Journal Publications by Topics (Full List and Downloadable Page)
Transport in Porous Media Micro/nano electrokinetic transport Micro/nano Heat Transfer Micro Gas Flow Micro Devices
Multiscale modeling and analysis
R1. S. Chen*, M. Wang, and Z. Xia. Multiscale fluid mechanics and
modeling. Procedia IUTAM 10: 100-114, 2014
R2. S. Li*, Z. Kang, M. Wang, et al.
Development and Evolution of Cross-Scale Discontinuities in the Earth’s Crust:
Patterns, Mechanisms, Models, and Geomechanical
Perspectives. Gas Science and Engineering
129: 205412, 2024
17. Y.F. Huang, Z. Tian, H. Chen, W. Liu and M. Wang*. Electrokinetic
transport in saturated and unsaturated porous media: A pore-scale view. Advances in Colloid and Interface Science
349: 103755, 2026
16. H. Xiao, Y. Liu, B.B. Sun, Y. Guo, M. Wang*. Multi-scale modeling
of aerosol transport in a mouth-to-truncated bronchial tree system. Computers in Biology and Medicine
183: 109292, 2024
15. X. Ran#, Yunfan Huang#, M. Wang*. A Hybrid Monte
Carlo-Discrete Ordinates Method for Phonon Transport in Micro/nanosystems with Rough Interfaces. International Journal of Heat and Mass Transfer 201: 123634, 2023
14. F.L. Liu and M.
Wang*. Size Effects on Droplet
Displacing Process in Micropores by Multiscale Modeling. Journal of Multiscale Modelling
2141001, 2021
13. Y.K. Yang, R.A. Patel, S.V. Churakov*,
N.I. Prasianakis, G. Kosakowski
and M. Wang*. Multiscale modeling of ion diffusion in cement paste:
electrical double layer effects. Cement
and Concrete Composites 96:
55-65, 2019
12. Y. Guo#, X. He#, W. Huang and M. Wang*. Microstructure Effects
on Effective Gas Diffusion Coefficient of Nanoporous
Materials. Transport in Porous Media
126: 431-453, 2019
11. Z.Y. Wang, M. Wang* S. Chen. Coupling of
high-Knudsen and non-ideal gas effects in microporous media. Journal of Fluid Mechanics. 2018
10. G. Liu, F.L. Liu, M. Li, W.F. Lv, Q. Liu and M. Wang*. Lattice Boltzmann
model for upscaling in heterogeneous porous media based on Darcy’s law. Journal of Porous Media 2018
9. Y.K. Yang, M.
Wang*. Upscaling scheme for long-term ion electrodiffusion
in microporous media. Physical Review
E 96: 023308, 2017
8. C.Y. Xie,
A.Q. Raeini, Y. Wang, M. Blunt*, M. Wang*. An improved pore-network model with viscous
coupling effect via direct simulation by lattice Boltzmann method. Advances in Water Resources. 100: 26-34, 2017
7. X.T. He#,
Y.Y. Guo#, M. Li, N. Pan and M.
Wang*. Effective gas diffusion coefficient of fibrous materials by
mesoscopic modeling. International
Journal of Heat and Mass Transfer 107:
736-746, 2017
6. C.Y. Xie#,
G. Liu#, M. Wang*.
Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat
Surface by Molecular Simulations. Langmuir
32, 8255-8264, 2016
5. Z.Y. Wang,
Y.Y. Guo, M. Wang*.
Permeability of high-Kn real gas flow in shale and
production prediction by pore-scale modeling. Journal of Natural Gas Science and Engineering 28: 328-337, 2016
4. G. Liu, J.
Zhang and M. Wang*. Drop
movements and replacement on surface driven by shear force via hybrid
atomistic-continuum simulations. Molecular
Simulation. 42(10): 855-862,
2016
3. H. Tian, L.
Zhang, and M. Wang*.
Applicability of Donnan equilibrium theory at
nanochannel-reservoir interfaces. Journal
of Colloid and Interface Science 452:
78-88, 2015
2. J. Liu, M. Wang, S. Chen and M.
Robbins*. Uncovering Molecular Mechanisms of Electrowetting and Saturation with
Simulations. Physical Review Letters
108: 216101, 2012
1. J. Liu*, M. Wang, S. Chen and M.O.
Robbins. Molecular simulations of electroosmotic flows in rough nanochannels. Journal
of Computational Physics 229: 7834-7847, 2010
Hydro-Thermo-Mechanical coupling
R1.
14. Z.Q. Chen, M.
Wang* and S.Y. Chen. Transport Configuration and Tail Dynamics of Spherical-particle Motion
through Immiscible Fluids Interfaces. Chemical
Engineering Science 229: 116091, 2021
13. Z.Q. Chen, D. Elsworth and M. Wang*. Does low-viscosity
fracturing always create complex fractures?
Journal of Geophysical Research-Solid Earth 125(9): e2020JB020332, 2020
12. Z.Q. Chen and M.
Wang*. An improved immersed moving boundary for hydrodynamic force
calculation in lattice Boltzmann method. International
Journal of Numerical Method in Engineering 121:4493–4508,
2020
11. D.Z. Zhang, Z.G. Tian, Z.Q. Chen, G. Zhou, S.H. Zhang,
D.Y. Wu and M. Wang*.
