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Abstract: Electroosmosis in homogeneously charged micro- and nanoscale random porous media has been 
numerically investigated using mesoscopic simulation methods which involve a random generation-growth 
method for reproducing three-dimensional random microstructures of porous media and a high-efficiency lattice 
Poisson-Boltzmann algorithm for solving the strongly nonlinear governing equations of electroosmosis in 
three-dimensional porous media. The numerical modeling and predictions of EOF in micro- and nanoscale 
random porous media indicate: the electroosmotic permeability increases monotonically with the porosity of 
porous media and the increasing rate rises with the porosity as well; the electroosmotic permeability increases 
with the average solid particle size for a given porosity and with the bulk ionic concentration as well; the 
proportionally linear relationship between the electroosmotic permeability and the zeta potential on solid 
surfaces breaks down for high zeta potentials. The present predictions agree well with the available 
experimental data while some results deviate from the predictions based on the macroscopic theories. 
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1. Introduction 
Electroosmotic flows (EOFs) in porous media have been studied for nearly two hundred years due to their important 

applications in soil, petroleum and chemical engineering [1-6] since the electrokinetic effects were first observed by Reuss 
in 1809 in an experimental investigation on porous clay [7]. In the few past decades, there are considerable and 
reawakening interests in the EOF in porous media because of the conspicuous applications in biological-chemical-medical 
analysis [8-11] and new techniques in energy and geophysical engineering [12-15], especially in micro- and nano- scales 
[16-18]. Recently, charged porous structures have been employed in some devices to control and improve the fluid 
behavior as expected. For examples, microparticles which are packed in microchannels have been used to improve the 
performances of electroosmotic micropumps with a lower flow rate and a higher pumping pressure [19-24]. 

Although EOFs in porous media have been studies much theoretically, it is still a big challenge to predict the 
multi-physical transport behaviors in porous media accurately and efficiently due to its complicacies [25-35]. Levine and 
Neale [25] developed a “cell model” to predict the electroosmosis in multiparticle systems where the porous medium was 
considered as a random assemblage consist of identical unit “cell” each of which contained of a particle surrounded by a 
fluid envelope [26]. Although good results were obtained for disperse systems [27,28], the cell model did not deal well 
with dense porous media cases (i.e. at low porosities) because the model ignored the contacts and connections between 
particles [29]. By improving the “capillary tube model” [30], Mehta and Morse [31] schematized a micro porous 
membrane by an array of charged uniform spheres. Jin and Sharma [32] extended the capillary model to two-dimensional 
square lattice network model, which was more appropriate in simulating inhomogeneous porous media. Grimes et al. [33] 
developed the cubic lattice network of interconnected cylindrical pores model and simulated the intraparticle 
electroosmotic volumetric flow rate in the three-dimensional pore network of interconnected cylindrical pores. All these 
theoretical models are creative and contributive; however there are still two defects so far when they are used for 
predictions of EOFs in micro- and nanoscale porous media. First, most of the models are based on vanishingly thin 
electric double layers (EDL) [19-22,25-35] so that they are not suitable for dense micro- and nanoscale porous media 
where the small pore space may be in a same order of the EDL thickness. Second, the theoretical models can hardly 
provide flow structure details, which are necessary for deep understandings of the transport mechanism of electroosmosis 
in micro- and nanoscale porous media. 

Owing to the rapid developments of computer and computational techniques various numerical methods have been 
developed in the past decade for modeling and predicting multi-physical transports in porous media. A full numerical tool 
set for analyzing EOF in porous media needs two steps: a digital description of porous microstructure details and a set of 
partial differential equation (PDE) solvers for solving governing equations of the multiphysical transport phenomena. For 
EOF in microscale charged random porous media, both are big challenges until now. 

