Journal Publications by Topics         (Full List and Downloadable Page)

Transport in Porous Media                   Micro/nano electrokinetic transport                        Micro/nano Heat Transfer                     Micro Gas Flow                      Micro Devices

Transport in Porous Media        <top>

B1.  Moran Wang. Effective transport properties of porous media by modeling. Handbook of Porous Media-Third Edition, 2015

R2.  M. Wang. The Physical Chemistry of Materials: Energy and Environmental Applications. Materials Today (Invited Book Review), 13(3): 67, 2010

R1.  M. Wang, N. Pan. Predictions of Effective Physical Properties of Complex Multiphase Materials. Material Science and Engineering-R: Report (Invited Review; Impact Factor: 17.731), 63(1): 1-30, 2008

38.  C.Y. Xie, A.Q. Raeini, Y. Wang, M. Blunt*, M. Wang*. An improved pore-network model with viscous coupling effect via direct simulation by lattice Boltzmann method. Advances in Water Resources. 100: 26-34, 2017

37.  X.T. He#, Y.Y. Guo#, M. Li, N. Pan and M. Wang*. Effective gas diffusion coefficient of fibrous materials by mesoscopic modeling. International Journal of Heat and Mass Transfer 107: 736-746, 2017

36.  L. Zhang and M. Wang*. Electro-osmosis in inhomogeneously charged microporous media by pore-scale modeling. Journal of Colloid and Interface Science. 486: 219-231, 2017

35.  J.T. Zheng, Y. Ju*, H.H. Liu, L. Zheng and M. Wang. Numerical prediction of the decline of shale gas production rates considering the geomechanical effects based on the Two-part Hooke's model. Fuel. 185: 362-369, 2016

34.  C.Y. Xie, J. Zhang, V. Bertola, M. Wang*. Lattice Boltzmann Modeling for Multiphase Viscoplastic Fluid Flow. Journal of Non-Newton Fluid Mechanics 234: 118-128, 2016

33.  Z. Chen, C.Y. Xie, Y. Chen and M. Wang*. Bonding strength effects in hydro-mechanical coupling transport in granular porous media by pore-scale modeling. Computation 4: 15, 2016

32.  J. M. Yang, H. Wu*, M. Wang S. He, and H. Huang. Prediction and optimization of radiative thermal properties of ultrafine fibrous insulations. Applied Thermal Engineering 104: 394-402, 2016

31.  Z.Y. Wang, X. Jin, X. Wang, L. Sun, M. Wang*. Pore-scale geometry effects on gas permeability in shale. Journal of Natural Gas Science and Engineering 34: 948-957, 2016

30.  Z.Y. Wang, Y.Y. Guo, M. Wang*. Permeability of high-Kn real gas flow in shale and production prediction by pore-scale modeling. Journal of Natural Gas Science and Engineering 28: 328-337, 2016

29.  C.Y. Xie, J.Y. Zhang, V. Bertola and M. Wang*. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling. Journal of Colloid and Interface Science 463: 317-323, 2016

28.  J.M. Yang, H.J. Wu*, S.Q. He and M. Wang. Prediction of thermal conductivity of fiber/aerogel composites for optimal thermal insulation. Journal of Porous Media 18 (10): 971-984, 2015

27.  L. Zhang and M. Wang*. Effects of Dielectric Permittivity of Solid Structure on Electro-osmotic Permeability in Porous Media. Journal of Porous Media 18 (10): 1021-1029, 2015

26.  L. Zhang and M. Wang*. Modeling of electrokinetic reactive transports using a coupled lattice Boltzmann method. Journal of Geophysical Research-Solid Earth. 120: 2877-2890, 2015

25.  C. Xie, J. Wang N. Pan, D. Wang and M. Wang*. Lattice Boltzmann modeling of thermal conduction in composite materials with thermal contact resistance. Communication in Computational Physics 17: 1037-1055, 2015

24.  Y. Chen, Q. Kang, Q. Cai*, M. Wang*, D. Zhang. Lattice Boltzmann simulations of particle motion in binary immiscible fluids Communication in Computational Physics 18(3): 757-786, 2015

23.  S. Chen, X. He, V. Bertola and M. Wang*. Electrokinetic flow of non-Newtonian fluid in porous media. Journal of Colloid and Interface Science 436: 186-193, 2014