Compaction effects on permeability of spherical packing. Engineering Computation. 37(9): 3079-3096, 2020
10. Z.Y. Wang, R. Fink, Y. Wang, A. Amann-Hildenbrand, B. Krooss*, M. Wang*. Gas permeability calculation of tight rocks based
on laboratory measurements by considering non-ideal gas slippage and
pore-elastic effects. International
Journal of Rock Mechanics and Mining Sciences 112: 16-24, 2018
9. Z. Chen, X. Jin and M. Wang*.
A new thermo-mechanical coupled DEM model with non-spherical grains for
thermally induced damage of rocks. Journal
of the Mechanics and Physics of Solids 116: 54-69, 2018
8. Z. Chen, Z.
Yang and M. Wang*.
Hydro-mechanical coupled mechanisms of hydraulic fracture propagation in rocks
with cemented natural fractures. Journal
of Petroleum Science and Engineering 163: 421-434, 2018
7. Z. Chen and M. Wang*. Pore-scale modeling of
hydro-mechanical coupling mechanics in hydro-fracturing. Journal of Geophysical Research-Solid Earth 122: JB013989, 2017
6. Q. Lv, Z.
Chen and M. Wang*. An
improved elastic-tube model for the correlation of permeability and stress with
correction for the Klinkenberg effect. Journal of Natural Gas Science and
Engineering 48: 24-35, 2017
5. J.T. Zheng,
Y. Ju*, H.H. Liu, L. Zheng and M. Wang. Numerical prediction of the decline of
shale gas production rates considering the geomechanical
effects based on the Two-part Hooke's model. Fuel. 185: 362-369,
2016
4. Z. Chen,
C.Y. Xie, Y. Chen and M. Wang*.
Bonding strength effects in hydro-mechanical coupling transport in granular
porous media by pore-scale modeling. Computation
4: 15, 2016
3. Z. Wu, Y. Chen, M.
Wang and A. Chung*. Continuous inertial microparticle and blood cell
separation in straight channels with local microstructures. Lab on a Chip 16: 532-542, 2016
2. Y. Chen, Q.
Kang, Q. Cai*, M. Wang*, D.
Zhang. Lattice Boltzmann simulations of particle motion in binary immiscible
fluids Communication in Computational
Physics 18(3): 757-786, 2015
1. Y. Chen, Q.
Cai, Z. Xia, M. Wang* and S.
Chen. Momentum-exchange method in lattice Boltzmann simulations of
particle-fluid interactions. Physical
Review E. 88: 013303, 2013
Heat and Mass Transport in Porous Media
<top>
B1. Moran Wang. Effective transport properties of
porous media by modeling. Handbook
of Porous Media-Third Edition, 2015
R2. M.
Wang. The Physical Chemistry of Materials: Energy and Environmental
Applications. Materials Today
(Invited
Book Review), 13(3): 67, 2010
R1. M.
Wang, N. Pan. Predictions of Effective Physical Properties of Complex
Multiphase Materials. Material Science
and Engineering-R: Report (Invited Review; Impact Factor: 17.731), 63(1): 1-30, 2008
16. Y. Guo#,
X. He#, W. Huang and M.
Wang*. Microstructure Effects on Effective Gas Diffusion Coefficient of
Nanoporous Materials. Transport in Porous Media 126: 431-453, 2019
15.
X.T. He#, Y.Y. Guo#, M. Li, N. Pan and M. Wang*. Effective gas
diffusion coefficient of fibrous materials by mesoscopic modeling. International Journal of Heat and Mass
Transfer 107: 736-746, 2017
14.
J. M. Yang, H. Wu*, M. Wang S. He, and H. Huang. Prediction
and optimization of radiative thermal properties of ultrafine
fibrous insulations. Applied
Thermal Engineering 104:
394-402, 2016
13.
C. Xie, J. Wang N. Pan, D. Wang and M.
Wang*. Lattice Boltzmann modeling of thermal conduction in composite materials
with thermal contact resistance. Communication
in Computational Physics, in press, 2014
12.
M. Wang*, X. Wang,
J.K. Wang and N. Pan. Grain size effects on effective thermal conductivity of
porous materials with internal thermal contact resistance. Journal Porous Media. 16(11):
1043-1048, 2013
11.
Y. Liao, H. Wu*, Y. Ding, S. Yin,
M. Wang, A. Cao. Engineering thermal and mechanical properties of flexible
fiber-reinforced aerogel composites. Journal
of Sol-Gel Science and Technology. DOI: 10.1007/s10971-012-2806-7, 63:445–456, 2012
10.
M. Wang*, Q. Chen, Q.
Kang, N. Pan, and E. Ben-Naim. Nonlinear effective
properties of unsaturated porous materials. International
Journal of Non-linear Science and Numerical Simulations 11(1): 49-56, 2010
9. M. Wang* and N. Pan. Elastic
property of multiphase composites with random microstructures. Journal
of Computational Physics, 228: 5978-5988, 2009
8. M. Wang*, Q. Kang, and N. Pan.
Thermal conductivity enhancement of carbon fiber composites. Applied
Thermal Engineering. 29: 418-421, 2009
7. M. Wang*, and N. Pan. Modeling
and prediction of the Effective Thermal Conductivity of Random Open-cell Porous
Foams. Int. J. Heat Mass Transfer. 51(5-6): 1325-1331, 2008
6. M. Wang*, J. Wang, N. Pan, S.
Chen, and J. He. Three dimensional effect on the effective thermal conductivity
of porous media. J. Phys. D: Appl. Phys. 40(1): 260–265, 2007
5. M. Wang*, F. Meng, and N. Pan.
Transport properties of functionally graded materials. Journal
of Applied Physics 102:
033514, 2007
4. M. Wang*, and N. Pan. Numerical
analyses of the effective dielectric constant of multiphase microporous media. Journal
of Applied Physics 101: 114102,
2007
3. M. Wang*, N. Pan, J. Wang, and
S. Chen. Mesoscopic simulations of phase distribution effects on the effective
thermal conductivity of micro porous media. J. Colloid Interface Sci. 311(2): 562-570, 2007
2. M. Wang, J. He, J. Yu and N.
Pan*. Lattice Boltzmann modeling of the effective thermal conductivity for
fibrous materials. Intentional Journal of Thermal Sciences 46(9): 848-855, 2007
1. M. Wang*, J. Wang, N. Pan, and
S. Chen. Mesoscopic Predictions of the Effective Thermal Conductivity of
Microscale Random Porous Media. Physical Review E.