First, the microstructures of porous media are very complicated. The shapes and positions of pores/particles are 
random so that there could never be two natural porous media that are exactly same even. People can only reproduce 
microstructures of porous media based on the known macroscopic statistical information. Tacher et al. [36] and Pilotti [37] 
developed methods to generate granular porous media using spheres or ellipses with random sizes and locations; however 
they could hardly deal with the inter-grain connections. To make the reproduced structure more natural, the reconstruction 
process [38-42] has been widely used in generations of multiphase porous structures based on the digital 
micro-tomographic information and statistical correlation functions [41,42]. Similar algorithms have been found in soil 
researches, named Markov chain Monte Carlo methods, which also created two-dimensional structures with satisfactory 
agreements with various scanned real soil structure images [43,44]. Borrowing the spirit of cluster growing theory [45,46], 
Wang et al. have recently developed a random generation-growth method to generate random microstructures of various 
multiphase micro porous media including granular porous media [47,48] and fibrous porous media [49]. The generated 
structures have been used to predict effective thermal properties of porous materials and good agreements have been 
obtained with the existing experimental data [47,48]. 

Second, numerically solving the governing equations of EOF in porous structures is still badly challenging for the 
present computational methods [50-66]. The coupled electrostatic, hydrodynamic and mass transport problems subjected 
to complex geometrical boundary conditions represented by the solid-liquid interface in random porous media require 
huge or even unacceptable computational resources. The difficulties come mainly from two aspects: the strong 
nonlinearity of governing equations and the irregularity of random porous structures. Coelho et al. [29] developed a direct 
numerical solution for the EOF in porous media in the linear limit when the EDL thickness was much larger than the 
elementary grid size, and the method was applied to analyze the electroosmotic phenomena in fractures [50], porous 
media [51] and compact clays [52,53]. As well known the linear approximation is strictly valid for low zeta potentials ζ  
whose absolute value is smaller than 25 mV [54,55]. Gupta et al. [56] recently extended their linear model to the nonlinear 



Electroosmosis in random porous media 

 3 

region for high zeta potentials. Since the accuracy of their models depends strongly on the discretization step, their 
applications are limited by the computational costs [57]. Only a few results with relatively coarse spatial discretiztation 
steps have been found to reach reasonable computation times [29,50-54,56]. Kang et al. [58] introduced the interval 
functions approximation [59] into the Poisson-Boltzmann equation to simplify the solution process and to improve the 
efficiency. Their method showed good performance to analyze EOFs in packing microspheres [60,61]. Hlushkou et al. [57] 
proposed a numerical scheme for modeling the EOF in porous media, involving a traditional finite-difference method 
(FDM) for solving the Poisson-Nernst-Planck equations for electrodynamics and a lattice Boltzmann method (LBM) for 
solving the Navier-Stokes equations for hydrodynamics, and investigated the EOFs in spatially regular and random sphere 
arrays. Recently, Wang et al. [62,63] presented a lattice Poisson-Boltzmann method (LPBM), which combines a lattice 
Poisson method (LPM) for solving the nonlinear Poisson equation for electric potential distribution [64] with a lattice 
Boltzmann method (LBM) for solving the Boltzmann-BGK equations for fluid flow. The LPBM has been employed to 
analyze the performance improvements by changed porous media additives in micropumps [65] and the morphology 
effects on EOF in anisotropic porous media [66]. To our knowledge, few contributions have reported a full numerical 
analysis of EOF in micro- and nanoscale random porous media. 

The purpose of this contribution is to present a numerical set and modeling results of three-dimensional EOFs in 
homogeneously charged micro- and nanoscale random porous media. We extend the random generation-growth method 
for reproducing microstructures of random porous media, for granular porous media as examples [47,48], and the lattice 
Poisson-Boltzmann algorithm [62,63,65] into three dimensional cases. The present numerical set is then employed to 
analyze the influences of statistical characteristics of solid-media morphology, fluid phase property and surface potential 
on the EOF behavior in random porous media. The article is organized as follows. In section 2, we present the governing 
equations along with corresponding boundary conditions. In section 3, we introduce briefly the employed numerical 
methods, in particular, the random generation-growth method for generating 3D microstructures of random porous media, 
and the efficient lattice Poisson-Boltzmann algorithm for solving the governing equations of EOF in porous media. 
Numerical results are gathered in section 4, which include a series of simulations addressing the influences of solid, liquid 
and interface characteristics on the EOF permeability. Qualitative and quantitative comparisons with existing experimental 
data are presented in section 4 and the fluid mechanism is discussed. 