22.  C. Xie, J. Wang N. Pan, D. Wang and M. Wang*. Lattice Boltzmann modeling of thermal conduction in composite materials with thermal contact resistance. Communication in Computational Physics, in press, 2014

21.  M. Wang*, X. Wang, J.K. Wang and N. Pan. Grain size effects on effective thermal conductivity of porous materials with internal thermal contact resistance. Journal Porous Media. 16(11): 1043-1048, 2013

20.  M. Wang*. Structure effects on electro-osmosis in microporous media. Journal of Heat Transfer-ASME 134: 051020, 2012

19.  Y. Liao, H. Wu*, Y. Ding, S. Yin, M. Wang, A. Cao. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. Journal of Sol-Gel Science and Technology. DOI: 10.1007/s10971-012-2806-7, 63:445–456, 2012

18.  X.D. Shan, M. Wang*, Z. Guo. Geometry Optimization of Self-similar Transport Network. Mathematical Problems in Engineering 2011: 421526, 2011

17.  M. Wang*, Q. Kang, H. Viswanathan and B. Robinson. Modeling of electro-osmosis of dilute electrolyte solutions in silica microporous media. J. Geophysical Research-Solid Earth 115: B10205, 2010

16.  Q. Kang, M. Wang*, P. Mukherjee, and P. C. Lichtner. Mesoscopic modeling of multi-physiochemical transport in porous media. In: Micro/Nanotransport Phenomena in Renewable Energy and Energy Efficiency, on Advances Mechanical Engineering, 2010: 142879, 2010

15.  X. Liu, M. Wang*, J. Meng, E. Ben-Naim and Z. Guo. Minimum dissipation principle for the optimization of transport networks. International Journal of Non-linear Science and Numerical Simulations 11(2): 113-120, 2010

14.  M. Wang*, Q. Chen, Q. Kang, N. Pan, and E. Ben-Naim. Nonlinear effective properties of unsaturated porous materials. International Journal of Non-linear Science and Numerical Simulations 11(1): 49-56, 2010

13.  M. Wang* and N. Pan. Elastic property of multiphase composites with random microstructures. Journal of Computational Physics, 228: 5978-5988, 2009

12.  M. Wang*, Q. Kang, and N. Pan. Thermal conductivity enhancement of carbon fiber composites. Applied Thermal Engineering. 29: 418-421, 2009

11.  Q. Chen, M. Wang, N. Pan, and Z. Guo. Irreversibility of heat conduction in complex multiphase systems and its application to the effective thermal conductivity of porous media International Journal of Non-linear Science and Numerical Simulations 10 (1): 57-66, 2009

10.  M. Wang*, and N. Pan. Modeling and prediction of the Effective Thermal Conductivity of Random Open-cell Porous Foams. Int. J. Heat Mass Transfer. 51(5-6): 1325-1331, 2008

9.  M. Wang*, and S. Chen. Electroosmosis in homogeneously charged micro- and nanoscale random porous media. Journal of Colloid and Interface Science 314(1): 264-273, 2007

8.  M. Wang*, N. Pan, J. Wang and S. Chen. Lattice Poisson-Boltzmann Simulations of Electroosmotic Flows in Charged Anisotropic Porous Media. Communications in Computational Physics 2(6): 1055-1070, 2007

7.  M. Wang*, J. Wang, N. Pan, S. Chen, and J. He. Three dimensional effect on the effective thermal conductivity of porous media. J. Phys. D: Appl. Phys. 40(1): 260–265, 2007

6.  M. Wang*, F. Meng, and N. Pan. Transport properties of functionally graded materials. Journal of Applied Physics 102: 033514, 2007

5.  M. Wang*, and N. Pan. Numerical analyses of the effective dielectric constant of multiphase microporous media. Journal of Applied Physics 101: 114102, 2007

4.  M. Wang*, N. Pan, J. Wang, and S. Chen. Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of micro porous media. J. Colloid Interface Sci. 311(2): 562-570, 2007

3.  M. Wang, J. He, J. Yu and N. Pan*. Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. Intentional Journal of Thermal Sciences 46(9): 848-855, 2007

2.  M. Wang*, J. Wang, N. Pan, and S. Chen. Mesoscopic Predictions of the Effective Thermal Conductivity of Microscale Random Porous Media. Physical Review E. 75: 036702, 2007

1.  M. Wang*, J. Wang, S. Chen, and N. Pan. Electrokinetic Pumping Effects of Charged Porous Media in Microchannels using the Lattice Poisson-Boltzmann Method. Journal of Colloid and Interface Science 304(1): 246-253, 2006

