Journal Publications by Topics         (Full List and Downloadable Page)

Transport in Porous Media                   Micro/nano electrokinetic transport                        Micro/nano Heat Transfer                     Micro Gas Flow                       Micro Devices

Multiscale modeling and analysis

R1.  S. Chen*, M. Wang, and Z. Xia. Multiscale fluid mechanics and modeling. Procedia IUTAM 10: 100-114, 2014

14. F.L. Liu and M. Wang*. Size Effects on Droplet Displacing Process in Micropores by Multiscale Modeling. Journal of Multiscale Modelling 2141001, 2021

13. Y.K. Yang, R.A. Patel, S.V. Churakov*, N.I. Prasianakis, G. Kosakowski and M. Wang*. Multiscale modeling of ion diffusion in cement paste: electrical double layer effects. Cement and Concrete Composites 96: 55-65, 2019

12. Y. Guo#, X. He#, W. Huang and M. Wang*. Microstructure Effects on Effective Gas Diffusion Coefficient of Nanoporous Materials. Transport in Porous Media 126: 431-453, 2019

11. Z.Y. Wang, M. Wang* S. Chen. Coupling of high-Knudsen and non-ideal gas effects in microporous media. Journal of Fluid Mechanics. 2018

10. G. Liu, F.L. Liu, M. Li, W.F. Lv, Q. Liu and M. Wang*. Lattice Boltzmann model for upscaling in heterogeneous porous media based on Darcy’s law. Journal of Porous Media 2018

9.  Y.K. Yang, M. Wang*. Upscaling scheme for long-term ion electrodiffusion in microporous media. Physical Review E 96: 023308, 2017

8.  C.Y. Xie, A.Q. Raeini, Y. Wang, M. Blunt*, M. Wang*. An improved pore-network model with viscous coupling effect via direct simulation by lattice Boltzmann method. Advances in Water Resources. 100: 26-34, 2017

7.  X.T. He#, Y.Y. Guo#, M. Li, N. Pan and M. Wang*. Effective gas diffusion coefficient of fibrous materials by mesoscopic modeling. International Journal of Heat and Mass Transfer 107: 736-746, 2017

6.  C.Y. Xie#, G. Liu#, M. Wang*. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations. Langmuir 32, 8255-8264, 2016

5.  Z.Y. Wang, Y.Y. Guo, M. Wang*. Permeability of high-Kn real gas flow in shale and production prediction by pore-scale modeling. Journal of Natural Gas Science and Engineering 28: 328-337, 2016

4.  G. Liu, J. Zhang and M. Wang*. Drop movements and replacement on surface driven by shear force via hybrid atomistic-continuum simulations. Molecular Simulation. 42(10): 855-862, 2016

3.  H. Tian, L. Zhang, and M. Wang*. Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces. Journal of Colloid and Interface Science 452: 78-88, 2015

2.  J. Liu, M. Wang, S. Chen and M. Robbins*. Uncovering Molecular Mechanisms of Electrowetting and Saturation with Simulations. Physical Review Letters 108: 216101, 2012

1.  J. Liu*, M. Wang, S. Chen and M.O. Robbins. Molecular simulations of electroosmotic flows in rough nanochannels. Journal of Computational Physics 229: 7834-7847, 2010

 

Hydro-Thermo-Mechanical coupling

R1. 

14. Z.Q. Chen, M. Wang* and S.Y. Chen. Transport Configuration and Tail Dynamics of Spherical-particle Motion through Immiscible Fluids Interfaces. Chemical Engineering Science 229: 116091, 2021

13. Z.Q. Chen, D. Elsworth and M. Wang*. Does low-viscosity fracturing always create complex fractures? Journal of Geophysical Research-Solid Earth 125(9): e2020JB020332, 2020

12. Z.Q. Chen and M. Wang*. An improved immersed moving boundary for hydrodynamic force calculation in lattice Boltzmann method. International Journal of Numerical Method in Engineering 121:4493–4508, 2020

11. D.Z. Zhang, Z.G. Tian, Z.Q. Chen, G. Zhou, S.H. Zhang, D.Y. Wu and M. Wang*. Compaction effects on permeability of spherical packing. Engineering Computation. 37(9): 3079-3096, 2020

10. Z.Y. Wang, R. Fink, Y. Wang, A. Amann-Hildenbrand, B. Krooss*, M. Wang*. Gas permeability calculation of tight rocks based on laboratory measurements by considering non-ideal gas slippage and pore-elastic effects. International Journal of Rock Mechanics and Mining Sciences 112: 16-24, 2018

9.  Z. Chen, X. Jin and M. Wang*. A new thermo-mechanical coupled DEM model with non-spherical grains for thermally induced damage of rocks. Journal of the Mechanics and Physics of Solids 116: 54-69, 2018

8.  Z. Chen, Z. Yang and M. Wang*. Hydro-mechanical coupled mechanisms of hydraulic fracture propagation in rocks with cemented natural fractures. Journal of Petroleum Science and Engineering 163: 421-434, 2018

7.  Z. Chen and M. Wang*. Pore-scale modeling of hydro-mechanical coupling mechanics in hydro-fracturing. Journal of Geophysical Research-Solid Earth 122: JB013989, 2017