2. Governing equations 
Although our focus is down to nano-scale, it is still beyond atomistic effects. Macroscopic continuum assumptions 

work in their way. Consider an N -component Newtonian electrolyte flowing with velocity ( , )tu r  in interstices of a 
porous material with no polarization and chemical reactions. Let ( , )tψ r  be the electric potential prevailing within the 
solution; the flux ij  of each i th ion species, composing the solute, is given by the following constitutive equation [67] 

i i i i i i iD n ez b n nψ= − ∇ − ∇ +j u             (1) 
where in  is the number density of the i th ion species, iz  the i th ion algebraic valence, and e  the absolute charge of 
electron. iD  and ib  are the ion’s diffusivity and electric mobility, related by the Stokes-Einstein equation 

i iD b kT=                 (2) 
where k  is the Boltzmann constant and T  the absolute temperature. The ionic flux ij  and the concentration in obey 
the continuity equation 

0i
i

n
t

∂
+∇ ⋅ =

∂
j                (3) 

For an incompressible laminar electroosmotic flow, the movement of electrolyte is governed by the continuity and 
momentum equations: 

0∇⋅ =u                  (4) 
2

Et
ρ ρ µ∂

+ ⋅∇ = ∇ +
∂
u u u u F ,            (5) 

where ρ  the solution density, µ  the dynamic fluid viscosity and EF  the electric force density vector. In general, the 
electrical force in electrokinetic fluids can be expressed as: 

int int( )E ext e Vρ= + + × +F F EξB F  ,           (6) 
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where extF  represents the external field body forces, including the Lorentz force associated with any externally applied 
electric and magnetic field. For only an electrical field, ext eρ=F E , where eρ  is the net charge density and E is the 
electrical field strength. intE  and intB  are internally smoothed electrical and magnetic fields due to the motion of the 
charged particles inside the fluid. VF  is a single equivalent force density due to the intermolecular attraction [68]. In the 
present contribution, we are concerning the steady state of electroosmosis in micro porous media so that the 
electromagnetic susceptibility is negligible. The net charge density eρ  can be expressed as 

e i i
i

ez nρ =∑                 (7) 

The local electrical potential is governed by the Poisson equation 
2

10 0

1 N
e

i i
ir r

en zρψ
ε ε ε ε =

∇ = − = − ∑             (8) 

where rε  is the dimensionless fluid dielectric constant and 0ε  the permittivity of a vacuum. 
Equations (3)-(8) are the governing equations for electroosmosis in porous media and can be solved subject to the 

following boundary conditions on the liquid-solid interface Ω  
( ) 0i Ω⋅ =v j                 (9) 

0Ω =u                  (10) 
ψ ζΩ =                  (11) 

where v  is the outer normal to Ω , and ζ  the zeta potential. 
For the electroosmotic flow of dilute electrolyte in micro porous media, the macroscopic velocity is low so that 

equilibrium satisfies everywhere in the flow field base on which one can obtain the Boltzmann distribution for in  

, exp i
i i

ezn n
kT

ψ∞
 = − 
 

             (12) 

where ,in ∞  is the bulk ionic number density. Substituting Eq.(12) into Eq.(8) yields the famous nonlinear 
Poisson-Boltzmann equation for electrokinetic flows [69]: 

2
,

0

1 exp i
i i

ir

ezez n
kT

ψ ψ
ε ε ∞

 ∇ = − − 
 

∑           (13) 

So far as it is concerned, the present contribution actually solves the governing equations (4-7, 12,13) subject to the 
boundary conditions Eqs. (9-11) by the numerical methods as described in the next section. 

3. Numerical methods 
This section describes the numerical methods used to simulate EOF in random porous media, including a generation 

algorithm for three-dimensional random porous microstructures and a mesoscopic PDE solver for the multi-physical 
transports equations, the lattice Poisson-Boltzmann method. 

3.1 Generation of Random Porous Structures 

As mentioned before, the phase distributions are random in a natural porous medium. Although the shapes, positions 
and connections of elements are different for different medium samples, one still can measure and summarize essential 
statistical information of morphology and then reproduce a digital random structure in computers. The generated 
microstructure may be different from a real one in detail, but they have same structure characteristics in statistics. Several 
methods have been proposed to generate random porous structures in the past few years [36-49]. Here we follow the 
random generation-growth model for reproducing multiphase granular porous microstructures [47,48] and develop the 
algorithm into three dimensional cases. 