Micro/Nano Electrokinetic Flows        <top>

R2.  H. C. Yeh, M. Wang, C. C. Chang and R.-J. Yang*. Fundamentals and Modeling of Electrokinetic Transport in Nanochannels. Israel Journal of Chemistry (Invited review) DOI: 10.1002/ijch.201400079, 54, 1533-1555, 2014

R1.  S. Chen*, M. Wang, and Z. Xia. Multiscale fluid mechanics and modeling. Procedia IUTAM 10: 100-114, 2014

B5.  Moran Wang and Shiyi Chen. Multiscale Simulations. Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, 2014

B4.  Moran Wang. Molecular Dynamics Simulations on Electrokinetic Nanofluidics. Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, 2014

B3.  Moran Wang and Li Zhang. Energy Conversion and Power Generation Using Nanofluidics. Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, 2014

B2.  G. P. Peterson, Chen Li, Moran Wang and Gang Chen. Edit: Micro/Nanotransport Phenomena in Renewable Energy and Energy Efficiency, on AME, 2010

B1.  Moran Wang. Analysis of electroosmotic microfluidics by the lattice Poisson-Boltzmann method. Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, pp. 985-999, 2008

29.  A. Alizadeh and M. Wang*. Manipulating electrokinetic conductance of nanofluidic channel by varying inlet pH of solution. Microfluidics and Nanofluidics. 21: 52, 2017

28.  A. Alizadeh and M. Wang*. Direct simulation of electroosmosis around a spherical particle with inhomogeneously acquired surface charge. Electrophoresis 38: 580-595, 2017 (cover page)

27.  L. Zhang and M. Wang*. Electro-osmosis in inhomogeneously charged microporous media by pore-scale modeling. Journal of Colloid and Interface Science. 486: 219-231, 2017

26.  L. Zhang and M. Wang*. Modeling of electrokinetic reactive transports using a coupled lattice Boltzmann method. Journal of Geophysical Research-Solid Earth. 120: 2877-2890, 2015

25.  L. Zhang and M. Wang*. Effects of Dielectric Permittivity of Solid Structure on Electro-osmotic Permeability in Porous Media. Journal of Porous Media 18 (10): 1021-1029, 2015

24.  H. Tian, L. Zhang, and M. Wang*. Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces. Journal of Colloid and Interface Science 452: 78-88, 2015

23.  A. Alizadeh, L. Zhang, and M. Wang*. Mixing enhancement of low Reynolds electro-osmotic flows in microchannels with temperature-patterned walls. Journal of Colloid and Interface Science, 431: 50-63, 2014

22.  A. Alizadeh, J. Wang, S. Pooyan, S. Mirbozorgi, M. Wang*. Numerical Study of Active Control of Mixing in Electro-Osmotic Flows by Temperature Difference using Lattice Boltzmann Methods. Journal of Colloid and Interface Science, 407: 546-555, 2013

21.  C.C. Chang, R.J. Yang, M. Wang, J.J. Miau, and V. Lebiga. Liquid flow retardation in nanospaces due to electroviscosity: Electrical Double Layers overlap, hydrodynamic slippage and ambient atmospheric CO2 dissolution. Physics of Fluids. 24: 072001, 2012

20.  J. Liu, M. Wang, S. Chen and M. Robbins*. Uncovering Molecular Mechanisms of Electrowetting and Saturation with Simulations. Physical Review Letters 108: 216101, 2012

19.  M. Wang. Structure effects on electro-osmosis in microporous media. Journal of Heat Transfer-ASME134: 051020, 2012

18.  M. Wang*, Q. Kang, H. Viswanathan and B. Robinson. Modeling of electro-osmosis of dilute electrolyte solutions in silica microporous media. J. Geophysical Research-Solid Earth 115: B10205, 2010

17.  J. Liu, M. Wang, S. Chen and M.O. Robbins. Molecular simulations of electroosmotic flows in rough nanochannels. Journal of Computational Physics 229: 7834-7847, 2010

16.  M. Wang* and Q. Kang. Electrochemomechanical energy conversion efficiency in silica nanochannels. Microfluidics and Nanofluidics 9(2): 181-190, 2010

15.  M. Wang*, C. Chang, and R. Yang. Electroviscosity in nanofluidic channels. Journal of Chemical Physics 132: 024701, 2010