6.  Q. Lv, Z. Chen and M. Wang*. An improved elastic-tube model for the correlation of permeability and stress with correction for the Klinkenberg effect. Journal of Natural Gas Science and Engineering 48: 24-35, 2017

5.  J.T. Zheng, Y. Ju*, H.H. Liu, L. Zheng and M. Wang. Numerical prediction of the decline of shale gas production rates considering the geomechanical effects based on the Two-part Hooke's model. Fuel. 185: 362-369, 2016

4.  Z. Chen, C.Y. Xie, Y. Chen and M. Wang*. Bonding strength effects in hydro-mechanical coupling transport in granular porous media by pore-scale modeling. Computation 4: 15, 2016

3.  Z. Wu, Y. Chen, M. Wang and A. Chung*. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab on a Chip 16: 532-542, 2016

2.  Y. Chen, Q. Kang, Q. Cai*, M. Wang*, D. Zhang. Lattice Boltzmann simulations of particle motion in binary immiscible fluids Communication in Computational Physics 18(3): 757-786, 2015

1.  Y. Chen, Q. Cai, Z. Xia, M. Wang* and S. Chen. Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions. Physical Review E. 88: 013303, 2013

Heat and Mass Transport in Porous Media        <top>

B1.  Moran Wang. Effective transport properties of porous media by modeling. Handbook of Porous Media-Third Edition, 2015

R2.  M. Wang. The Physical Chemistry of Materials: Energy and Environmental Applications. Materials Today (Invited Book Review), 13(3): 67, 2010

R1.  M. Wang, N. Pan. Predictions of Effective Physical Properties of Complex Multiphase Materials. Material Science and Engineering-R: Report (Invited Review; Impact Factor: 17.731), 63(1): 1-30, 2008

16. Y. Guo#, X. He#, W. Huang and M. Wang*. Microstructure Effects on Effective Gas Diffusion Coefficient of Nanoporous Materials. Transport in Porous Media 126: 431-453, 2019

15.  X.T. He#, Y.Y. Guo#, M. Li, N. Pan and M. Wang*. Effective gas diffusion coefficient of fibrous materials by mesoscopic modeling. International Journal of Heat and Mass Transfer 107: 736-746, 2017

14.  J. M. Yang, H. Wu*, M. Wang S. He, and H. Huang. Prediction and optimization of radiative thermal properties of ultrafine fibrous insulations. Applied Thermal Engineering 104: 394-402, 2016

13.  C. Xie, J. Wang N. Pan, D. Wang and M. Wang*. Lattice Boltzmann modeling of thermal conduction in composite materials with thermal contact resistance. Communication in Computational Physics, in press, 2014

12.  M. Wang*, X. Wang, J.K. Wang and N. Pan. Grain size effects on effective thermal conductivity of porous materials with internal thermal contact resistance. Journal Porous Media. 16(11): 1043-1048, 2013

11.  Y. Liao, H. Wu*, Y. Ding, S. Yin, M. Wang, A. Cao. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. Journal of Sol-Gel Science and Technology. DOI: 10.1007/s10971-012-2806-7, 63:445–456, 2012

10.  M. Wang*, Q. Chen, Q. Kang, N. Pan, and E. Ben-Naim. Nonlinear effective properties of unsaturated porous materials. International Journal of Non-linear Science and Numerical Simulations 11(1): 49-56, 2010

9.  M. Wang* and N. Pan. Elastic property of multiphase composites with random microstructures. Journal of Computational Physics, 228: 5978-5988, 2009

8.  M. Wang*, Q. Kang, and N. Pan. Thermal conductivity enhancement of carbon fiber composites. Applied Thermal Engineering. 29: 418-421, 2009

7.  M. Wang*, and N. Pan. Modeling and prediction of the Effective Thermal Conductivity of Random Open-cell Porous Foams. Int. J. Heat Mass Transfer. 51(5-6): 1325-1331, 2008

6.  M. Wang*, J. Wang, N. Pan, S. Chen, and J. He. Three dimensional effect on the effective thermal conductivity of porous media. J. Phys. D: Appl. Phys. 40(1): 260–265, 2007

5.  M. Wang*, F. Meng, and N. Pan. Transport properties of functionally graded materials. Journal of Applied Physics 102: 033514, 2007

4.  M. Wang*, and N. Pan. Numerical analyses of the effective dielectric constant of multiphase microporous media. Journal of Applied Physics 101: 114102, 2007

3.  M. Wang*, N. Pan, J. Wang, and S. Chen. Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of micro porous media. J. Colloid Interface Sci. 311(2): 562-570, 2007

2.  M. Wang, J. He, J. Yu and N. Pan*. Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. Intentional Journal of Thermal Sciences 46(9): 848-855, 2007

1.  M. Wang*, J. Wang, N. Pan, and S. Chen. Mesoscopic Predictions of the Effective Thermal Conductivity of Microscale Random Porous Media. Physical Review E. 75: 036702, 2007