In most cases, the microstructure for EOF flowing through has two phases: solid structure and fluid solution. The 
process of the multi-parameter generation-growth model for such two-phase structures is described as below: 

i) Randomly locate the cores of solid particles in a grid system based on a core distribution probability, dc , whose 
value is no greater than the volume fraction of solid. Each cell in the grid will be assigned a random number by a uniform 
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distribution function within (0, 1). Each cell whose random number is o greater than dc  will be chosen as a core; 

 
Fig. 1  Twenty-six growth directions of each cell in three-dimensional cubic grid systems 

ii) Enlarge every element of the solid particles to its neighboring cells in all directions based on each given 
directional growth probability, iD , where i  represents the direction. Again for each solid particle, new random numbers 
will be assigned to its neighboring cells. The neighboring cell in direction i will become part of solid particle if its random 
number is no greater than iD ; 

iii) Repeat the growing process of ii until the volume fraction of the solid particles reaches its given value sP  whose 
value is usually equal to (1-ε ) with ε  representing the porosity. 

Thus the generated microstructure is controlled by the three statistical parameters, dc , iD  and sP  (or ε ).  
The core distribution probability dc  is defined as the probability of a cell to become a core of solid particle. Its 

value is strongly relative to the number density of solid particles. For a given porosity, the average volume of each solid 
particle pV  could be related with dc  as: (1 ) ( )p dV V N cε= − ⋅  where V  represents the total volume of system, and 

N  the total grid number. The value of dc  also controls the degree of structure details for a certain grid system. A 
smaller dc  leads to a finer description of the microstructures, including particle shapes and inter-particle connections. 
However a small value of dc  will also decrease the statistical particle number under a certain grid number and thus 
increase the computation fluctuation.  

The directional growth probability iD  is defined as the probability of a cell neighboring in the i -th direction to 
become a part of solid phase. The directional growth probabilities are classed into three levels based on the directions or 
on the contact level with the focused cell: main direction (surface contact), side direction (line contact) and diagonal 
direction (point contact). An appreciate arrangement of the directional growth probabilities may lead to an isotropic 
structure of porous media. In other words, the growth probabilities can be adjusted to control the degree of anisotropy. For 
three-dimensional cubic grid systems, each cell has 26 growing directions to its neighbors, see Fig. 1. There are six main 
directions (1-6), 12 side directions (7-18) and 8 diagonal directions (19-26). To obtain an isotropic structure in such 
systems, we have to set uniform values within each class of direction, 1 6D − , 7 18D −  and 19 27D − , and the probabilities 
ratio is set as 1 6D −  : 7 18D −  : 19 27D −  = 8 : 4 : 1 by assuming the directional growth probability to be consistent with the 
equilibrium distribution function of density in an isotropic material [70-72]. 

Fig. 2 shows four schematic illustrations of the generated three-dimensional porous structures using the present 
random generation-growth method. The stochastic characteristics of phase distribution and connections are depicted quite 
realistically in the figures. The white parts represent the solid particles and the dark the fluid. The parameters for Fig. 2-a 
are the solid volume fraction sP =0.3, the solid particle core distribution probability dc =0.01 sP  and the growth 
probabilities in six main directions are equal. Fig. 2-b shows the structure when the solid volume fraction geminates, 
where both the volume and inter-particle connections of solid phase increase. Comparison between Fig. 2-a and c shows 
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that a larger value of dc  leads to the solid phase more dispersive with a smaller averaged particle size. We can also 
change the media isotropy by varying values of directional growth probabilities in given directions. Fig. 2-d shows a 
generated anisotropic structure where the growth probabilities of the main directions 1&3 enlarge to 10 times. Directional 
characteristics appear in the structure of Fig. 2-d when comparing with that in Fig. 2-a. 

     
(a) sP =0.3, dc =0.01 sP ;                             (b) sP =0.6, dc =0.01 sP ; 

     
(c) sP =0.3, dc =0.1 sP ;                  (d) sP =0.3, dc =0.01 sP , 1,3D =10 2,4 6D − (anisotropic) 

Fig. 2  Schematics of the generated porous structures using the present growth-generation method on 60×60×60 grid systems. The 
white is solid particles and the dark is fluid. 