14.  M. Wang*, and A. Revil. Electrochemical charge of silica surfaces at high ionic strength in narrow channels. Journal of Colloid and Interface Science 343: 381-386, 2010

13.  M. Wang*, Q. Kang, and E. Ben-Naim. Modeling of electrokinetic transport in silicon nanofluidic channels. Analytica Chimica Acta 664: 158-164empty, 2010

12.  M. Wang, and Q. Kang. Modeling electrokinetic flows in microchannels using coupled multiple lattice Boltzmann methods. Journal of Computational Physics 229: 728-744, 2010

11.  M. Wang and Q. Kang. Electrokinetic transport in microchannels with random roughness. Analytical Chemistry 81 (8), 2953-2961, 2009

10.  M. Wang *, and S. Chen. On applicability of Poisson-Boltzmann equation for micro- and nanoscale electroosmotic flows. Communications in Computational Physics 3(5): 1087-1099, 2008

9.  J. Wang, M. Wang , and Z. Li. Lattice Evolution Solution for the Nonlinear Poisson- Boltzmann Equation in Confined Domains. Communications of Nonlinear Sciences and Numerical Simulation. 13(3): 575-583, 2008

8.  M. Wang* J. Liu, and S. Chen. Electric potential distribution in nanoscale electroosmosis: from molecules to continuum. Molecular Simulation. 33(15): 1273 - 1277, 2007

7.  M. Wang*, J. Liu, S. Chen. Similarity of Electro-osmotic flows in nanochannels. Molecular Simulation. 33(3): 239-244, 2007

6.  M. Wang*, and S. Chen. Electroosmosis in homogeneously charged micro- and nanoscale random porous media. Journal of Colloid and Interface Science 314(1): 264-273, 2007

5.  M. Wang*, N. Pan, J. Wang and S. Chen. Lattice Poisson-Boltzmann Simulations of Electroosmotic Flows in Charged Anisotropic Porous Media. Communications in Computational Physics 2(6): 1055-1070, 2007

4.  M. Wang*, J. Wang, and S. Chen. Roughness and Cavitations effects on Electro-osmotic Flows in Rough Microchannels using the Lattice Poisson-Boltzmann Methods. Journal of Computational Physics. 226(1): 836-851, 2007

3.  M. Wang*, J. Wang, S. Chen, and N. Pan. Electrokinetic Pumping Effects of Charged Porous Media in Microchannels using the Lattice Poisson-Boltzmann Method. Journal of Colloid and Interface Science 304(1): 246-253, 2006

2.  J. Wang, M. Wang*, and Z. Li. Lattice Poisson-Boltzmann Simulations of Electro-osmotic Flows in Microchannels. Journal of Colloid and Interface Science 296(2): 729-736, 2006; Corrigendum: JCIS, 300(1): 446-446, 2006

1.  J. Wang*, M. Wang and Z. Li. Lattice Boltzmann simulations of mixing enhancement by the electro-osmotic flow in microchannels. Modern Physics Letters B. 19:1515-1518, 2005

Micro/nano heat transfer and non-equilibrium thermodynamics        <top>

R2  Y. Guo, M. Wang*. Phonon Hydrodynamics: Progress, Applications and Perspectives. Science China (in Chinese [郭洋裕 王沫然. 声子水动力学. 《中国科学》])

R1  Y. Guo, M. Wang*. Phonon hydrodynamics and its applications in nanoscale heat transport. Physics Reports. 595: 1-44, 2015 (Impact Factor: 22.91 at the year)

13.  Y. Guo, Z. Y. Wang, M. Wang*. Thermodynamic extreme principles for non-equilibrium stationary state in heat conduction. Journal of Heat Transfer

12.  Y. Guo, D. Jou, M. Wang* Macroscopic heat transport equations and heat waves in nonequilibrium states. Physica D 342: 24-31, 2017

11.  Y. Guo, M. Wang*. Thermodynamic analysis of gas flow and heat transfer in microchannels. International Journal of Heat and Mass Transfer 103: 773-782, 2016

10.  Y. Guo, M. Wang*. Thermodynamic framework for a generalized heat transport equation. Communications in Applied and Industrial Mathematics. 7(2):167-176, 2016

9.  Y. Guo, M. Wang*. Lattice Boltzmann modeling of phonon transport. Journal of Computational Physics 315: 1-15, 2016

8.  Y. Guo, D. Jou, M. Wang* Understanding of flux-limited behaviors of heat transport in nonlinear regime. Physics Letter A 380: 452-457, 2016