Complex Flows in Porous Media        <top>

R1.  F.L. Liu, and M. Wang*. Review of Low Salinity Waterflooding Mechanisms: Wettability Alteration and Its Impact on Oil Recovery. Fuel 267: 117112, 2020

15. F.L. Liu and M. Wang*. Trapping Patterns during Capillary Displacements in Disordered Media. Journal Fluid Mechanics, In Press, 2022

14. F.L. Liu and M. Wang*. Wettability Effects on Mobilization of Ganglia During Displacement. International Journal of Mechanical Sciences 215: 106933, 2022

13. F.L. Liu and M. Wang*. Electrokinetic Mechanisms and Synergistic Effect on Ion-tuned Wettability in Oil-brine-rock System. Transport in Porous Media (35th Anniversary special issue in honour of Jacob Bear), 140(1): 7-26, 2021

12. J.T. Zheng W.H. Lei, Y. Ju and M. Wang*. Investigation of spontaneous imbibition behavior in a 3D pore space under reservoir condition by lattice Boltzmann method. Journal of Geophysical Research-Solid Earth, 126: e2021JB021987, 2021

11. C.Y. Xie, W. Lei, M. Balhoff, M. Wang* and S. Chen. Self-adaptive preferential flow control using displacing fluid with dispersed polymers in heterogeneous porous media. Journal Fluid Mechanics 906: A10, 2021 (cover page)

10. C.Y. Xie*, K. Xu, K. Mohanty, M. Wang and M. Balhoff*. Non-wetting droplet oscillation and displacement by viscoelastic fluids. Physical Review Fluids 5: 063301, 2020

9.  W. Lei, T. Liu, C.Y. Xie, H.E. Yang, T.J. Wu, M. Wang*. Enhanced oil recovery mechanism and recovery performance of micro-gel particle suspensions by microfluidic experiments. Energy Science and Engineering 8: 986-998, 2020 (Cover page)

8.  W.H. Lei, C. Xie, T.J. Wu, X.C. Wu and M. Wang*. Transport mechanism of deformable micro-gel particle through micropores with mechanical properties characterized by AFM. Scientific Reports 9: 1453, 2019

7.  J.T. Zheng, Y. Ju* and M. Wang*. Pore-scale modeling of spontaneous imbibition behavior in a complex shale porous structure by pseudo-potential lattice Boltzmann method. Journal of Geophysical Research-Solid Earth 123: 9586-9600, 2018

6.  J.T. Zheng, Z. Chen, C.Y. Xie, Z. Wang, Z. Lei, Y. Ju and M. Wang*. Characterization of spontaneous imbibition dynamics in irregular pores by lattice Boltzmann modeling. Computers & Fluids 168: 21-31, 2018

5.  C.Y. Xie, A.Q. Raeini, Y. Wang, M. Blunt*, M. Wang*. An improved pore-network model with viscous coupling effect via direct simulation by lattice Boltzmann method. Advances in Water Resources. 100: 26-34, 2017

4.  C.Y. Xie, J. Zhang, V. Bertola, M. Wang*. Lattice Boltzmann Modeling for Multiphase Viscoplastic Fluid Flow. Journal of Non-Newton Fluid Mechanics 234: 118-128, 2016

3.  Z. Chen, C.Y. Xie, Y. Chen and M. Wang*. Bonding strength effects in hydro-mechanical coupling transport in granular porous media by pore-scale modeling. Computation 4: 15, 2016

2.  X.D. Shan, M. Wang*, Z. Guo. Geometry Optimization of Self-similar Transport Network. Mathematical Problems in Engineering 2011: 421526, 2011

1.  X. Liu, M. Wang*, J. Meng, E. Ben-Naim and Z. Guo. Minimum dissipation principle for the optimization of transport networks. International Journal of Non-linear Science and Numerical Simulations 11(2): 113-120, 2010

Electrokinetic Flows        <top>

R3. A. Alizadeh, W.L. Hsu, M. Wang and H. Daiguji*. Electroosmotic flow: From microfluidics to nanofluidics. Electrophoresis 42: 834-868, 2021

R2.  H. Tian, M. Wang*. Electrokinetic mechanisms of wettability alternation at oil/water/rock interface. Surface Science Reports 2018 (Impact Factor: 13.33 at the year)

R1.  H. C. Yeh, M. Wang, C. C. Chang and R.-J. Yang*. Fundamentals and Modeling of Electrokinetic Transport in Nanochannels. Israel Journal of Chemistry (Invited review) DOI: 10.1002/ijch.201400079, 54, 1533-1555, 2014

B5.  Moran Wang and Shiyi Chen. Multiscale Simulations. Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, 2014

B4.  Moran Wang. Molecular Dynamics Simulations on Electrokinetic Nanofluidics. Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, 2014

B3.  Moran Wang and Li Zhang. Energy Conversion and Power Generation Using Nanofluidics. Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, 2014

B2.  G. P. Peterson, Chen Li, Moran Wang and Gang Chen. Edit: Micro/Nanotransport Phenomena in Renewable Energy and Energy Efficiency, on AME, 2010

B1.  Moran Wang. Analysis of electroosmotic microfluidics by the lattice Poisson-Boltzmann method. Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, pp. 985-999, 2008