3.2 Lattice Poisson-Boltzmann Method 

After porous structures are generated, the set of coupled hydrodynamic and electrodynamic governing equations for 
the EOF subjected to the appropriate boundary conditions will be solved by lattice Poisson-Boltzmann method (LPBM) 
which combines an electrical potential evolution on discrete lattices to solve the nonlinear Poisson equation (lattice 
Poisson method) with a density evolution method on a same set of discrete lattices to solve the Boltzmann-BGK equation 
(lattice Boltzmann method). The detail of two-dimensional LPBM can be found in our previous publications [62,65]. In 
this work, we develop the LPBM into its three-dimensional form. The equations are only solved in liquid phase and the 
solid phase is silent and charged homogeneously on the surfaces. 

The continuity and momentum equations can be solved by tracking the movements of molecule ensembles through 
the evolution of the distribution function using the popular lattice Boltzmann method [73]. The lattice Boltzmann equation 
can be derived from the Boltzmann equation [74]. For the flows with external forces, the continuous Boltzmann-BGK 
equation with an external force term, F , is 

( )
eq

t
Df f ff f F
Dt ντ

−
≡ ∂ + ⋅∇ = − +ξ ,          (14) 

where ( , , )f f x t≡ ξ  is the single particle distribution function in the phase space ( , )x ξ , ξ  the microscopic velocity, 
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ντ  the relaxation time, eqf  the Maxwell-Boltzmann equilibrium distribution and F  the external force term 
( ) eqF f
RT
⋅ −

=
Gξu

              (15) 

with G  being the external force per unit mass [75]. The Chapman-Enskog expansion can be used to transform the 
Boltzmann-BGK equation, Eq. (7), into the correct continuum Navier-Stokes equations [76] 

Thus the three-dimensional fifteen-speed (D3Q15) discrete density evolution equation is 
1( , ) ( , ) ( , ) ( , )eq

t t tf t f t f t f t Fα α α α α α
ν

δ δ δ
τ

 + + − = − − + r e r r r      (16) 

where r  is the position vector, tδ  the time step, αe  the discrete velocities with the direction system shown in Fig. 3, 

( )
( )
( )

0,0,0 0

1,0,0 , (0, 1,0) , (0,0, 1) 1 6

1, 1, 1 7 14

c c c to

c to
α

α

α

α

=


= ± ± ± =
 ± ± ± =

e      (17) 

where c  represents the sound speed, ντ  the dimensionless relaxation time which is a function of the fluid viscosity, 

23 0.5t

x
ν

δτ ν
δ

= + ,               (18) 

where ν  is the kinetic viscosity and xδ  the lattice constant (or grid size), and eqfα  the density equilibrium distribution 
2 2

2 4 2

( ) 31 3 9
2 2

eqf
c c c
α α

α αω ρ
 ⋅ ⋅

= + + − 
 

e u e u u
         (19) 

with 
2 / 9
1/ 9

1/ 72
αω


= 



   
0

1 6
7 14

to
to

α
α
α

=
=
=

.           (20) 

 
Fig. 3  The lattice direction system (α ) for D3Q15 model 

For EOFs of dilute electrolyte solutions, the external electrical force in Eq. (5) can be simplified to: 
E e eρ ρ= − ∇ΦF E ,              (21) 

where Φ  is the stream electrical potential caused by the ion movements in the solution based on the Nernst-Planck 
theory. Generally, the stream potential dominates the electro-viscosity effect in pressure driven flows, but its value is 
much less than the external potential and can be ignored in electrically driven flows. Therefore, the external force in the 
discrete Lattice Boltzmann equation is 
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( ) eqeF f
RT
α

α α
ρ

ρ
⋅ −

=
E e u

.             (22) 

The macroscopic density and velocity can be calculated using 
fα

α

ρ =∑ ,                (23) 

fα α
α

ρ =∑u e .               (24) 

To solve the Poisson equation with strong nonlinearity, Eq. (13), we employ here another evolution method on the 
same grid system, lattice Poisson method (LPM) [64], by tracking the electrical potential distribution transporting on the 
discrete lattices. By expanding Eq. (13) into the time-dependent form 