75: 036702,
2007
Complex Flows in Porous Media
<top>
R1. F.L. Liu, and M. Wang*. Review of Low Salinity Waterflooding Mechanisms: Wettability Alteration and Its Impact on Oil
Recovery. Fuel 267: 117112, 2020
15. F.L. Liu and M. Wang*. Trapping Patterns
during Capillary Displacements in Disordered
Media. Journal Fluid Mechanics,
In Press, 2022
14. F.L. Liu and M. Wang*. Wettability Effects on Mobilization of Ganglia
During Displacement. International
Journal of Mechanical Sciences 215:
106933, 2022
13. F.L. Liu and M. Wang*. Electrokinetic
Mechanisms and Synergistic Effect on Ion-tuned Wettability in Oil-brine-rock
System. Transport in Porous Media
(35th Anniversary special issue in honour of Jacob
Bear), 140(1): 7-26, 2021
12. J.T. Zheng W.H. Lei, Y. Ju and M. Wang*. Investigation of
spontaneous imbibition behavior in a 3D pore space under reservoir condition by
lattice Boltzmann method. Journal of Geophysical Research-Solid
Earth, 126: e2021JB021987,
2021
11. C.Y. Xie, W. Lei, M. Balhoff,
M. Wang* and S. Chen. Self-adaptive
preferential flow control using displacing fluid with dispersed polymers in
heterogeneous porous media. Journal
Fluid Mechanics 906: A10,
2021 (cover page)
10. C.Y. Xie*, K. Xu, K. Mohanty, M. Wang and M. Balhoff*. Non-wetting droplet oscillation and displacement
by viscoelastic fluids. Physical
Review Fluids 5: 063301, 2020
9. W. Lei, T. Liu, C.Y. Xie, H.E. Yang,
T.J. Wu, M. Wang*. Enhanced
oil recovery mechanism and recovery performance of micro-gel particle
suspensions by microfluidic experiments. Energy Science and Engineering 8: 986-998, 2020 (Cover page)
8.
W.H. Lei, C. Xie, T.J. Wu, X.C. Wu and M. Wang*. Transport mechanism
of deformable micro-gel particle through micropores with mechanical properties
characterized by AFM. Scientific
Reports 9: 1453, 2019
7. J.T. Zheng, Y. Ju* and M. Wang*. Pore-scale modeling of
spontaneous imbibition behavior in a complex shale porous structure by
pseudo-potential lattice Boltzmann method. Journal
of Geophysical Research-Solid Earth 123: 9586-9600, 2018
6. J.T. Zheng, Z. Chen, C.Y. Xie, Z. Wang,
Z. Lei, Y. Ju and M. Wang*.
Characterization of spontaneous imbibition dynamics in irregular pores by
lattice Boltzmann modeling. Computers
& Fluids 168: 21-31,
2018
5.
C.Y. Xie, A.Q. Raeini, Y. Wang, M. Blunt*, M. Wang*. An improved
pore-network model with viscous coupling effect via direct simulation by
lattice Boltzmann method. Advances in
Water Resources. 100: 26-34,
2017
4.
C.Y. Xie, J. Zhang, V. Bertola, M.
Wang*. Lattice Boltzmann Modeling for Multiphase Viscoplastic
Fluid Flow. Journal of Non-Newton
Fluid Mechanics 234:
118-128, 2016
3.
Z. Chen, C.Y. Xie, Y. Chen and M.
Wang*. Bonding strength effects in hydro-mechanical coupling transport
in granular porous media by pore-scale modeling. Computation 4: 15,
2016
2.
X.D. Shan, M. Wang*,
Z. Guo. Geometry Optimization of Self-similar Transport Network. Mathematical Problems in Engineering
2011: 421526, 2011
1.
X. Liu, M. Wang*, J.
Meng, E. Ben-Naim and Z. Guo. Minimum dissipation principle for the optimization
of transport networks. International
Journal of Non-linear Science and Numerical Simulations 11(2): 113-120, 2010
Electrokinetic Flows <top>
R6. Y.F. Huang, Z. Tian, H. Chen, W.
Liu and M. Wang*. Electrokinetic transport in saturated and unsaturated
porous media: A pore-scale view. Advances
in Colloid and Interface Science 349:
103755, 2026
R5. Y.F. Huang and M. Wang*. Electrokinetic multiphase
hydrodynamics. Applied Physics Reviews 12: 031322, 2025
R4. Y.F. Huang and M. Wang*. Electrokinetics at liquid-liquid interfaces: physical models and
transport mechanisms. Advances
in Colloid and Interface Science 342:
103518, 2025
R3. A. Alizadeh, W.L. Hsu, M. Wang and H. Daiguji*. Electroosmotic flow: From microfluidics to nanofluidics. Electrophoresis
42: 834-868, 2021
R2. H. Tian, M. Wang*. Electrokinetic
mechanisms of wettability alternation at oil/water/rock interface. Surface Science Reports 2018
(Impact Factor: 13.33 at the year)
R1. H. C. Yeh, M. Wang, C. C. Chang and R.-J. Yang*. Fundamentals and
Modeling of Electrokinetic Transport in Nanochannels.
