Fig. 5 shows the c  values affect the calculated zeta potential on the surface. A 
larger c  value leads to a closer zeta potential to the pre-specified value. However, when the c  value is larger than 300, 
the deviation may be below 0.3%. Calculations at a larger value of c  need more computational time to reach stable 
results. One can get a balance between efficiency and accuracy according to the detail requirements.  

The present lattice evolution method for the nonlinear Poisson-Boltzmann equation has the advantages of suitability for 
parallel computations and straightness for three-dimensional extension. Although the efficiency is not high due to the long 
wavelength limit, it can deal well with complex ion charge structures, not limiting to N : N solutions like many PDE solvers, 
and complex geometry boundaries with little additional computational costs. The conversation is automatically kept in the 
electrostatic interactions with boundaries without additional restricts. 

IV. CONCLUSIONS 
This paper developed the lattice evolution solver for the nonlinear Poisson-Boltzmann equation in confined domains. 

The Dirichlet and Neumann boundary implement methods are given with second-order accuracy, which are consistent 
with the non-slip model in LBM for fluid flows. The method is validated by comparing with various analytical solutions 
and shows superior to the classical numerical solvers for nonlinear Poisson equations with Neumann boundary conditions. 
The local refinement technique and suitable parameters lead to a stable accurate solution of the nonlinear 
Poisson-Boltzmann equation with various boundary conditions by the current lattice evolution method. The present lattice 
evolution method is suitable for parallel computing and it three dimensional extension is easily straightforward. 
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