46. F.L. Liu and M. Wang*. Electrokinetic Mechanisms and Synergistic Effect on Ion-tuned Wettability in Oil-brine-rock System. Transport in Porous Media (35th Anniversary special issue in honour of Jacob Bear), 140(1): 7-26, 2021

45. A. Alizadeh, W.L. Hsu, H. Daiguji* and M. Wang*. Temperature-regulated Surface Charge Manipulates Ionic Current Rectification in Tapered Nanofluidic Channel. International Journal of Mechanical Sciences 210: 106754, 2021

44. A. Alizadeh and M. Wang*. Temperature effects on electrical double layer at solid-aqueous solution interface Electrophoresis 41, 1067-1072, 2020 (Cover page)

43. T. Wu*,#, Y.K. Yang#, Z. Wang, Y.H. Tong, M. Wang*. Enhance of anion diffusion caused by the smectite illitization. Water Resource Research. 56(11): e2019WR027037, 2020

42. Y.K. Yang and M. Wang*. Electrodiffusion of cations in compacted clay: a pore-scale view. Environmental Science & Technology 53(4): 1976-1984, 2019

41. Y.K. Yang, R.A. Patel, S.V. Churakov*, N.I. Prasianakis, G. Kosakowski and M. Wang*. Multiscale modeling of ion diffusion in cement paste: electrical double layer effects. Cement and Concrete Composites 96: 55-65, 2019

40. H. Tian, F.L. Liu, X. Jin, M. Wang*. Competitive effects of interfacial interactions on ion-tuned wettability by atomic simulations. Journal of Colloid and Interface Science 540: 495-500, 2019

39. A. Alizadeh, X. Jin and M. Wang*. Pore-scale Study of Ion Transport Mechanisms in Inhomogeneously Charged Nanoporous Rocks: Impact of Interface Properties on Macroscopic Transport. Journal of Geophysical Research-Solid Earth 124: 017200, 2019

38. A. Alizadeh and M. Wang*. Flexibility of inactive electrokinetic layer at charged solid-liquid interface in response to bulk ion concentration Journal of Colloid and Interface Science 534: 195-204, 2019

37. A. Alizadeh and M. Wang*. Reverse Electrodialysis through Nanochannels with Inhomogeneously Charged Surfaces and Overlapped Electric Double Layers. Journal of Colloid and Interface Science 529: 214-223, 2018

36. L. Zhang, M.A. Hesse and M. Wang*. Dispersion of Charged Solute in Charged Micro- and Nanochannel with Reversible Sorption. Electrophoresis 40: 838-844, 2019 (Cover page)

35. L. Zhang, C. McNeece, M. Hesse and M. Wang*. Reactive Transport of Proton in Electro-osmostic Displacement Flow with Concentration Difference in Microchannel. Analytical Chemistry 90 (20): 11802–11811, 2018

34.  Y.K. Yang, M. Wang*. Pore-scale modeling of chloride ion diffusion in cement microstructures. Cement and Concrete Composites 85: 92-104, 2018 (IF: 4.265)

33.  Y.K. Yang, M. Wang*. Pore-scale study of thermal effects on ion diffusion in clay with inhomogeneous surface charge. Journal of Colloid and Interface Science 514: 443-451, 2018

32.  Y.K. Yang, M. Wang*. Upscaling scheme for long-term ion electrodiffusion in microporous media. Physical Review E 96: 023308, 2017

31.  H. Tian. M. Wang*, Molecular dynamics for ion-tuned wettability in oil-brine-rock system. AIP Advances 7: 125017, 2017

30.  A. Alizadeh and M. Wang*. Manipulating electrokinetic conductance of nanofluidic channel by varying inlet pH of solution. Microfluidics and Nanofluidics. 21: 52, 2017

29.  A. Alizadeh and M. Wang*. Direct simulation of electroosmosis around a spherical particle with inhomogeneously acquired surface charge. Electrophoresis 38: 580-595, 2017 (cover page)

28.  L. Zhang and M. Wang*. Electro-osmosis in inhomogeneously charged microporous media by pore-scale modeling. Journal of Colloid and Interface Science. 486: 219-231, 2017

27. L. Zhang, M.A. Hesse* and M. Wang. Transient solute transport with sorption in Poiseuille flow. Journal of Fluid Mechanics 828: 733-752, 2017

26.  L. Zhang and M. Wang*. Modeling of electrokinetic reactive transports using a coupled lattice Boltzmann method. Journal of Geophysical Research-Solid Earth. 120: 2877-2890, 2015

25.  L. Zhang and M. Wang*. Effects of Dielectric Permittivity of Solid Structure on Electro-osmotic Permeability in Porous Media. Journal of Porous Media 18 (10): 1021-1029, 2015

24.  H. Tian, L. Zhang, and M. Wang*. Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces. Journal of Colloid and Interface Science 452: 78-88, 2015

23.  A. Alizadeh, L. Zhang, and M. Wang*. Mixing enhancement of low Reynolds electro-osmotic flows in microchannels with temperature-patterned walls. Journal of Colloid and Interface Science, 431: 50-63, 2014