Israel Journal of Chemistry
(Invited review) DOI: 10.1002/ijch.201400079, 54, 1533-1555, 2014
B5. Moran Wang and Shiyi Chen. Multiscale
Simulations. Encyclopedia of
Microfluidics and Nanofluidics. Ed. by
Dongqing Li, Springer, Berlin, Heidelberg,
New York, 2014
B4. Moran Wang. Molecular Dynamics Simulations on
Electrokinetic Nanofluidics.
Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin,
Heidelberg, New York, 2014
B3. Moran Wang and Li Zhang. Energy
Conversion and Power Generation Using Nanofluidics.
Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, 2014
B2. G. P. Peterson, Chen Li, Moran Wang
and Gang Chen. Edit: Micro/Nanotransport
Phenomena in Renewable Energy and Energy Efficiency, on AME, 2010
B1. Moran Wang. Analysis of electroosmotic
microfluidics by the lattice Poisson-Boltzmann method. Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, pp. 985-999,
2008
50. W. Liu, Y.F. Huang and M. Wang*. Flow Instability and Scaling Transition near
Strongly Polarized Surfaces. Journal
of Fluid Mechanics 1024: A8,
2025
49. P. Huo﹟, W. Liu﹟, Z. Gu, M.
Hu, M. Wang*, D.S. Deng*.
Line-charge singularity-mediated concentration enrichment in shear flow for
membrane-free cation separation. Nano Letters, 25(43):
15731–15738, 2025
48. W. Liu, Y.F. Huang and M. Wang*. Extended
space charge and transport near ion-selective surfaces. International Journal of Mechanical Sciences 287: 109933, 2025
47. Y.F. Huang and M. Wang*. Solvent mixing and
ion partitioning effects in spontaneous charging and electrokinetic
flow of liquid-liquid interface. Physical
Review Fluids 9: 103701,
2024 (Editor’s suggestion highlighted)
46. F.L. Liu and M. Wang*. Electrokinetic
Mechanisms and Synergistic Effect on Ion-tuned Wettability in Oil-brine-rock
System. Transport in Porous Media
(35th Anniversary special issue in honour of Jacob
Bear), 140(1): 7-26, 2021
45. A. Alizadeh, W.L. Hsu, H. Daiguji* and M.
Wang*. Temperature-regulated Surface Charge Manipulates Ionic Current
Rectification in Tapered Nanofluidic Channel. International Journal of Mechanical Sciences 210: 106754, 2021
44. A. Alizadeh and M. Wang*. Temperature effects on electrical double layer at
solid-aqueous solution interface Electrophoresis
41, 1067-1072, 2020 (Cover
page)
43. T. Wu*,#,
Y.K. Yang#, Z. Wang, Y.H. Tong, M.
Wang*. Enhance of anion diffusion
caused by the smectite illitization. Water Resource Research. 56(11): e2019WR027037, 2020
42. Y.K. Yang and M. Wang*. Electrodiffusion
of cations in compacted clay: a pore-scale view. Environmental Science & Technology 53(4): 1976-1984, 2019
41. Y.K. Yang, R.A. Patel, S.V. Churakov*, N.I. Prasianakis, G. Kosakowski and M.
Wang*. Multiscale modeling of ion diffusion in cement paste: electrical
double layer effects. Cement and
Concrete Composites 96:
55-65, 2019
40. H. Tian, F.L. Liu, X. Jin, M. Wang*. Competitive effects of interfacial interactions on
ion-tuned wettability by atomic simulations. Journal of Colloid and Interface Science 540: 495-500, 2019
39. A. Alizadeh, X. Jin and M. Wang*.
Pore-scale Study of Ion Transport Mechanisms in Inhomogeneously
Charged Nanoporous Rocks: Impact of Interface
Properties on Macroscopic Transport. Journal
of Geophysical Research-Solid Earth 124: 017200,
2019
38. A. Alizadeh and M. Wang*. Flexibility of inactive electrokinetic
layer at charged solid-liquid interface in response to bulk ion concentration Journal of Colloid and Interface Science
534: 195-204, 2019
37. A. Alizadeh and M. Wang*. Reverse Electrodialysis through Nanochannels with Inhomogeneously Charged Surfaces and Overlapped Electric
Double Layers. Journal of Colloid and
Interface Science 529:
214-223, 2018
36. L. Zhang, M.A. Hesse and M. Wang*. Dispersion of Charged
Solute in Charged Micro- and Nanochannel with Reversible Sorption. Electrophoresis 40: 838-844, 2019 (Cover page)
35. L. Zhang, C. McNeece,
M. Hesse and M. Wang*.
Reactive Transport of Proton in Electro-osmostic
Displacement Flow with Concentration Difference in Microchannel. Analytical Chemistry 90 (20): 11802–11811, 2018
34.
Y.K. Yang, M. Wang*.
Pore-scale modeling of chloride ion diffusion in cement microstructures. Cement and Concrete Composites 85: 92-104, 2018 (IF: 4.265)
33.
Y.K. Yang, M. Wang*.
Pore-scale study of thermal effects on ion diffusion in clay with inhomogeneous
surface charge. Journal of Colloid and
Interface Science 514:
443-451, 2018
32. Y.K. Yang, M. Wang*. Upscaling scheme for long-term ion electrodiffusion in microporous media. Physical Review E 96:
023308, 2017
31.
H. Tian. M. Wang*,
Molecular dynamics for ion-tuned wettability in oil-brine-rock system. AIP Advances 7: 125017,
2017
30.