2 ( , , )rhsg t
t
ψ ψ ψ∂

= ∇ +
∂

r              (25) 

with ,
0

1 exp i
rhs i i

i b

z eg z en
k T

ψ
εε ∞

 
= − 

 
∑  representing the negative right hand side (RHS) term of the original Eq. (13), 

we get the discrete evolution equation for the electrical potential distribution 

, ,
1 0.5( , ) ( , ) ( , ) ( , ) (1 )eq

t g t g rh s
g g

g t g t g t g t gα α α α αδ δ ω
τ τ

 + ∆ + − = − − + − r r r r r , (26) 

where the equilibrium distribution of the electric potential evolution variable g  is 

eqgα αϖ ψ= , with 
0 0
1/ 9 1 6
1/ 24 7 14

to
to

α

α
ϖ α

α

=
= =
 =

,      (27) 

The time step for the electrical potential evolution is 

, '
x

t g c
δδ = ,                (28) 

where 'c  is a pseudo sound speed in the potential field [62]. The dimensionless relaxation time is 

,
2

9
0.5

5
t g

g
x

χδ
τ

δ
= + ,              (29) 

where χ  is defined as the potential diffusivity which equals to unity in these simulations. 
After evolving on the discrete lattices, the macroscopic electrical potential can be calculated using 

,( 0.5 )t g rhsg gα α
α

ψ δ ω= +∑ .            (30) 

Though the electrical potential evolution equations are in an unsteady form, only the steady state result is realistic, 
because the electromagnetic susceptibility has not been considered. Although the lattice evolution method for nonlinear 
Poisson equation is not as efficient as the multi-grid solutions due to its long wavelength limit, it has the advantages of 
suitability for geometrical complexity and parallel computing [64]. 

The boundary condition implements play a very critical role to the accuracy of the numerical simulations. The 
hydrodynamic boundary conditions for the lattice Boltzmann method have been studied extensively [77-84]. The 
conventional bounce-back rule is the most commonly used method to treat the velocity boundary condition at the 
solid-fluid interface due to its easy implement, where momentum from an incoming fluid particle is bounced back in the 
opposite direction as it hits the wall [76]. However the conventional bounce-back rule has two main disadvantages. First, 
it requires the dimensionless relaxation time strictly within the range of (0.5, 2), otherwise the prediction will deviate from 
the correct result definitely [77,78]. Second, the non-slip boundary implemented by the conventional bounce-back rule is 
not located on the boundary nodes exactly, which will lead to inconsistence when coupling with other PDE solvers on a 
same grid set [79]. 

To overcome the inconsistence between the LBM and other PDE solvers on a same grid set, one can replace the 
bounce-back rule with another “non-slip” boundary treatment proposed by Inamuro et al. [80], with the cost of loss of 
easy implement for complicated geometries. An alternative solution is to modify the boundary condition treatments of the 
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PDE solver for the electric potential distribution to be consistent with the LBM bounded by the bounce-back rule. In this 
contribution, the bounce-back rule [79,81] for nonequilibrium distribution proposed by Zou and He [82] is introduced and 
extended to both hydrodynamic and electrodynamic boundary implements to deal with the complex geometries in porous 
media. 

At the boundary the following hydrodynamic boundary condition holds: 
neq neqf fα β= ,                 (31) 

where the subscripts α  and β  represent opposite directions. 
Analogously, the non-equilibrium “bounce-back” rule for the electric potential distribution at the wall surfaces is 

suggested as: 
neq neqg gα β= − .                 (32) 

These boundary treatments are easy to implement for complicated geometries and have approximately second-order 
accuracy [82,79]. 

4. Results and discussion 
Fig. 4 shows a schematic illustration of three dimensional EOF in charged random porous media. The solid 

microstructure has random shapes, positions and connections, generated by the algorithm described in section 3.1. The 
cubic domain is periodic in all the three directions. The solid surfaces are homogeneously charged with a zeta potential, 
ζ  so that the electrolyte solution can be driven flowing though the porous structure by an external electrical field, E . In 
this section, we simulate and analyze EOFs in charged micro porous media using the lattice Poisson-Boltzmann method, 
with geometry effects, solution and surface charge effects considered. The simulated results are compared with existing 
theories and experimental data. 