22.  A. Alizadeh, J. Wang, S. Pooyan, S. Mirbozorgi, M. Wang*. Numerical Study of Active Control of Mixing in Electro-Osmotic Flows by Temperature Difference using Lattice Boltzmann Methods. Journal of Colloid and Interface Science, 407: 546-555, 2013

21.  C.C. Chang, R.J. Yang, M. Wang, J.J. Miau, and V. Lebiga. Liquid flow retardation in nanospaces due to electroviscosity: Electrical Double Layers overlap, hydrodynamic slippage and ambient atmospheric CO2 dissolution. Physics of Fluids. 24: 072001, 2012

20.  J. Liu, M. Wang, S. Chen and M. Robbins*. Uncovering Molecular Mechanisms of Electrowetting and Saturation with Simulations. Physical Review Letters 108: 216101, 2012

19.  M. Wang. Structure effects on electro-osmosis in microporous media. Journal of Heat Transfer-ASME134: 051020, 2012

18.  M. Wang*, Q. Kang, H. Viswanathan and B. Robinson. Modeling of electro-osmosis of dilute electrolyte solutions in silica microporous media. J. Geophysical Research-Solid Earth 115: B10205, 2010

17.  J. Liu, M. Wang, S. Chen and M.O. Robbins. Molecular simulations of electroosmotic flows in rough nanochannels. Journal of Computational Physics 229: 7834-7847, 2010

16.  M. Wang* and Q. Kang. Electrochemomechanical energy conversion efficiency in silica nanochannels. Microfluidics and Nanofluidics 9(2): 181-190, 2010

15.  M. Wang*, C. Chang, and R. Yang. Electroviscosity in nanofluidic channels. Journal of Chemical Physics 132: 024701, 2010

14.  M. Wang*, and A. Revil. Electrochemical charge of silica surfaces at high ionic strength in narrow channels. Journal of Colloid and Interface Science 343: 381-386, 2010

13.  M. Wang*, Q. Kang, and E. Ben-Naim. Modeling of electrokinetic transport in silicon nanofluidic channels. Analytica Chimica Acta 664: 158-164empty, 2010

12.  M. Wang, and Q. Kang. Modeling electrokinetic flows in microchannels using coupled multiple lattice Boltzmann methods. Journal of Computational Physics 229: 728-744, 2010

11.  M. Wang and Q. Kang. Electrokinetic transport in microchannels with random roughness. Analytical Chemistry 81 (8), 2953-2961, 2009

10.  M. Wang *, and S. Chen. On applicability of Poisson-Boltzmann equation for micro- and nanoscale electroosmotic flows. Communications in Computational Physics 3(5): 1087-1099, 2008

9.  J. Wang, M. Wang , and Z. Li. Lattice Evolution Solution for the Nonlinear Poisson- Boltzmann Equation in Confined Domains. Communications of Nonlinear Sciences and Numerical Simulation. 13(3): 575-583, 2008

8.  M. Wang* J. Liu, and S. Chen. Electric potential distribution in nanoscale electroosmosis: from molecules to continuum. Molecular Simulation. 33(15): 1273 - 1277, 2007

7.  M. Wang*, J. Liu, S. Chen. Similarity of Electro-osmotic flows in nanochannels. Molecular Simulation. 33(3): 239-244, 2007

6.  M. Wang*, and S. Chen. Electroosmosis in homogeneously charged micro- and nanoscale random porous media. Journal of Colloid and Interface Science 314(1): 264-273, 2007

5.  M. Wang*, N. Pan, J. Wang and S. Chen. Lattice Poisson-Boltzmann Simulations of Electroosmotic Flows in Charged Anisotropic Porous Media. Communications in Computational Physics 2(6): 1055-1070, 2007

4.  M. Wang*, J. Wang, and S. Chen. Roughness and Cavitations effects on Electro-osmotic Flows in Rough Microchannels using the Lattice Poisson-Boltzmann Methods. Journal of Computational Physics. 226(1): 836-851, 2007

3.  M. Wang*, J. Wang, S. Chen, and N. Pan. Electrokinetic Pumping Effects of Charged Porous Media in Microchannels using the Lattice Poisson-Boltzmann Method. Journal of Colloid and Interface Science 304(1): 246-253, 2006

2.  J. Wang, M. Wang*, and Z. Li. Lattice Poisson-Boltzmann Simulations of Electro-osmotic Flows in Microchannels. Journal of Colloid and Interface Science 296(2): 729-736, 2006; Corrigendum: JCIS, 300(1): 446-446, 2006

1.  J. Wang*, M. Wang and Z. Li. Lattice Boltzmann simulations of mixing enhancement by the electro-osmotic flow in microchannels. Modern Physics Letters B. 19:1515-1518, 2005

Micro/nano heat transfer and non-equilibrium thermodynamics        <top>

R2  Y. Guo, M. Wang*. Phonon Hydrodynamics: Progress, Applications and Perspectives. Science China (in Chinese [郭洋裕 王沫然. 声子水动力学. 《中国科学》])