A. Alizadeh and M. Wang*.
Manipulating electrokinetic conductance of nanofluidic channel by varying inlet
pH of solution. Microfluidics and Nanofluidics. 21:
52, 2017
29.
A. Alizadeh and M. Wang*.
Direct simulation of electroosmosis around a spherical particle with inhomogeneously
acquired surface charge. Electrophoresis
38: 580-595, 2017 (cover page)
28.
L. Zhang and M. Wang*.
Electro-osmosis in inhomogeneously charged microporous media by pore-scale
modeling. Journal of Colloid and
Interface Science. 486:
219-231, 2017
27. L. Zhang, M.A. Hesse* and M. Wang. Transient solute transport with sorption in Poiseuille flow. Journal of Fluid Mechanics 828: 733-752, 2017
26. L. Zhang and M. Wang*. Modeling of electrokinetic
reactive transports using a
coupled lattice Boltzmann method. Journal
of Geophysical Research-Solid Earth. 120: 2877-2890,
2015
25.
L. Zhang and M. Wang*.
Effects of Dielectric Permittivity of Solid Structure on Electro-osmotic
Permeability in Porous Media. Journal
of Porous Media 18 (10):
1021-1029, 2015
24.
H. Tian, L. Zhang, and M. Wang*.
Applicability of Donnan equilibrium theory at
nanochannel-reservoir interfaces. Journal
of Colloid and Interface Science 452:
78-88, 2015
23.
A. Alizadeh, L. Zhang, and M.
Wang*. Mixing enhancement of low Reynolds electro-osmotic flows in microchannels with
temperature-patterned walls. Journal
of Colloid and Interface Science, 431: 50-63, 2014
22.
A. Alizadeh, J. Wang, S. Pooyan, S. Mirbozorgi, M.
Wang*. Numerical Study of
Active Control of Mixing in Electro-Osmotic Flows by Temperature Difference
using Lattice Boltzmann Methods. Journal of Colloid and Interface Science, 407: 546-555,
2013
21.
C.C. Chang, R.J. Yang, M.
Wang, J.J. Miau, and V. Lebiga. Liquid flow retardation in nanospaces due
to electroviscosity: Electrical Double Layers
overlap, hydrodynamic slippage and ambient atmospheric CO2
dissolution. Physics of Fluids.
24: 072001,
2012
20.
J. Liu, M. Wang, S.
Chen and M. Robbins*. Uncovering Molecular Mechanisms of Electrowetting and
Saturation with Simulations. Physical
Review Letters 108: 216101, 2012
19.
M. Wang. Structure effects
on electro-osmosis in microporous media. Journal
of Heat Transfer-ASME134:
051020, 2012
18.
M. Wang*, Q. Kang, H.
Viswanathan and B. Robinson. Modeling of electro-osmosis of dilute electrolyte
solutions in silica microporous media. J.
Geophysical Research-Solid Earth 115: B10205, 2010
17.
J. Liu, M. Wang, S.
Chen and M.O. Robbins. Molecular simulations of electroosmotic flows in rough
nanochannels. Journal of Computational Physics 229: 7834-7847, 2010
16.
M. Wang* and Q. Kang. Electrochemomechanical
energy conversion efficiency in silica nanochannels. Microfluidics and Nanofluidics 9(2): 181-190, 2010
15. M.
Wang*, C. Chang, and R. Yang. Electroviscosity
in nanofluidic channels. Journal of
Chemical Physics 132: 024701, 2010
14.
M. Wang*, and A. Revil.
Electrochemical charge of silica surfaces at high ionic strength in narrow
channels. Journal of Colloid and Interface Science 343: 381-386, 2010
13. M.
Wang*, Q. Kang, and E. Ben-Naim.
Modeling of electrokinetic transport in silicon nanofluidic channels. Analytica Chimica Acta 664: 158-164
, 2010
12. M.
Wang,
and Q. Kang. Modeling electrokinetic flows in
microchannels using coupled multiple lattice
Boltzmann methods. Journal of Computational Physics 229: 728-744, 2010
11. M.
Wang and Q. Kang. Electrokinetic
transport in microchannels with random roughness. Analytical
Chemistry 81 (8),
2953-2961, 2009
10.
M.
Wang *, and S. Chen. On applicability
of Poisson-Boltzmann equation for micro- and nanoscale electroosmotic flows. Communications
in Computational Physics 3(5): 1087-1099, 2008
9.
J. Wang, M. Wang ,
and Z. Li. Lattice Evolution Solution for the Nonlinear
Poisson- Boltzmann Equation in Confined Domains. Communications
of Nonlinear Sciences and Numerical Simulation. 13(3):
575-583, 2008
8. M. Wang*
J. Liu, and S. Chen. Electric potential distribution in nanoscale
electroosmosis: from molecules to continuum. Molecular Simulation. 33(15): 1273 - 1277, 2007
7. M. Wang*,
J. Liu, S. Chen. Similarity of Electro-osmotic flows in nanochannels. Molecular
Simulation. 33(3): 239-244, 2007
6. M. Wang*,
and S. Chen. Electroosmosis in homogeneously charged micro- and nanoscale
random porous media. Journal of Colloid and Interface Science 314(1): 264-273, 2007
5. M. Wang*,
N. Pan, J. Wang and S. Chen. Lattice Poisson-Boltzmann Simulations of
Electroosmotic Flows in Charged Anisotropic Porous Media. Communications
in Computational Physics 2(6): 1055-1070, 2007
4. M. Wang*, J. Wang, and S.
Chen. Roughness and Cavitations effects on Electro-osmotic Flows in Rough
Microchannels using the Lattice Poisson-Boltzmann Methods. Journal of Computational Physics. 226(1):
836-851, 2007
3. M. Wang*, J. Wang, S. Chen,
and N. Pan. Electrokinetic Pumping Effects of Charged
Porous Media in Microchannels using the Lattice Poisson-Boltzmann Method. Journal of Colloid and Interface Science 304(1): 246-253, 2006
2. J. Wang, M. Wang*,
and Z. Li. Lattice Poisson-Boltzmann Simulations of Electro-osmotic Flows in
Microchannels. Journal
of Colloid and Interface Science
296(2): 729-736, 2006; Corrigendum: JCIS, 300(1): 446-446, 2006
1.