7.  X. Shan and M. Wang*. Analysis of mechanism and performance of thermal rectification of trapezidal nanomaterials based on thermon gas model. Journal of Engineering Thermophysics 35(7): 1401-1404, 2014

6.  X. Shan and M. Wang*. Understanding of thermal conductance of thin gas layers. Advances in Mechanical Engineering. 2013: 692842, 2013

5. M. Wang*, X. Shan, N. Yang. Understanding length dependence of effective thermal conductivity of nanowire. Physics Letter A. 376: 3514-3517, 2012

4  M. Wang, N. Yang and Z. Guo. Non-Fourier heat conductions in nanomaterials. Journal of Applied Physics. 110: 064310, 2011

3  M. Wang and Z. Guo. Understanding of size and temperature dependences of effective thermal conductivity of nanotubes. Physics Letter A 374: 4312-4315 2010

2.  F. Meng, M. Wang, Z. Li*, Lattice Boltzmann Simulations of Conjugate Heat Transfer in High-Frequency Oscillating Flows. Int. J. Heat Fluid Flow. 29(4): 1203-1210, 2008

1.  J. Wang, M. Wang, and Z. Li*. A Lattice Boltzmann Algorithm for Fluid-Solid Conjugate Heat Transfer. Intentional Journal of Thermal Sciences 46(3) 228-234, 2007

Multiphase flows and replacements        <top>

15.  C.Y. Xie, A.Q. Raeini, Y. Wang, M. Blunt*, M. Wang*. An improved pore-network model with viscous coupling effect via direct simulation by lattice Boltzmann method. Advances in Water Resources. 100: 26-34, 2017

14.  A. Alizadeh and M. Wang*. Direct simulation of electroosmosis around a spherical particle with inhomogeneously acquired surface charge. Electrophoresis 38: 580-595, 2017 (cover page)

13.  C.Y. Xie#, G. Liu#, M. Wang*. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations. Langmuir 32, 8255-8264, 2016

12.  C.Y. Xie, J. Zhang, V. Bertola, M. Wang*. Lattice Boltzmann Modeling for Multiphase Viscoplastic Fluid Flow. Journal of Non-Newton Fluid Mechanics 234: 118-128, 2016

11.  Z. Chen, C.Y. Xie, Y. Chen and M. Wang*. Bonding strength effects in hydro-mechanical coupling transport in granular porous media by pore-scale modeling. Computation 4: 15, 2016

10.  Y. Guo, D. Jou, M. Wang* Understanding of flux-limited behaviors of heat transport in nonlinear regime. Physics Letter A 380: 452-457, 2016

9.  D. Biolè, M. Wang, V. Bertola*. Assessment of direct image processing methods to measure the apparent contact angle of liquid drops. Experimental Thermal and Fluid Science 76: 296-305, 2016

8.  G. Liu, J. Zhang and M. Wang*. Drop movements and replacement on surface driven by shear force via hybrid atomistic-continuum simulations. Molecular Simulation. 42(10): 855-862, 2016

7. C.Y. Xie, J.Y. Zhang, V. Bertola and M. Wang*. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling. Journal of Colloid and Interface Science 463: 317-323, 2016

6  Z. Wu, Y. Chen, M. Wang and A. Chung*. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab on a Chip 16: 532-542, 2016

5  C. Xie, J. Zhang and M. Wang*. Lattice Boltzmann modeling of non-Newtonian multiphase fluid displacement. Chinese Journal of Computational Physics 33(2): 147-154, 2016

4.  Y. Chen, Q. Kang, Q. Cai*, M. Wang*, D. Zhang. Lattice Boltzmann simulations of particle motion in binary immiscible fluids Communication in Computational Physics 18(3): 757-786, 2015

3.  V. Bertola*, M. Wang. Dynamic contact angle of dilute polymer solution drops impacting on a hydrophobic surface. Colloids and Surfaces A: Physicochem. Eng. Aspects 481: 600-608, 2015

2.  Y. Chen, Q. Cai, Z. Xia, M. Wang* and S. Chen. Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions. Physical Review E. 88: 013303, 2013

1.  J. Liu, M. Wang, S. Chen and M. Robbins*. Uncovering Molecular Mechanisms of Electrowetting and Saturation with Simulations. Physical Review Letters 108: 216101, 2012