R1  Y. Guo, M. Wang*. Phonon hydrodynamics and its applications in nanoscale heat transport. Physics Reports. 595: 1-44, 2015 (Impact Factor: 22.91 at the year)

15. Y. Guo*, Z. Zhang, M. Bescond, S.Y. Xiong, M. Wang, M. Nomura*, S. Volz*. Size effect on phonon hydrodynamics in graphite micro- and nanostructures. Physical Review B 104: 075450, 2021

14. Y.F. Huang and M. Wang*. Nonnegative magnetoresistance in hydrodynamic regime of electron fluid transport in two-dimensional materials. Physical Review B 104: 155408, 2021

13. W.L. Miao, M. Wang*. Reexamination of electron-phonon coupling constant in continuum model by comparison with Boltzmann transport theory. International Journal of Heat and Mass Transfer 174: 121309, 2021

12. W.L. Miao, M. Wang*. Nonequilibrium effects on electron-phonon coupling constant in metals. Physical Review B 103: 125412, 2021

11. Y. Guo, Z. Zhang, M. Nomura, S. Volz, M. Wang*. Phonon vortex dynamics in graphene ribbon by solving Boltzmann transport equation with ab initio scattering rates. International Journal of Heat and Mass Transfer 169: 120981, 2021

10. W.L. Miao, Y.Y. Guo, X. Ran, M. Wang*. Deviational Monte Carlo scheme for thermal and electrical transport in metal nanostructures. Physical Review B 99: 205433, 2019

9.  X.P. Luo, Y.Y. Guo, M. Wang, H. L. Yi*. Direct simulation of second sound in graphene by solving the phonon Boltzmann equation via a multiscale scheme. Physical Review B. 100: 155401, 2019

8.  Y. Guo, D. Jou, M. Wang*. Nonequilibrium thermodynamics of phonon hydrodynamic model for nanoscale heat transport. Physical Review B 98: 104304, 2018

7.  Y. Guo, M. Wang*. Phonon hydrodynamics for nanoscale heat transport at ordinary temperature. Physical Review B 97: 035421, 2018

6.  Y. Guo, M. Wang*. Heat transport in two-dimensional materials by directly solving phonon Boltzmann equation under Callaway’s dual relaxation model. Physical Review B 96: 134312, 2017 (IF: 3.836)

5.  Y. Guo, Z. Y. Wang, M. Wang*. Thermodynamic extreme principles for non-equilibrium stationary state in heat conduction. Journal of Heat Transfer 139(7): 071303, 2017

4.  Y. Guo, M. Wang*. Thermodynamic analysis of gas flow and heat transfer in microchannels. International Journal of Heat and Mass Transfer 103: 773-782, 2016

3.  Y. Guo, M. Wang*. Lattice Boltzmann modeling of phonon transport. Journal of Computational Physics 315: 1-15, 2016

2  M. Wang, N. Yang and Z. Guo. Non-Fourier heat conductions in nanomaterials. Journal of Applied Physics. 110: 064310, 2011

1.  J. Wang, M. Wang, and Z. Li*. A Lattice Boltzmann Algorithm for Fluid-Solid Conjugate Heat Transfer. Intentional Journal of Thermal Sciences 46(3) 228-234, 2007

Flow mechanics in oil/gas developments     <top>

R1. F.L. Liu, and M. Wang*. Review of Low Salinity Waterflooding Mechanisms: Wettability Alteration and Its Impact on Oil Recovery. Fuel 267: 117112, 2020

10. W.H. Lei, Q.Q. Li, H.E. Yang, T. Wu, and M. Wang*. Preferential flow suppression in heterogeneous porous media by concentration-dependent rheology of microgel particle suspension JPSE

9. F. Wang, T. Liu, W. Lei, Y. Zhao, B. Li, G. Yang, Y. Liu, M. Wang*. Dynamic analysis of deformation and start-up process of residual-oil droplet on wall under shear flow. Journal of Petroleum Science and Engineering 199: 108335, 2021

8. Z. Chen, Z. Yang and M. Wang*. Hydro-mechanical coupled mechanisms of hydraulic fracture propagation in rocks with cemented natural fractures. Journal of Petroleum Science and Engineering 163: 421-434, 2018

7.  C.Y. Xie, W. Lv, and M. Wang*. Shear-thinning or Shear-thickening Fluid for Better EOR? — A Direct Pore-scale Study. Journal of Petroleum Science and Engineering 161: 683-691, 2018

6. J.T. Zheng, Y. Ju*, H.H. Liu, L. Zheng and M. Wang. Numerical prediction of the decline of shale gas production rates considering the geomechanical effects based on the Two-part Hooke's model. Fuel. 185: 362-369, 2016

5. Y. Wang, Z.G. Tian, S. Nolte, A. Amann-Hildenbrand, B. Krooss, M. Wang*. Reassessment of transient permeability measurement for tight rocks: the role of boundary and initial conditions. Journal of Natural Gas Science and Engineering, 95: 104173, 2021

4. Q. Lv, Z. Chen and M. Wang*. An improved elastic-tube model for the correlation of permeability and stress with correction for the Klinkenberg effect. Journal of Natural Gas Science and Engineering 48: 24-35, 2017