J. Wang*, M. Wang and Z. Li. Lattice Boltzmann
simulations of mixing enhancement by the electro-osmotic flow in microchannels.
Modern Physics Letters B. 19:1515-1518, 2005
Micro/nano heat
transfer and non-equilibrium thermodynamics <top>
R2 Y. Guo, M. Wang*. Phonon Hydrodynamics: Progress, Applications and
Perspectives. Science China (in Chinese
[郭洋裕 王沫然. 声子水动力学. 《中国科学》])
R1 Y. Guo, M. Wang*. Phonon hydrodynamics and its applications in
nanoscale heat transport. Physics
Reports. 595: 1-44, 2015
(Impact Factor: 22.91 at the year)
15. Y. Guo*, Z. Zhang, M. Bescond, S.Y. Xiong, M. Wang, M. Nomura*, S. Volz*.
Size effect on phonon hydrodynamics in graphite micro- and nanostructures. Physical Review B 104: 075450, 2021
14. Y.F. Huang and M. Wang*. Nonnegative magnetoresistance
in hydrodynamic regime of electron fluid transport in two-dimensional
materials. Physical Review B 104: 155408, 2021
13. W.L. Miao, M. Wang*. Reexamination of electron-phonon coupling constant
in continuum model by comparison with Boltzmann transport theory. International Journal of Heat and Mass
Transfer 174: 121309, 2021
12. W.L. Miao, M. Wang*. Nonequilibrium effects on electron-phonon coupling
constant in metals. Physical Review B
103: 125412, 2021
11. Y. Guo, Z. Zhang, M. Nomura, S.
Volz, M. Wang*. Phonon vortex
dynamics in graphene ribbon by solving Boltzmann transport equation with ab
initio scattering rates. International
Journal of Heat and Mass Transfer 169:
120981, 2021
10. W.L. Miao, Y.Y. Guo, X. Ran, M. Wang*. Deviational Monte
Carlo scheme for thermal and electrical transport in metal nanostructures. Physical Review B 99: 205433, 2019
9.
X.P. Luo, Y.Y. Guo, M.
Wang, H. L. Yi*. Direct simulation of second sound in graphene by
solving the phonon Boltzmann equation via a multiscale scheme. Physical Review B. 100: 155401, 2019
8.
Y. Guo, D. Jou, M. Wang*. Nonequilibrium thermodynamics of phonon
hydrodynamic model for nanoscale heat transport. Physical Review B 98: 104304, 2018
7.
Y. Guo, M. Wang*. Phonon
hydrodynamics for nanoscale heat transport at ordinary temperature. Physical Review B 97: 035421, 2018
6.
Y. Guo, M. Wang*. Heat transport in two-dimensional materials by
directly solving phonon Boltzmann equation under Callaway’s dual relaxation model.
Physical Review B 96: 134312, 2017 (IF: 3.836)
5.
Y. Guo, Z. Y. Wang, M. Wang*.
Thermodynamic extreme principles for non-equilibrium stationary state in heat
conduction. Journal of Heat Transfer 139(7): 071303, 2017
4.
Y. Guo, M. Wang*. Thermodynamic analysis of gas flow and
heat transfer in microchannels. International
Journal of Heat and Mass Transfer 103:
773-782, 2016
3.
Y. Guo, M. Wang*.
Lattice Boltzmann modeling of phonon transport. Journal of Computational Physics 315: 1-15, 2016
2 M. Wang, N. Yang and Z. Guo.
Non-Fourier heat conductions in nanomaterials. Journal of Applied Physics. 110: 064310, 2011
1.
J. Wang, M. Wang, and
Z. Li*. A Lattice Boltzmann Algorithm for Fluid-Solid Conjugate Heat Transfer.
Intentional Journal of Thermal Sciences 46(3) 228-234, 2007
Flow mechanics in oil/gas developments <top>
R1. F.L.
Liu, and M. Wang*. Review of
Low Salinity Waterflooding Mechanisms: Wettability Alteration and Its Impact on
Oil Recovery. Fuel 267: 117112, 2020
10. W.H. Lei, Q.Q. Li, H.E. Yang, T. Wu, and M. Wang*. Preferential flow suppression in heterogeneous porous
media by concentration-dependent rheology of microgel particle
suspension JPSE
9. F. Wang, T. Liu, W. Lei, Y. Zhao, B. Li, G.
Yang, Y. Liu, M. Wang*.
Dynamic analysis of deformation and start-up process of residual-oil droplet on
wall under shear flow. Journal of
Petroleum Science and Engineering 199:
108335, 2021
8. Z. Chen, Z. Yang and M. Wang*. Hydro-mechanical coupled mechanisms of hydraulic
fracture propagation in rocks with cemented natural fractures. Journal of Petroleum Science and
Engineering 163: 421-434,
2018
7.
C.Y. Xie, W. Lv, and M. Wang*.