 

Micro/Nano Gas Flows        <top>

B2.  Moran Wang. Microscale gas flow dynamics and molecular models for gas flow and heat transfer. Microfluidics and Nanofluidics Handbook. Ed. by S. K. Mitra and S. Chakraborty. CRC Press/Taylor & Francis Group, LLC. 2010

B1.  Moran Wang* and Zhixin Li. Micro- and nanoscale gas fluidics Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, pp.1287-1294, 2008

25.  Q. Lv, Z. Chen and M. Wang*. An improved elastic-tube model for the correlation of permeability and stress with correction for the Klinkenberg effect. JNGSE

24.  X.T. He#, Y.Y. Guo#, M. Li, N. Pan and M. Wang*. Effective gas diffusion coefficient of fibrous materials by mesoscopic modeling. International Journal of Heat and Mass Transfer 107: 736-746, 2017

23.  Z.Y. Wang, X. Jin, X. Wang, L. Sun, M. Wang*. Pore-scale geometry effects on gas permeability in shale. Journal of Natural Gas Science and Engineering 34: 948-957, 2016

22.  Z.Y. Wang, Y.Y. Guo, M. Wang*. Permeability of high-Kn real gas flow in shale and production prediction by pore-scale modeling. Journal of Natural Gas Science and Engineering 28: 328-337, 2016

21.  X. Shan and M. Wang*. On mechanisms of chocked gas flows in microchannels. Physics Letters A 379: 2351-2356, 2015

20.  X. Shan and M. Wang*. Effective resistance of gas flow in microchannels. Advances in Mechanical Engineering. 2013: 950681, 2013

19.  X. Shan and M. Wang*. Understanding of thermal conductance of thin gas layer. Advances of Mechanical Engineering 2013: 692842, 2013

18.  Moran Wang, Xudong Lan and Zhixin Li*. Analysis of Gas flows in Micro- and Nanochannels. Int. J. Heat Mass Transfer. 51: 3630-3641 2008

17.  Moran Wang*, Zhixin Li. An Enskog based Monte Carlo method for high Knudsen number non-ideal gas flows. Computer & Fluids 36(8): 1291-1297, 2007

16.  Moran Wang*, Macrossan M. and Zhixin Li. Relaxation Time Simulation Method with Internal Energy Exchange for Perfect Gas Flow at Near-Continuum Conditions. Communications of Nonlinear Sciences and Numerical Simulation. 12(7): 1277-1282, 2007

15.  Hongwei Liu, Moran Wang*, Jinku Wang et al. Monte Carlo simulations of gas glow and heat transfer in vacuum packaged MEMS devices. Applied Thermal Engineering. 27: 323-329, 2007

14.  Moran Wang*, Zhixin Li. Gas mixing in microchannels using the direct simulation Monte Carlo method. Int. J. Heat Mass Transfer 49: 1696-1702, 2006

13.  Moran Wang, Zhixin Li*. Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels. Science in China Ser. E, Engineering & Materials Science, 48(3): 317-325, 2005

12.  Moran Wang, Zhixin Li*. Statistical Simulation of Gas Flow and Heat Transfer in Micro Air Bearing. Tribology 25(1): 55-60, 2005 (In Chinese)

11.  Moran Wang*, Zhixin Li. Failure analysis of the molecular block model for the direct simulation Monte Carlo method. Physics of Fluids, 16(6): 2122-2125, 2004

10.  Moran Wang*, Zhixin Li. Micro- and nanoscale non-ideal gas poiseuille flows in a consistent Boltzmann algorithm model. J. Micromechanics and Microengineering. 14(7): 1057-1063, 2004

9.  Moran Wang, Zhixin Li*. Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method. Int. J. Heat Fluid Flow, 25(6): 975-985, 2004

8.  Moran Wang, Zhixin Li*. Numerical Simulations on Performance of MEMS-Based Nozzles at Moderate or Low Temperatures. Microfluidics and Nanofluidics, 1(1): 62-70, 2004

7.  Moran Wang*, Zhixin Li. A Monte Carlo Method for Perfect Gas Near-Continuum Flows. Recent Advances in Fluid Mechanics. pp. 716-719, 2004

6.  Wang Moran*, Li Zhixin. Three-dimensional effect of gas flow in micro channels. Journal of Engineering Thermophysics. 25(5): 840-842, 2004 (In Chinese)