3. J. Zheng, Z. Wang, W. Gong, Y. Ju and M. Wang*. Morphology effects of shale nanopores on gas permeability using lattice Boltzmann modeling. Journal of Natural Gas Science and Engineering 47: 83-90, 2017

2.  Z.Y. Wang, X. Jin, X. Wang, L. Sun, M. Wang*. Pore-scale geometry effects on gas permeability in shale. Journal of Natural Gas Science and Engineering 34: 948-957, 2016

1.  Z.Y. Wang, Y.Y. Guo, M. Wang*. Permeability of high-Kn real gas flow in shale and production prediction by pore-scale modeling. Journal of Natural Gas Science and Engineering 28: 328-337, 2016

 

Micro/Nano Gas Dynamics     <top>

B2.  Moran Wang. Microscale gas flow dynamics and molecular models for gas flow and heat transfer. Microfluidics and Nanofluidics Handbook. Ed. by S. K. Mitra and S. Chakraborty. CRC Press/Taylor & Francis Group, LLC. 2010

B1.  Moran Wang* and Zhixin Li. Micro- and nanoscale gas fluidics Encyclopedia of Microfluidics and Nanofluidics. Ed. by Dongqing Li, Springer, Berlin, Heidelberg, New York, pp.1287-1294, 2008

27. Y. Wang, S. Nolte, G. Gaus, Z. Tian, A. Amann-Hildenbrand, B. Krooss, M. Wang*. An early-time solution of pulse-decay method for permeability measurement of tight rocks. Journal of Geophysical Research-Solid Earth 126: e2021JB022422, 2021

26. Y. Wang, S. Nolte, Z.G. Tian, A. Amann-Hildenbrand, B. Krooss, M. Wang*. A modified pulse-decay approach to simultaneously measure permeability and porosity of tight rocks. Energy Science and Engineering 9: 2354-2363, 2021

25. S. Nolte, R. Fink, B. Krooss, Al. Amann-Hildenbrand, Y. Wang, M. Wang, J. Schmatz, J. Klaver, R. Littke*. Experimental investigation of gas dynamic effects using nanoporous synthetic materials as tight rock analogues Transport in Porous Media 137: 519-553, 2021

24. Y. Guo#, X. He#, W. Huang and M. Wang*. Microstructure Effects on Effective Gas Diffusion Coefficient of Nanoporous Materials. Transport in Porous Media 126: 431-453, 2019

23. Z.Y. Wang, M. Wang* S. Chen. Coupling of high-Knudsen and non-ideal gas effects in microporous media. Journal of Fluid Mechanics 840: 56-73, 2018

22. X.T. He#, Y.Y. Guo#, M. Li, N. Pan and M. Wang*. Effective gas diffusion coefficient of fibrous materials by mesoscopic modeling. International Journal of Heat and Mass Transfer 107: 736-746, 2017

21.  X. Shan and M. Wang*. On mechanisms of chocked gas flows in microchannels. Physics Letters A 379: 2351-2356, 2015

20.  X. Shan and M. Wang*. Effective resistance of gas flow in microchannels. Advances in Mechanical Engineering. 2013: 950681, 2013

19.  X. Shan and M. Wang*. Understanding of thermal conductance of thin gas layer. Advances of Mechanical Engineering 2013: 692842, 2013

18.  Moran Wang, Xudong Lan and Zhixin Li*. Analysis of Gas flows in Micro- and Nanochannels. Int. J. Heat Mass Transfer. 51: 3630-3641 2008

17.  Moran Wang*, Zhixin Li. An Enskog based Monte Carlo method for high Knudsen number non-ideal gas flows. Computer & Fluids 36(8): 1291-1297, 2007

16.  Moran Wang*, Macrossan M. and Zhixin Li. Relaxation Time Simulation Method with Internal Energy Exchange for Perfect Gas Flow at Near-Continuum Conditions. Communications of Nonlinear Sciences and Numerical Simulation. 12(7): 1277-1282, 2007

15.  Hongwei Liu, Moran Wang*, Jinku Wang et al. Monte Carlo simulations of gas glow and heat transfer in vacuum packaged MEMS devices. Applied Thermal Engineering. 27: 323-329, 2007

14.  Moran Wang*, Zhixin Li. Gas mixing in microchannels using the direct simulation Monte Carlo method. Int. J. Heat Mass Transfer 49: 1696-1702, 2006

13.  Moran Wang, Zhixin Li*. Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels. Science in China Ser. E, Engineering & Materials Science, 48(3): 317-325, 2005

12.  Moran Wang, Zhixin Li*. Statistical Simulation of Gas Flow and Heat Transfer in Micro Air Bearing. Tribology 25(1): 55-60, 2005 (In Chinese)

11.  Moran Wang*, Zhixin Li. Failure analysis of the molecular block model for the direct simulation Monte Carlo method. Physics of Fluids, 16(6): 2122-2125, 2004

10.  Moran Wang*, Zhixin Li. Micro- and nanoscale non-ideal gas poiseuille flows in a consistent Boltzmann algorithm model. J. Micromechanics and Microengineering. 14(7): 1057-1063, 2004