Shear-thinning or Shear-thickening Fluid for Better EOR? — A Direct Pore-scale
Study. Journal of Petroleum Science
and Engineering 161:
683-691, 2018
6. J.T. Zheng, Y. Ju*, H.H. Liu, L. Zheng and M. Wang. Numerical prediction of
the decline of shale gas production rates considering the geomechanical
effects based on the Two-part Hooke's model. Fuel. 185: 362-369,
2016
5. Y. Wang, Z.G. Tian, S. Nolte, A. Amann-Hildenbrand, B. Krooss, M. Wang*. Reassessment of transient permeability measurement
for tight rocks: the role of boundary and initial conditions. Journal of Natural Gas Science and
Engineering, 95: 104173,
2021
4. Q. Lv, Z. Chen and
M. Wang*. An improved
elastic-tube model for the correlation of permeability and stress with
correction for the Klinkenberg effect. Journal of Natural Gas Science and
Engineering 48: 24-35, 2017
3. J. Zheng, Z. Wang, W. Gong, Y. Ju and M. Wang*. Morphology effects of
shale nanopores on gas permeability using lattice Boltzmann modeling. Journal of Natural Gas Science and
Engineering 47: 83-90, 2017
2.
Z.Y. Wang, X. Jin, X. Wang, L. Sun, M. Wang*. Pore-scale geometry effects on gas permeability in
shale. Journal of Natural Gas
Science and Engineering 34:
948-957, 2016
1.
Z.Y. Wang, Y.Y. Guo, M. Wang*.
Permeability of high-Kn real gas flow in shale and
production prediction by pore-scale modeling. Journal of Natural Gas Science and Engineering 28: 328-337, 2016
Micro/Nano Gas Dynamics <top>
B2. Moran Wang. Microscale gas flow dynamics and
molecular models for gas flow and heat transfer. Microfluidics and Nanofluidics Handbook.
Ed. by S. K. Mitra and S. Chakraborty. CRC Press/Taylor & Francis Group,
LLC. 2010
B1. Moran Wang* and Zhixin Li. Micro- and nanoscale gas fluidics Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin,
Heidelberg, New York, pp.1287-1294, 2008
27. Y. Wang, S. Nolte, G. Gaus,
Z. Tian, A. Amann-Hildenbrand, B. Krooss, M. Wang*. An early-time solution
of pulse-decay method for permeability measurement of tight rocks. Journal of Geophysical Research-Solid
Earth 126: e2021JB022422,
2021
26. Y. Wang, S. Nolte, Z.G. Tian, A. Amann-Hildenbrand, B. Krooss, M. Wang*. A modified pulse-decay approach to simultaneously
measure permeability and porosity of tight rocks. Energy Science and Engineering 9: 2354-2363, 2021
25. S. Nolte, R. Fink, B. Krooss, Al. Amann-Hildenbrand, Y. Wang, M.
Wang, J. Schmatz, J. Klaver, R. Littke*.
Experimental investigation of gas dynamic effects using nanoporous
synthetic materials as tight rock analogues Transport
in Porous Media 137: 519-553,
2021
24. Y. Guo#, X. He#, W.
Huang and M. Wang*.
Microstructure Effects on Effective Gas Diffusion Coefficient of Nanoporous Materials. Transport
in Porous Media 126:
431-453, 2019
23. Z.Y. Wang, M. Wang* S. Chen. Coupling of high-Knudsen and non-ideal gas
effects in microporous media. Journal
of Fluid Mechanics 840:
56-73, 2018
22. X.T. He#, Y.Y. Guo#,
M. Li, N. Pan and M. Wang*.
Effective gas diffusion coefficient of fibrous materials by mesoscopic
modeling. International Journal of Heat
and Mass Transfer 107:
736-746, 2017
21.
X. Shan and M. Wang*.
On mechanisms of chocked gas flows in microchannels. Physics Letters A 379:
2351-2356, 2015
20.
X. Shan and M. Wang*.
Effective resistance of gas flow in microchannels. Advances in Mechanical Engineering. 2013: 950681, 2013
19. X. Shan and M. Wang*. Understanding of
thermal conductance of thin gas layer. Advances of Mechanical Engineering
2013: 692842, 2013
18.
Moran Wang, Xudong Lan and Zhixin Li*.
Analysis of Gas flows in Micro- and Nanochannels. Int. J. Heat Mass Transfer. 51: 3630-3641 2008
17.
Moran Wang*, Zhixin Li. An Enskog based Monte
Carlo method for high Knudsen number non-ideal gas flows. Computer
& Fluids 36(8):
1291-1297, 2007
16.
Moran Wang*, Macrossan M. and
Zhixin Li. Relaxation Time Simulation Method with
Internal Energy Exchange for Perfect Gas Flow at Near-Continuum Conditions. Communications
of Nonlinear Sciences and Numerical Simulation. 12(7):
1277-1282, 2007
15.
Hongwei Liu, Moran Wang*, Jinku Wang et al. Monte Carlo simulations of gas glow and
heat transfer in vacuum packaged MEMS devices. Applied Thermal Engineering. 27: 323-329, 2007
14.
Moran Wang*, Zhixin Li. Gas mixing in microchannels using the direct
simulation Monte Carlo method. Int. J. Heat Mass Transfer 49: 1696-1702, 2006
13.
Moran Wang, Zhixin Li*. Monte Carlo simulations of dense gas
flow and heat transfer in micro- and nano-channels. Science in China Ser. E,
Engineering & Materials Science, 48(3): 317-325, 2005
12.
Moran Wang, Zhixin Li*.
Statistical Simulation of Gas Flow and Heat Transfer in Micro Air Bearing. Tribology 25(1): 55-60, 2005 (In Chinese)
11.
Moran Wang*, Zhixin Li. Failure analysis of the molecular block model
for the direct simulation Monte Carlo method. Physics of Fluids, 16(6): 2122-2125, 2004
10.