5.  Wang Moran*, Wang Jinku, Li Zhixin. New boundary condition implements for the DSMC method. Chinese Journal of Computational Physics. 21(3): 48-52, 2004 (In Chinese)

4.  Moran Wang*, Zhixin Li. Nonideal gas flow and heat transfer in micro- and nanochannels using the direct simulation Monte Carlo method. Physical Review E. 68: 046704, 2003

3.  Moran Wang*, Zhixin Li. Similarity of ideal gas flow at different scales. Science in China E. 46(6): 661-670, 2003

2.  Wang Moran*, Chen Zejing, Li Zhixin. Simulations and optimization for micro gas flowmeter. Micronanoelectronic Technology, (7/8): 61-65, 2003 (In Chinese)

1.  Wang Moran*, Chen Zejing, Li Zhixin. Simulation and analysis of gas flow and heat transfer in micro nozzle. Micronanoelectronic Technology, (7/8): 66-68, 2003 (In Chinese)

Micro Devices and Fabrication       <top>

R3.  X. Wang, B. Ding*, G. Sun, M. Wang* and J. Yu*. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Progress in Materials Science. 58: 1173-1243, 2013 (Impact Factor: 18.216 at the year)

R2  J. Lin, X. Wang, B. Ding, J. Yu and M. Wang*. Biomimicry via Electrospinning. Critical Reviews in Solid State and Materials Sciences (Impact Factor: 9.143) In Press, 2012

R1  B. Ding, M. Wang*, X. Wang and J. Yu. Electrospun nanomaterials for ultrasensitive sensors. Materials Today 13(11): 16-27, 2010

13  Y. Liao, H. Wu*, Y. Ding, S. Yin, M. Wang and A. Cao. Engineering thermal and mechanical properties of flexible aerogel insulation composites via controllable lamination of multi-layer ordered fibers. Journal of Sol-Gel Science and Technology. 63: 445-456, 2012

12  X. Wang, B. Ding, J. Yu and M. Wang*. Engineering Biomimetic Superhydrophobic Surfaces of Electrospun Nanomaterials. Nano Today. 6: 515-535, 2011 (Impact Factor: 15.355)

11   J. Lin, Y. Cai, X. Wang, B. Ding, J. Yu, and M. Wang. Fabrication of biomimetic superhydrophobic surfaces inspired from lotus leaf and silver ragwort leaf. Nanoscale 3(3): 1258-1262, 2011

10.  M. Guo, B. Ding, X. Li, X. Wang, J. Yu, and M. Wang Amphiphobic Nanofibrous Silica Mats with Flexible and High Heat-resistant Properties. J. Phys. Chem. C. 114: 916-921, 2010

9.  X. Wang, B. Ding, J. Yu, M. Wang, and K. Pan. A highly sensitive humidity sensor based on nanofibrous membranes coated quartz crystal microbalance. Nanotechnology 21: 055502, 2010

8.  X. Mao, B. Ding, M. Wang, Y. Yan. Self-assembly of phthalocyanine and polyacrylic acid composite multilayers on cellulose nanofibers. Carbohydrate Polymers 80: 839-844 2010

7.  B. Ding, M. Wang, J. Yu and G. Sun. Gas Sensors Based on Electrospun Nanofibers. Sensors, 9(3), 1609-1624, 2009

6.  M. Wang *, Z. Li. Valve-less thermally-driven moving-phase-change micropump. Tsinghua Science and Technology. 9(6): 688-693, 2004

5.  Z. Li*, M. Wang, XB Yao, Z.Y. Guo. Pumping mechanism of thermally driven phase transition micropump. Microscale Thermophysical Engineering. 8(1): 31-42, 2004

4.  M. Wang *, Z. Li, Z. Chen. The pumping effect of traveling phase transition in microtubes. International Journal of Nonlinear Sciences and Numerical Simulation, 3: 565-568, 2002

3.  Z. Li*, M. Wang, L. Tan. Experimental investigation on phase transformation type micropump. Chinese Science Bulletin 47: 518-522, 2002

2.  M. Wang *, Li Z. Investigation Process of Micropump Based on MEMS. Journal of Transducer Technology. 21(6): 59-61, 2002 (in Chinese)

1.  M. Wang *, Z. Li, L. Tan. Pumping Mechanism of the phase Transition Type Micropump. Mechanical Science and Technology, 21(6): 966-968, 2002 (In Chinese)