9.  Moran Wang, Zhixin Li*. Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method. Int. J. Heat Fluid Flow, 25(6): 975-985, 2004

8.  Moran Wang, Zhixin Li*. Numerical Simulations on Performance of MEMS-Based Nozzles at Moderate or Low Temperatures. Microfluidics and Nanofluidics, 1(1): 62-70, 2004

7.  Moran Wang*, Zhixin Li. A Monte Carlo Method for Perfect Gas Near-Continuum Flows. Recent Advances in Fluid Mechanics. pp. 716-719, 2004

6.  Wang Moran*, Li Zhixin. Three-dimensional effect of gas flow in micro channels. Journal of Engineering Thermophysics. 25(5): 840-842, 2004 (In Chinese)

5.  Wang Moran*, Wang Jinku, Li Zhixin. New boundary condition implements for the DSMC method. Chinese Journal of Computational Physics. 21(3): 48-52, 2004 (In Chinese)

4.  Moran Wang*, Zhixin Li. Nonideal gas flow and heat transfer in micro- and nanochannels using the direct simulation Monte Carlo method. Physical Review E. 68: 046704, 2003

3.  Moran Wang*, Zhixin Li. Similarity of ideal gas flow at different scales. Science in China E. 46(6): 661-670, 2003

2.  Wang Moran*, Chen Zejing, Li Zhixin. Simulations and optimization for micro gas flowmeter. Micronanoelectronic Technology, (7/8): 61-65, 2003 (In Chinese)

1.  Wang Moran*, Chen Zejing, Li Zhixin. Simulation and analysis of gas flow and heat transfer in micro nozzle. Micronanoelectronic Technology, (7/8): 66-68, 2003 (In Chinese)

Micro Devices and Fabrication       <top>

R3.  X. Wang, B. Ding*, G. Sun, M. Wang* and J. Yu*. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Progress in Materials Science. 58: 1173-1243, 2013 (Impact Factor: 18.216 at the year)

R2  J. Lin, X. Wang, B. Ding, J. Yu and M. Wang*. Biomimicry via Electrospinning. Critical Reviews in Solid State and Materials Sciences (Impact Factor: 9.143) In Press, 2012

R1  B. Ding, M. Wang*, X. Wang and J. Yu. Electrospun nanomaterials for ultrasensitive sensors. Materials Today 13(11): 16-27, 2010

13  Y. Liao, H. Wu*, Y. Ding, S. Yin, M. Wang and A. Cao. Engineering thermal and mechanical properties of flexible aerogel insulation composites via controllable lamination of multi-layer ordered fibers. Journal of Sol-Gel Science and Technology. 63: 445-456, 2012

12  X. Wang, B. Ding, J. Yu and M. Wang*. Engineering Biomimetic Superhydrophobic Surfaces of Electrospun Nanomaterials. Nano Today. 6: 515-535, 2011 (Impact Factor: 15.355)

11   J. Lin, Y. Cai, X. Wang, B. Ding, J. Yu, and M. Wang. Fabrication of biomimetic superhydrophobic surfaces inspired from lotus leaf and silver ragwort leaf. Nanoscale 3(3): 1258-1262, 2011

10.  M. Guo, B. Ding, X. Li, X. Wang, J. Yu, and M. Wang Amphiphobic Nanofibrous Silica Mats with Flexible and High Heat-resistant Properties. J. Phys. Chem. C. 114: 916-921, 2010

9.  X. Wang, B. Ding, J. Yu, M. Wang, and K. Pan. A highly sensitive humidity sensor based on nanofibrous membranes coated quartz crystal microbalance. Nanotechnology 21: 055502, 2010

8.  X. Mao, B. Ding, M. Wang, Y. Yan. Self-assembly of phthalocyanine and polyacrylic acid composite multilayers on cellulose nanofibers. Carbohydrate Polymers 80: 839-844 2010

7.  B. Ding, M. Wang, J. Yu and G. Sun. Gas Sensors Based on Electrospun Nanofibers. Sensors, 9(3), 1609-1624, 2009

6.  M. Wang *, Z. Li. Valve-less thermally-driven moving-phase-change micropump. Tsinghua Science and Technology. 9(6): 688-693, 2004

5.  Z. Li*, M. Wang, XB Yao, Z.Y. Guo. Pumping mechanism of thermally driven phase transition micropump. Microscale Thermophysical Engineering. 8(1): 31-42, 2004

4.  M. Wang *, Z. Li, Z. Chen. The pumping effect of traveling phase transition in microtubes. International Journal of Nonlinear Sciences and Numerical Simulation, 3: 565-568, 2002

3.  Z. Li*, M. Wang, L. Tan. Experimental investigation on phase transformation type micropump. Chinese Science Bulletin 47: 518-522, 2002

2.  M. Wang *, Li Z. Investigation Process of Micropump Based on MEMS. Journal of Transducer Technology. 21(6): 59-61, 2002 (in Chinese)

1.  M. Wang *, Z. Li, L. Tan. Pumping Mechanism of the phase Transition Type Micropump. Mechanical Science and Technology, 21(6): 966-968, 2002 (In Chinese)