 
Fig. 4  Schematic illustration of EOF in charged random porous media 

In the following simulations, we focus on a cubic system of which each side is 1 micron long. A 60×60×60 uniform 
grid is used. We change microstructure geometries of porous media by varying the porosity ε  from 0.1 to 0.9. The 
average characteristic length of particles varies from 20 to 150 nm. The bulk ionic concentration n∞  varies from 10-6 to 
10-3 M and the surface zeta potential from 0 to -100 mV. The other properties and parameters used in this work are: the 
fluid density ρ =999.9 kg/m3, the dielectric constant 0rε ε =6.95×10-10 C2/J m, the dynamic viscosity µ =0.889 mPa s, 
the temperature T =273 K and the external electrical field strength E =1×104 V/m. 

4.1 Geometry effects 

First, the geometry effects on the electroosmotic permeability in micro porous media are investigated by changing 
volume fraction and particle size (or number density) of the solid phase. We define the electroosmotic permeability, eκ , 
as 

e
u
E

κ =                   (33) 



M. Wang and S. Chen, Published on J. Colloids Interface Sci. 

 10 

where u  is the averaged velocity of EOF along the direction of the driving electrical field E . 

 
Fig. 5  Predicted electroosmotic permeabilities for various porosities of porous media at c∞ =10-4 M, ζ = -50 mV, E =1×104 V/m 

The coefficients of electroosmotic permeability ( eκ ) for different porosities (ε ) of porous media are shown in Fig. 5. 
The other parameters are dc =0.1 for the microstructure generation process, the bulk molar concentration c∞ =10-4 M, 
and ζ = -50 mV. The electroosmotic permeability increases with the porosity monotonically. The increasing rate rises 
with the porosity as well which is very low when the porosity is smaller than 0.5 and becomes sharply high when the 
porosity is larger than 0.7. The predicted electroosmotic permeability is in the order of 10-9 m2/s V, which is consistent of 
the existing experimental measurements [83]. 

 
Fig. 6  The electroosmotic permeability versus average characteristic length of solid particles for ε =0.38, c∞ =10-4 M, ζ = -50 

mV, and E =1×104 V/m 

Fig. 6 shows the calculated electroosmotic permeability in homogeneously charged nanoscale porous media versus 
the average characteristic length of solid particles which is defined as the cube root of the average volume of every 
particle. The average characteristic length changes from 20 to 150 nm by varying dc  from 0.38 to 0.001 in present 
simulations and other parameters are ε =0.38, c∞ =10-4 M, and ζ = -50 mV. The results show that the electroosmotic 
permeability eκ  increases with the average characteristic length of solid particles monotonically. When the x-axial is in a 
logarithmic scale, the curve appears nearly linear (see the reference line in Fig. 6), which means the electroosmotic 
permeability increases with the average characteristic length of particles at an approximately logarithmic rate. Three s 
trials were performed for each average characteristic length but the calculated electroosmotic permeabilities did not 
exactly fall into a same value. The fluctuations come from the stochastic characteristics of the random microstructure. For 
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a given porosity and a grid number, a smaller average characteristic length of particles leads to a smaller statistical 
fluctuation around the average result. For parameters used in the present contribution, the statistical deviation is smaller 
than 3%. 

4.2 Concentration effect 

Based on the macroscopic EOF theory, the electrical double layer can often be treated as a thin layer and a slip 
velocity can therefore introduced by the Helmholtz-Smoluchowski model, 

0 r
slip

ε ε ζ
µ

= −
Eu ,                (34) 

as a boundary condition subjecting to the hydrodynamics equations (Eq. 4 & 5). Such models have been employed to 
analyze the EOF in micro porous media frequently [19-22,25-35]. A further conclusion from Eq. (34) is the electroosmotic 
permeability has no relationship with the ionic concentration of the electrolyte solution. This may be true if the solid 
individuals are separated by a wide enough interval space. However in most natural micro porous media, such a critical 
condition is hard to satisfy. The narrow clearances between solid particles of micro porous media often break down the 
thin double layer approximation and the EOF should be governed by the full set of equations (Eq. 4-13). 