Moran Wang*, Zhixin Li. Micro- and nanoscale non-ideal gas poiseuille flows in a consistent Boltzmann algorithm model.
J. Micromechanics and Microengineering. 14(7):
1057-1063, 2004
9. Moran Wang, Zhixin
Li*. Simulations for gas flows in microgeometries using the direct simulation
Monte Carlo method. Int. J. Heat Fluid Flow, 25(6): 975-985, 2004
8. Moran Wang, Zhixin Li*. Numerical Simulations
on Performance of MEMS-Based Nozzles
at Moderate or Low Temperatures. Microfluidics and
Nanofluidics, 1(1):
62-70, 2004
7. Moran Wang*, Zhixin Li. A Monte Carlo Method for Perfect Gas
Near-Continuum Flows. Recent Advances
in Fluid Mechanics. pp. 716-719, 2004
6. Wang Moran*, Li Zhixin. Three-dimensional effect of
gas flow in micro channels. Journal of Engineering Thermophysics. 25(5): 840-842, 2004 (In Chinese)
5. Wang Moran*, Wang Jinku, Li Zhixin.
New boundary condition
implements for the DSMC method. Chinese Journal of Computational
Physics. 21(3): 48-52, 2004 (In Chinese)
4. Moran Wang*, Zhixin Li. Nonideal gas flow
and heat transfer in micro- and nanochannels using the direct simulation Monte
Carlo method. Physical Review E. 68: 046704, 2003
3. Moran Wang*, Zhixin Li. Similarity of ideal gas flow at different scales. Science
in China E. 46(6): 661-670,
2003
2. Wang Moran*, Chen Zejing, Li Zhixin.
Simulations
and optimization for micro gas flowmeter. Micronanoelectronic Technology, (7/8): 61-65, 2003 (In Chinese)
1. Wang Moran*, Chen Zejing, Li Zhixin.
Simulation
and analysis of gas flow and heat transfer in micro nozzle. Micronanoelectronic Technology, (7/8): 66-68, 2003 (In Chinese)
Micro Devices and Fabrication <top>
R3. X. Wang, B. Ding*, G. Sun, M. Wang* and J. Yu*. Electro-spinning/netting: A strategy for the fabrication
of three-dimensional polymer nano-fiber/nets. Progress
in Materials Science. 58:
1173-1243, 2013 (Impact Factor: 18.216
at the year)
R2 J. Lin, X.
Wang, B. Ding, J. Yu and M. Wang*.
Biomimicry via Electrospinning. Critical Reviews in Solid State and
Materials Sciences (Impact Factor: 9.143) In Press, 2012
R1 B. Ding, M. Wang*, X. Wang and J. Yu. Electrospun nanomaterials for ultrasensitive sensors. Materials
Today 13(11): 16-27, 2010
13 Y.
Liao, H. Wu*, Y. Ding, S. Yin, M.
Wang and A. Cao. Engineering thermal and mechanical properties of
flexible aerogel insulation composites via controllable lamination of
multi-layer ordered fibers. Journal of
Sol-Gel Science and Technology. 63:
445-456, 2012
12 X. Wang, B. Ding, J. Yu
and M. Wang*. Engineering
Biomimetic Superhydrophobic Surfaces of Electrospun
Nanomaterials. Nano Today. 6: 515-535, 2011 (Impact Factor: 15.355)
11 J. Lin, Y. Cai, X. Wang, B. Ding, J. Yu, and M.
Wang. Fabrication of biomimetic superhydrophobic surfaces inspired from
lotus leaf and silver ragwort leaf. Nanoscale
3(3): 1258-1262, 2011
10. M. Guo, B. Ding, X. Li, X. Wang, J. Yu,
and M. Wang Amphiphobic Nanofibrous
Silica Mats with Flexible and High Heat-resistant Properties. J. Phys. Chem. C. 114:
916-921, 2010
9. X. Wang, B. Ding, J. Yu, M. Wang, and K. Pan. A highly
sensitive humidity sensor based on nanofibrous membranes coated quartz crystal
microbalance. Nanotechnology 21: 055502, 2010
8. X. Mao, B. Ding, M. Wang, Y. Yan. Self-assembly of phthalocyanine and
polyacrylic acid composite multilayers on cellulose nanofibers. Carbohydrate
Polymers 80:
839-844 2010
7. B. Ding, M. Wang, J. Yu and G. Sun. Gas Sensors Based on Electrospun Nanofibers. Sensors,
9(3), 1609-1624, 2009
6. M.
Wang *, Z. Li. Valve-less
thermally-driven moving-phase-change micropump. Tsinghua Science and Technology. 9(6): 688-693, 2004
5. Z. Li*, M. Wang, XB Yao, Z.Y.
Guo. Pumping mechanism of thermally driven phase transition micropump. Microscale Thermophysical Engineering.
8(1): 31-42, 2004
4. M.
Wang *, Z. Li, Z. Chen. The pumping
effect of traveling phase transition in microtubes. International
Journal of Nonlinear Sciences and Numerical Simulation, 3: 565-568, 2002
3. Z.
Li*, M. Wang, L. Tan. Experimental investigation on phase
transformation type micropump. Chinese
Science Bulletin 47: 518-522, 2002
2. M.
Wang *, Li Z. Investigation Process of
Micropump Based on MEMS. Journal of
Transducer Technology. 21(6):
59-61,
2002 (in Chinese)
1. M.
Wang *, Z. Li, L. Tan. Pumping Mechanism of the phase
Transition Type Micropump. Mechanical
Science and Technology, 21(6):
966-968,
2002 (In Chinese)