 
Fig. 7  The electroosmotic permeability changing with the bulk ionic concentration for ε =0.38, ζ = -50 mV, and E =1×104 V/m 

Fig. 7 shows the predicted electroosmotic permeability versus the bulk ionic concentration of the electrolyte solution. 
We used a same porous microstructure with dc =0.1 and ε =0.38. The electroosmotic permeability eκ  increase 
monotonically with the bulk ionic concentration c∞  as c∞  varies from 10-6 to 10-3 M. This result can be explained by 
the undeveloped electrical potential distributions in narrow channels, whose similar results can be found in Fig. 2 of Ref. 
[66] and Fig.1&2 of Ref. [84]. When c∞  is lower then 10-4 M, the electroosmotic permeability is nearly proportional to 
the bulk ionic concentration. When c∞  is higher, the increasing rate becomes a little smaller. 

4.3 Zeta potential effects 

Zeta potential on solid surfaces of porous media affects EOF permeability directly. Simple proportional relationships 
have been obtained between the electroosmotic permeability and the zeta potential for electrical transports in soils [83,85] 
and in polymer composites recently based on the boundary-layer theory [86]. Here we analyze such effects using our 
numerical methods. 

Fig. 8 shows the calculated electroosmotic permeability versus the zeta potential on solid surfaces of porous media. 
All surfaces are homogeneously charged with a same value of ζ . The other parameters used are: c∞ =10-4 M, dc =0.1 
and ε =0.38. The zeta potential ζ  changes from 0 to 100 mV. It shows that the proportionally linear relationship 
between electroosmotic permeability and zeta potential is accurate only when ζ  is very small (<30 mV). The 
permeability increases much sharper when the zeta potential ζ  is larger than 40 mV and then smoother when the zeta 
potential ζ  is larger than 90 mV. 
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Fig. 8  The electroosmotic permeability versus the zeta potential for ε =0.38, c∞ =10-4 M, and E =1×104 V/m 

4.4 Comparison with experiments 

The predicted electroosmotic permeability is also compared with experimental data quantitatively for different zeta 
potentials. Table 1 listed six kinds of soil and the measured data, including porosities, zeta potentials and permeabilities 
[87]. Since there is little information about the soil structure and the properties of electrolyte solutions, we evaluate such 
values by referring to some relative references [87-89]. Table 1 also compares the predictions based on the H-S model 
[83,87] which are one order of magnitude higher than the experimental data. It is shown that the predicted electroosmotic 
permeabilities by the present method agree much better with the measured data. 

Table 1  Electroosmotic permeability for different soils 
Soil ε  ζ  

(mV) 
eκ , measured 

(10-9 m2/s⋅V) 
eκ , H-S model 

(10-9 m2/s⋅V) 
eκ , predicted 

(10-9 m2/s⋅V) 
Grey 0.53 64 0.72 45 0.74 ♣ 
Brown 0.62 97 2.86 69 2.0 ♠ 
G-H 0.62 96 2.00 68 2.0 ♠ 
Phosphatic 0.87 62 0.7 44 1.72 • 
Wallace burg 0.51 87 1.5 62 1.6 ♣ 
Orleans 0.70 22 0 16 0.052 • 

where the parameters used for predictions are: ♣ dc =0.1 sP  and en =2×10-5 M; ♠ dc = sP  and en =1×10-5 M; 
• dc = sP  and en =1×10-4 M. 

5. Conclusions 
Electroosmosis in homogeneously charged micro- and nanoscale random porous media has been numerically 

investigated using the mesoscopic simulation methods. A random generation-growth method has been developed for 
reproducing three-dimensional random microstructures of natural porous media and the high-efficiency lattice 
Poisson-Boltzmann algorithm has been extended into three dimensional cases for solving the strongly nonlinear governing 
equations of electroosmosis in random porous media. Such a full numerical set is quite suitable for analyses of 
electroosmosis in micro- and nanoscale random porous media. 

The numerical modeling and predictions of EOF in micro porous media indicate: the electroosmotic permeability 
increases monotonically with the porosity of random porous media and the increasing rate rises with the porosity as well; 
the electroosmotic permeability increases with average solid particle size for certain porosity; the permeability increases 
with the bulk ionic concentration in micro porous media which can not be predicted based on the macroscopic theory; the 
proportional relationship between the electroosmotic permeability and the zeta potential stands only at low zeta potentials. 
The present predictions agree with the existing experimental observations and measurements. The results and 
methodology in this contribution may be of great significance to improve our understandings of multiphysical transport 
mechanism in electroosmosis in micro- and nanoscale random porous media. 
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